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rings. For example if m=pf'...pj is the prime factorization of m, let
GR(p}, m) be the Galois ring of order pi™, m; > 1 for i=1,...,r. Let
S denote the direct product of the Galois rings GR(p{", m)), i =1, ..., 1. Using
the ring S one can construct various cryptographic systems generalizing those
constructed over the residue class ring of integers modulo m. We shall not,
however, go into these details here.
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ACTA ARITHMETICA
LIX.4 (1991)

Lattice points in ellipsoids
by

SUKUMAR DaAs ADHIKARI (Madras) and Y.-F. S. PETERMANN (Geneéve)

1. Introduction. The main object of this paper is to prove two-sided

Omega estimates for the error terms in the classical lattice-points problem for
the three- and four-dimensional spheres.

If A,(x) is the number of integer lattice-points in an I-dimensional sphere of

radius \/;, then as x —» o0 A,(x) ~ Vi(x), where V)(x) is the volume of the
sphere. We denote the corresponding error term by

(1.1) Py(x) = Ay(x)—V(x).
For every I >4 it is known that [14, Satz 2.2.2]
(1.2) P(x) = O(x"*71)
and that [14, Sdtze 4.4.8 and 4.4.9]

(13) Py(x) = @, (x271).

In fact, a large part of WalfiszZ book [14] (Chapters III through VII) is
dedicated to the study of the liminf and limsup as x — ov of the bounded

function P,(x)x! %2, which in some cases are determined explicitly or sharply
approximated. The main results gathered in that book are due to Landau,
Lursmanaschwili, Petersson and Walfisz. When 2 < | < 4, however, the exact
order of magnitude of P,(x) (in the sense of (1.2) and (1.3)) is not even known.
The case | = 2 is the famous circle problem; to date, the best Q,, Q@ _, and

O-estimates are due respectively to Corradi and Katai [4], Hafner [5], and
Huxley [6].

We first consider the case | =4. Walfisz [15] proved that
(1.4 P,(x) = O(x(log x)*'?).

On the other hand, Adhikari, Balasubramanian and Sankaranarayanan [1]
recently obtained the one-sided

(1.5 P,(x) = Q, (xloglog x)



330 S. D. Adhikari and Y-F. S. Pétermann

by an averaging technique, thus making more precise the estimate of Walfisz
[14, Satz 3.1.2],

(1.6) P,(x) = Q(xloglog x).

Here we prove that

(1.7) P,(x) = Q,(xloglogx).

In fact, we obtain a more precise and general result. Let A= (n,, n,,
ny, n,)e Z* and consider the quadratic forms

(1.8) Q= Q. (A):=n}+2 W21 p3 4 2 TH21 24 okp2

for 0 <k <3 (where | x| and [x7] denote respectively the largest integer
not exceeding x and the smallest integer not less than x), the associated
four-dimensional ellipsoids

0<Q,<x

of respective volumes

,R.Z
Vax(x) = 1 o

and the corresponding error terms

(1.9) Ry(x):= ) r(n)—Viulx)
where |
r(n):= Y 1.
Qr=n

(Thus, Ry is P, and V., is V,.) We prove in Section 2 below
THEOREM 1. For k=0,1,2,3 and * = +, —, we have

R
(1.10) h‘msup(*ﬁ) > 21k,
xloglog x

Xt
where y denotes the Euler constant.

We pass to the case | = 3. To our knowledge the best O-estimate known to
date is due to Vinogradov [11]. On the other hand, Szegd [10] proved in 1926
that

(1.11) Py(x) = Q_(x"%(log x)'/?).

In 1965, unaware of Szegd’s result (as all their reviewers!), Bleicher and Knopp
[3] derived the weaker and less precise

P,(x) = Q(x"*log log x)
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from Walfisz’ result (1.6). But now, by using their ingenious technique we can
derive from (1.5) the estimate

(1.12) P,(x) = Q,(x?loglogx),

which — crossing our fingers —we think is new. (The corresponding € _-result
which follows from (1.7) is again weaker than (1.11).) Here again we prove
a result more precise and general. We rewrite (1.8) under the form

(1.13) Q) = Y ayn?  (0<k<3),

and we consider the three-dimensional ellipsoids

0<Quim)<x (0<k<3;1<j<4),

where

4
(1.14) Qui(my) = Y awn?,
and

ﬁj =(n,,n,,n), 1<i,<i;<iz<4,i #],
with respective volumes
(1.15) Wi j(x} = %?ijx'ms

where

4
Ogj= n (ﬂkf)_”z,
i=1

%]
ant_i the corresponding error terms
(1.16) Rkj(x) = z rl(j(n)_m_f(x)s
where "
rgn):= Y 1.
Q;=n

(Thus, Ry, is P;.) We prove in Section 3

THEOREM 2. For each R,; defined above and for * = +, — we have
" R,;(x)
(1.17) lim sup (t —— —f—) = oy e,
s x'*loglog x !

Remark. The four four-dimensional ellipsoids associated with Q, (0 < k
< 3) are considered by Walfisz in [12] and [13], where he studies the asymptotic
square mean of R,. O-results for the R, can be derived from [15, Chapter 111].
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Estimates for the number of changes in sign of R, in the interval [1, x] can be
found in [7].
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2. Proof of Theorem 1. We first recall formulae of Jacobi and Liouville
expressing r,(n) in terms of the sum-of-divisors function a(n).

Lemma 1 ([2; pp. 353-354; and Chapter VIII, § 20-22]). Let n = 2"y, where
u is odd and h = 0. Then '

~ |8a(w) if h=0,
"o =240 if k>0,

4a(u) if h=0,
(2.2) ryn) = {80‘(:1) ifh=1,
240(u) if h>1,

20(u) if h=0,
do(u) if h=1,

(2.1)

(@3) =850 Fh=2
246(u) if h>2,
and
ow+j if h=0,
20(u) if h=1,
(2.4) ry(n) = < 4o(u) if h=2,
8a(u) if h=3,
240 (u) if h>3,
where

u=vi+4w?

(==Y (=1)e"2y i nis odd,
Jjn) =
if nis even.

A straightforward calculation then yields

LEMMA 2. For k=0,1,2,3 we have

r(n) 3k o, (d)
3 = 93y I
(2.5) " d% q

+¢&.(n),
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where

| if d is odd,

it Ok a;f?.ld and 2**' yd (k > 0),

2 lf 2k+l ” d,

_3_2k y‘zk-ﬂ-zld,
and

sk(u)={q ifk=0,1 or 2,
Jnif k=3.
Further, similarly to [1] we set, for k =0, 1, 2,3,
2.6) ' Row(x) = ( S e )— y &ld)
B ng:c dlza:t d Pk{n) xdgl d?
and
) d) X3 & d

2.7) A(x) = ﬂ( %) e n)—- %)

n%x dln d k( ) 2 dg dZ -
It follows from Lemma 2 that
(2.8) R,(x) = 23ﬁk3?1k(xj-
Now, from a result of Walfisz [12, Hilfssatz 293, we have

LEMMA 3.
(29) L ney(n) =Y j(n) = O(x*)
nEx nEx

and
2.10) Y =¥ 1o op).

nEx nsx N

Tl_le three intermediate results we state below are, with the help of Lemma
3, straightforward generalizations of Lemmata 3.7, 3.8, and 3.9 of [1].

LEMMA 4. For k = fJ, 1,2, 3 we have
.11) v M=(2+’—‘>iog2+o(i).
nx n 2 X

LEMMA §S. For k=0,1, 2,3 we have

(2.12) 2 1(x)

—Ro(x) = 0(1).
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LEMMA 6. For k =0, 1,2, 3, uniformly inx > 2 and y > ﬁ. we have (the
second equality being a— helpful —triviality in view of Lemma 4)

d d
213) Bo¥)=— Y “*; ) {3}+0(1)= - “; )w(g)-k()(l),

d<y d<y

where Y(z):= {z} —1/2.

Remark. A typographical accident has made the statement of Lemma
3.5 in [1] incomprehensible. Although we do not appeal to that particular
result in the present paper, the fact that we heavily refer to [1] requires an
emendation: Lemma 3.5 should read as follows.

“Let G(x) and x/G(x) be positive, increasing functions such that

Y h@d){x/d} = 0(1) for y=x/G(x).
d>y
Then we have
Ro(x) = — Y h(d){x/d}+0(1) for y= x/G(x).”
d<y
We also point out a misprint in the proof of Theorem 1 of [1]: the product
in line (4.3) should be on the p g (instead of the plgq).

From (2.8) and Lemma 5 we see that Theorem 1is equivalent to the
assertion

5 Rox(x) e’
- Tno loo v 2 4
(2.14) 1‘?}:[) (* loglog x) 4

for k=0,1,2,3 and * = +, —. To prove (2.14) we apply to the expression
(2.13) of . the averaging technique of [8]. The function

@15) h(x):= L akffd)"’(ﬁ)

nsx

satisfies the conditions of Theorem 1 in that paper, from which we state here
the simplified version we need as

LemMma 7. Let A = A(x) > 0 and B = B(x) = 0 be integer valued functions,
and z = z(x) be a positive, strictly increasing, continuous and unbounded function.
Suppose that z is regularly O-varying, ie. lim sup, . , z(2x)/z(x) < o, and that
u(x):= z(Ax+B) = o(x) as x— 0. Suppose further that the real function

g satisfies, for x > 1,
L‘"’f(f)w(n,
n n/

aln) [x
(2.16) gix) = 3, '—f(—) =
nEx h n
where a(n) is a sequence of real numbers with a finite asymptotic mean and with
Y n<la(n) = O(x), and where f is a periodic function of period 1, of bounded

nsz
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variation and with mean 0, Then

1
| 1 /1
2.17) = Y gUn+B)=y “—!—(!—* y f(£+78))+0(1),

n<x I£u nsil* I*

where I* denotes If(A, 1).

Before we apply Lemma 7 to i
‘ : g=h,withz(x)=x** @anda =a,, f =
we state the following particular case of a well-known property of the gefrnoj’l{;

polynomials [9, (1.6.1)], noti _ !
e e )], noting that y(x) = B, ({x}), where B, is the first

LeMMA 8. With the notation of Lemma 7 we have

1) L oyl
_ E 2T =Y (A,n)'

Consequently, if 4 = m!/2" = x!/4 i
! 12X = , where 2"|m!, and if B = 0 i
B = A-1, we have, for some u with x!516 « y « x!5/16 vISgPtEY

1
(2.19) 2% hantB)= 5 %9 ?
- *,ﬂz,. %‘n—"’cmnom,
where
(220 Cm= Y «yn

1<u/n
pll and p=|| A then p=||n

and where » denotes —, respectively +.
Now we have, as m - oo,

(2.21) oy (n) (1 1 1 ) e’
= b= — e — .
> [1 = 2logm,

nla M Pl 4 “

and, with the equality

1 K
(2.22 — —o———3: 2k ——l —-———l :
) ) (1+22¢k+n 3-2 (22(k+2)+22(k+31+ )) :ﬁ>
we see from (2.20), the definition (2.5) of o, and the fact that 4 < u, that

(2.23) C(n) > ¥ lz

r=1(2)and r<ujn; r
plrand p*|| A then p*||n

for every n. Thus, as m — oo,

=1

] ¥
(2.24) =) h,‘(An+B)2%logm(l+oH]).

nEx
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Finally, since loglogx ~ loglog 4 ~ log m, the proof of (2.14) is complete
in view of Lemma 6 and definition (2.15).

3. Proof of Theorem 2. We let, for k = 0,1,2,3and j=1,2,3,4,
3.1 M,(x):= ) r(n) and M, (x):= Y rij(n).

<
nsx
nEx =

(Thus, My(x) = A,(x) and Mj(x) = A;3(x).) We have, if a;; and o,; are as In
(1.13) and (1.15),
(3.2) M, (x) = ZMU(x—aUmZ)

= 4nay; Y (x—apm?)* ' + Y Ryj(x—ag;m?),

. . ”2
where the three sums run over the integers m with |m| < (x/ay;)"'*. Let us

suppose that

Ry; "
Tl AN
(3.3) lll:‘l_‘S:p T loglog x Xj
Then, there are numbers ¢ >0 and N > 3 such that if x > N, then
(3.4) Ry(x) < (a4 e’ —e)x'/* loglog x.
Also, for any x > 3, we have
(3.5) Ry;(x) < Kx'/*loglog x

for some K independent of x. Now, assuming that x > N and setting

xyji= X[ay;, we have

2
Ry j(x —ay;m )
Y e S o

= z Rkj(x—a”mz)+

"\f'xkj"N<m<v"xk_p—N

- R;U-(x - a”mz)

vf'xm—-NélmFEv"xw

: a}* KNx'"? log log x
1/2 1]

42&1”31’__5)(:(”-—}\'] x!/*loglog x + (x__aij)uz

since the number of integers m with (/x;;—N < |m| < /x,; i1s at most
N(akj/(x—a”N))”z.

+0(1),

Thus

Xieg f 1-k
—~ VxR SMmEV xR w5 o' — .

x'?loglog x \/a_“ \/a_“

=
( Y, Rijlx—aym )) _ 2oy 67— 2 %
lim sup <
since
4
(T a2 = 2

i=1
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Hence, from (3.2) and Lemma 9 below, we have

M, (x) = $noy;ap)? ¥ (xj—m?)*2 + S(x)
Vg Sm< Vg
TCZ
= §moyad)2 @nxd) + S(x)+ O(x) = 2*—Hx2+S(x)+0(x),

where

. S(x) 2

limsup———— < 21 kgv _ )

x*prlOglogx ¢ 1.-"0;‘}'

and this is in contradiction with Theorem 1. Thus (3.3) cannot be true and the
proof of Theorem 2 with * = + is complete. The case * = — is treated
similarly.

LemMA 9 [3, Lemma 3 for k = 3]. We have, as x — oo,

Y (x=m)** =nx +0(x).

—Vx<m<vx
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ACTA ARITHMETICA
LIX4 (1991)

On some sums involving the largest prime divisor of n
by

E. J. ScourriELp (London)

1. Introduction. Using analytic methods, R. Balasubramanian and K. Rama-
chandra proved in [1] that

(1.1) Z(x)= ) 1~Cx(logx)*' as x— o
ngin) < x

for a class of positive multiplicative functions g satisfying

(1.2) g(p) =1/4 for all primes p,
' g(n)>n~11%  for all positive integers n.

In fact they obtained an asymptotic expansion of the form

(1.3)  Z,(x) = x(logx)*~* ¥ A n(log x)"™(log log x)"

nEm<(logx)4/s
+O(xexp(— A(log x)*/* (log log x)~ '/5)).

This class of functions g includes the divisor function d(n), when 1 = 1 /2, and
its reciprocal, when A = 2. In the final section of their paper, they remark that
a similar result, but with a weaker exponential error term in some cases, can be
obtained when the first condition in (1.2) is relaxed to

g(p) = 1/2+ O(exp(—c(log p))),
¢>0 and a > 1 being constants. They asserted that, to establish this when

1 < a < 3/2, the contour used to derive (1.3) should be replaced by a modifica-

tion of the one used by P. T. Bateman, in his method C of [3], to prove that for
any fixed ¢ >0

1y 3 100,

pin)=x B C(ﬁ)

Where ¢ denotes Euler’s function; an elementary proof of (1.4) has been given
recently in [2], and similar sums for other multiplicative functions in a certain
class are considered in [17]. When 4 = 1, method C in [3] can be applied
directly to estimate 2,(x): see Theorem 7 in Section 8 below.

+ O(x exp(—(1—g)(3 log x loglog x)!/3)),
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