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Introduction. In the paper by P. Chowla and S. Chowla, [1], there are
several conjectures concerning continued fractions and Legendre symbols. In
particular, if we denote the periodic continued fraction expansion of \[}\T’ as
(ay; a,, a,, -.-, a,) then Chowla and Chowla hypthothesized the relationship

k

(E) =(—1) where Z=Y (—1)q

q i=1

and when the N in question is the product of the two primes p = 3 (mod 4) and

g =5 (mod 8). This was proved a short time later by A. Schinzel [4].
That result was not, however, an isolated one and this author was led to

examine other cases where it was possible to prove relationships between the

alternating sum Z, the Legendre symbol (5), and the period of the continued

fraction expansions of \/p_q and ,/2pq. The results are outlined in the following

tables. It was found necessary, in some of the cases, to include the relative size

of p and q in the formula.

Table 1. N = pg with p, q distinct odd primes. X, a, and k refer to the continued fraction

expansion of ﬁ: ce=1ifp<gand e=—11if p>g.
p=11(8) p=3(8 p=5(8) p=7(8)
g=1(8) X =2a4k (4) Z =2a,k (4)
g=3(8) @=a(-11? *E) = (-1 () =e(— 12
g=5(8) 5 = 2a0k (4) ) =(—1)* Z = 2apk (4) ) =(—1)7
q=7(8) ) =e(—1? W =(=1 (@) = e(=1)?

* These formulas were first proved by A. Schinzel [4].

The author would like to acknowledge the support of a Toronto University grant and an
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Table 2. N = 2pg with p, g distinct odd primes. Z, a, and k refer to the continued fraction

cxpansionofﬂ;s, =1if2g>pande, = —1if2g<p;e,=1il2p<qgande,=—1il2p>gq.
=1(@8) p=3(8) p=35(8) p=11(8)
g=1(8) Z = 2a,k (4) Z =2a,k (4)
g=3(8) @=—(=1" Q=g (=D
g=5(8) I=2ak @) | GO=—(-1)" £ = 2apk (4) B = —(—1)*?
g=17(8) () =ex(— D2 @) =—(=1"

The formulas in the above tables, several of which were suggested by
computational results, are proved in Sections 5 and 6. The absences in the tables
correspond to the lack of a simple relationship between the X, (§) and k. There
are several identities that we will make use of throughout the later sections and
their statement and proof will occupy us for the first part of the paper.

1. Continued fractions: Some elementary results. We begin with some
simple facts about continued fraction expansions of quadratic irrationals and
use this opportunity to fix our notation. Let x be a positive irrational. We
define F,(x) = x and

1
F,(x)—[F,(x)]
where the square brackets denote the greatest integer function. Let us fix our

irrational x to be the square root of a positive non-square integer N and from
here on we will be dropping the explicit dependence on x in our notation. It is

possible to write each F”(ﬁ} uniquely in the form
F, = (p,+~/N)/a,

where the p, and g, are non-negative integers [3, Chapter 3]. We shall use the
above as our definition of the quantities p, and g, for n > 0. We now define the

partial denominators

Fpey(x) = for all n=>0

ay = [(pa++/NV/a,]

and we can write the periodic continued fraction expansion of ﬁ as
(ay; @y, a,, .., &,) where k is the period of the expansion. We will also find use
for the following two series, written as functions of the partial denominators,

where we have again dropped the explicit dependence on \/ﬁ
P—l=l= P(}:a{)' PuzanPn-l+Pn—2 Vlsn\(-k;
Q—|=0s Q(}:l» Q,.=a..Qn-|+Qn—z V 1“-<-n"‘~<-k
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For the remainder of the paper we fix N > 2 to be a non-square integer. The

following elementary facts about the continued fraction expansion of \/N will
be useful.

(1.1) 1<g,<2/N Vigsn<k—1, go=g. =1,
(1.2) 0<p,</N Vn>0,

(1.3) a,=a_, VI1<n<k=1, ay=[/N], a =2a,
(1.4) G=0q-» VYV O0<n<k,

(1.5) Po=DPi+1-n YV 1<n<k,

(1.6) QuPuy=P,Quy=(—1" VY nz0,

(1.7) P2, —NQZ ,=(—1yq, VY n=0,

(1.8) Pu+r = ayqy—p, VYV nz=0,

(1.9) Gns1=(N—pis)lg, Y nz=0.

The first two relations bound the size of the continued fraction quantities g,
and p, and the next three deal with the symmetry that occurs inside the period.
The proofs of all of these results are well known and straightforward. Readers
are directed to Perron [3, Chapter 3] for details.

2. Continued fractions: Mid-period results. Our interest in the alternating
sum X leads us to distinguish between the continued fractions of odd period
and those of even period. If the period, k, of the continued fraction is odd then
the symmetry result together with the fact that a, = 2a, (1.3) leads to the
conclusion that X = 2a,. If, on the other hand, the period is even then the
symmetry (1.3) of the continued fraction expansion gives rise to the congruence

m—1

(2.1 Z=2a,+a,+2 Y a; (mod4)
i=1

where m = k/2.

LEMMA. Let N be a non-square integer greater than 2. Let k be the period of
the continued fraction expansion of \,/N. If k=0 (mod2) then

22) a, =22m,
am
23) 4nl2N

where m = k/2. If. in addition, we know that N is even then we have

(2.4) qmN.
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If the N under consideration is congruent to 2 modulo 4 then we have
(2.5) qmlpn and a, =0 (mod2).

Proof. a,q, —p, = Pm+1 by (1.8). Then we use the symmetry (1.5) to see
that p..; = p,, to arrive at equation (2.2). Using this equation together with
the fact (1.9) that g,|(N —p2) we see that ¢,|2N as required for the second
equation. For the proof of the third equation we assume that N is even. If q,, is
odd then we obtain g,|N, as desired. For the case where g,, is even we use the
fact that ¢, divides N —p? together with the fact that N is even to see that p,,
must be even. From g,|2p,, it must then follow that g,,|p% and we see from this
that g,|N, thus finishing the proof of (2.3). We begin the proof of the last
equation by noting that if g,, is odd then g, |2p, implies that g,|p,,. If, on the
other hand, g,, is even then from g,,|N — ps, (1.9) it must follow that p, is even.
Furthermore, since g, /N we deduce that ¢, = 2 (mod4). Recalling that p, is
even and that g,)2p,, we are now able to conclude that g,|p,,.

LEMMA. Let N be a non-square integer greater than 2. Let k be the period of

the continued fraction expansion of ﬁ . If N has a prime divisor congruent to
3 modulo 4 then

(2.6) k=0 (mod?2).

Proof. Let p =3 (mod 4) be a prime dividing N. Combining the fact that
g, = 1 (1.1) with the formula (1.7) gives rise to Pi_; —NQi-; = (—1)". Looking
at this equation modulo p results in the relation

12 (Pf_l) _ ((—n*) "
P p

which leads to the desired conclusion that k is even.

3. A modulo 4 identity for . We shall require a number of results relating
the parities of the P, and the Q, from the continued fraction expansion with
our sum X. As has been the practice throughout this paper we let N be
a non-square integer greater than 2 and we consider the continued fraction

expansion of ﬁ with period k. We then have the following
LemMA. For all n =1 we have
31 a+1=0,+Q,-2+P,+P, 2+ P, Q-1+ P,-1Q,- (mod?2).

Proofl. From the equation Q,P,—, —P,Q,-; = (—1)" (1.6) it follows that
not both P,_, and Q,_, can be even. We may encode this fact in a modulo two
congruence. Namely, we have

Pﬂ-l+Qn—l +Pn~1Qu--|+I =0 (m0d2]
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By multiplying the above identity by a, and noting that a,P,_, = P,—P,_,
and a,0,-; = Q,—0,-, we obtain

Pn_Pn—2+Qn_Qn-‘Z'l'(Pn_Pu-Z)Qn-l = —aq, (mod2)

Since we are operating modulo 2 we may replace all subtractions by additions.
It only remains to remark that we may use (1.6) to determine that
P,.,0,-y=P,-10,-2+1 {mod2) and with this substitution we arrive at the
desired congruence

ﬂ"-l'] = Qn+Qn‘-2+Pn+Pn-Z+PnQn—! +Pn—lQn—2 (mOdz)
The above identity has a particular form (out of many that it could take)
whose usefulness is made clear in the following application.

LEMMA. Let N be a non-square integer greater than 2. Let k be the period of
the continued fraction expansion of \/ﬁ . Then

(3.2) Y @+1)=ay+Q,-1+Q,+P,_y+P,+P,Q,-y (mod2)
i=1

Jor all n> 1.

Proof. The proofis by induction. It is easy to verify that the result is true
for n = 1. To show that the equation holds for n whenever it holds for n—1 we
write

n=1
(a+1)= Y (g+1)+(a,+1)

i=1 i=1

Eao+Qn—2+Qn—l+-Pr|-2+Pn-1+Pn—1Qn—2+an+1 (mOdz)

™=

Replacing a,+ 1 with the aid of expression (3.1) and disposing of duplicates
(since we are working modulo 2) leaves us with

S (@+1) = @+ Pyt PyQu-y +dg+ Qpy +Po_y (mod2),
i=1

which is the identity that we wanted to prove. It follows that equation (3.2)
holds for all n> 1.

Combining the above result with the formula (2.1) for £ modulo 4 gives us
the following identity for the case where the continued fraction expansion of

/N has even period = 2m:
(33) Z=2m+2+a,+20n-2+2Qp-y+2Pp-2+2P, -,
+2Pm-lgm—2 (m0d4)

where the a,, P, and Q, arise out of the continued fraction expansion of ﬂ ¢
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4. Some preparatory lemmas. This section provides the proofs of several
lemmas that will find frequent application in the theorems to come. The first
result of importance to us is the following

LeMMA. Let N > 2 be a non-square integer. Let k denote the period of the
continued fraction expansion of \/N If k is even then

(41} (_l)mamqm+2(Pm~le‘-l_NQm—lQm—Z)=0
where m = k/2.

Proof. From the symmetry of the continued fraction, (1.4), we have
Gm+1 = gm-1 and we can use formula (1.7) to see that this leads to
P2—NQZ = P%_,—NQZ%_,. We use the iterative definition to reduce P, and
Q, to a,P,_+P,_, and a,Q,_,+0,-,, respectively, and we arrive at

aiPi_1+2a,Pp_Pu_2+Ph 2—Naa0r 1 —2Na,0n-10n-2—NQa -
= PL_,—NQ: ..
Rearranging and cancelling provides us with the following equation:
ai(P%_,—NQ%_\)+2a,P,_Pn_2—2Na,Qpn-10n-,=0.

Now we invoke identity (1.7) and then divide the entire equation by a,, to get
the desired identity.

We conclude this section with the following

LEMMA. If N = 2pq where p and q are distinct odd primes and if the continued
Jraction expansion Qfﬂ has even period = 2m then we have the identities:

(4.2) 2=2m+P,_;+2 (modd) if g, even,
4.3) Z=2m+2Q,-, (mod4) if q,, odd.

Proof. We should preface this proof by remarking that it is possible to
arrive at this result via some stronger (modulo 8) congruences proved by
Heinrich Lang in [2]. But such a proof would take us out of our way in
establishing the connections between the three quantities of interest to us,
namely m, Q,,,; and P,._,, and the fundamental unit parameters that were
used in his paper (which can be easily converted to Q,p,-; and Py, ). It is
possible to use the results of Lang to determine £ modulo 4 in terms of
Qsm-4 and P,,,_, with very little effort and if our only goal were to determine
2 modulo 4 then we would be well-advised to take the above approach. The
relationships of X with the Legendre symbols and parity of m would not,
however, be apparent and it is our interest in precisely this interplay that
prompts the following proof which proceeds independent of the results of Lang.
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To begin the proof we take formula (1.7) with n = m and, after making
note of the fact (2.4) that g,|N, we arrive at

(44) q,..xz—qﬁczﬁ,-, — (=1

where X = P,,_1/q,,.

Proof of formula (4.2). If g, =0 (mod2) then g,|N implies that
4 = 2 (mod 4). Considering the above equation modulo 4 shows that Q,,_, is
odd and that P,_, is even and we use this in equation (1.6) to see that
P, ., must be odd. Equation (2.5) implies that q,, is even and using this along
with g, =2 (mod4) in (4.1) leads to the congruence 2a,+2P, -,
—40Q,,-, =0 (mod 8) which in turn gives rise to

a,+P,_1+2Q,_, =0 (mod4).

We use our knowledge of the parities of Q,,—, and P,, -, together with this
most recent equation and formula (3.3) to obtain the desired identity of (4.2).

For the proof of formula (4.3) we look at equation (4.4) and conclude from
q,, being odd that P, _, must be odd as well. From (2.5) we see that, since N is
even, a4, is even. We now consider (4.1) modulo 4 to arrive at a,,+2P,_,
=0 (mod 4). We use the previous equation, together with the fact that P,,_, is
odd, in the formula (3.3) to obtain

2=0a,+20m-14+20,-3+2P,_+2P, -2+ 2Pp-1Qpn_2+2m+2 (mod 4)
=20m-1+20p-2+2Pp_ 1 +2P,_Q,_>+2m+2 (mod4)
=20,-1+20,-2+2+42Q,-,+2m+2 (mod4)
= 20,-1+2m (mod4)

as required.
We are now prepared to state and prove our major theorems.
5. Theorems for the case N = pgq.

THEOREM 1. Let p=q =1 (mod4) be distinct primes and let N = pq.
Write the continued fraction expansion of \/ﬁ as (ay; ay, a,, ..., a,) with period

"k and define £ =)"%_,(—1)""a; Then

Z = 2ayk (mod4).

Proof. It is easy to see from the symmetry of the continued fraction
expansion (1.3) that when k is odd we obtain the result 2 = 2a, which satisfies

the above congruence. It remains to show that k =0 (mod2) implies that
2 =0 (modd). Let k =2m. From (1.7) we have

(5.1) Pi-1—pgQi_y = (—1)"q,.
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Taking this equation modulo 4 shows that g, cannot be congruent to
2 modulo 4. From (2.3) we know that g,/|2pg and since g,, # 2 (mod4) it
follows that g,, = 1 (mod 4). Using equation (2.2) with g,, odd shows that a,, is
even. We now consider two cases, depending on the parity of the half-period, m.

Case 1. Let m =0 (mod 2). From (5.1) it follows that P,,_, = 1 (mod 2)
and Q,,-; = 0 (mod 2). This latter congruence, together with (1.6), shows that
0., must be odd. Using the fact that a,, is even and g,, is odd in equation (4.1)
leads to the congruence

Ay = 2Py, (mod4).
We combine the above congruences in equation (3.3) to see that Z = 0 (mod 4).

Case 2. Let m =1 (mod2). From (5.1) we have P,,-, =0 (mod2) and
Qn-1 =1 (mod2). The former congruence implies (from (1.6)) that
P,-, =1 (mod 2). Using the fact that a,, is even and g,, is odd in equation (4.1)
leads to the congruence

a, = 2Q0,-, (mod4).
Combining the above results in the cohgruence (3.3) leads to the desired
conclusion that ¥ =0 (mod4) and this finishes the proof of Theorem 1.

THEOREM 2. Let p = q = 3 (mod 4) be distinct primes and let N = pq. Let
k denote the period of the continued fraction expansion of \/ﬁ . Then k is even

and
(-
q

where e=1if p<qand e= —1if p>q.
Proof. Since N is divisible by a prime congruent to 3 modulo 4 it follows,
from (2.6), that k is even. We may write m = k/2. From (1.7) we have
P —paQn-y = (—1)"q,.

As in the previous proof, looking at this equation modulo 4 shows that g,
cannot be congruent to 2 modulo 4. It follows from g,|2N (2.3) that g, is odd.

Since q,,12p,, (2.2) and p, < \/ﬁ (1.2) we see that g, < ﬁ . Together with
q,, > 1 (1.1) the preceding restricts g,, to one possible value, namely the smaller
of p and q. If p < q then g,, = p and we rewrite the above equation to get

X?—qQn-1 = (-1)"

where X = P,,_,/p. Considering this equation modulo g leads to the desired

result
(=)
q q
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If, on the other hand, p > g then g,, must equal g and we obtain
X*—pQi_, =(—1)"

where X = P,,_,/q. Considering this equation modulo g leads to the desired

result
]nHl
(p} ( ) )=—(—11""

which completes the proof of Thcorem 2.

THEOREM 3. Let p=3 (mod4) and q=5 (mod8) be primes and let
N = pq. Write the continued fraction expansion of \/ﬁ as (ag; dy, dy, ..., 4
with period k and define Z =) %, (—1)*"'a,. Then k =0 (mod2) and

(-

Proof. A proof of this theorem, using the same techniques as found
throughout this paper, has been omitted in the interest of brevity. Interested
readers may find a proof in [4].

6. Theorems for the case N = 2pq.

THEOREM 4. Let p=q =1 (mod4) be two distmr.r pr:mea and let N = 2pq.

Write the continued fraction expansion of \/!V as {a{,, ay, ¢ aﬂ, .., a;) with period
k and define £ =YY% (—1)""a,. Then

I= z%k (mod 4).

Proof. We begin by noting that this is obvious if k is odd as then we have
Z = 2a,, which trivially gives us the desired result. From this point in the proof
onwards we shall assume that k is even and we let m = k/2. We know, from
(2.4), that g,,|N and we proceed by looking at the two cases g,, = 2 (mod 8) and
4, =1 (mod4). In both cases we will be examining the equation

-1—2pq0%-1 = (= 1)"q,,
which- we get by letting n =m in (1.7).

Case 1. Let g, = 2 (mod 8). The above equation, considered modulo 8§,
gives rise to the following congruence modulo 4:

—Qa-1=(=1)" (mod 4)
where X = P,,_ /2. Since we must have Q,-, odd we derive the relationship
P,.i=2X =2m+2 (mod4).
We now apply (4.2) to obtain the desired equivalence X = 0 = 2a,k (mod4).
Case 2. Let g,, = 1 (mod4). It follows from P72 _, —2qu,3,_-. =(—1)"g,
that P,-, is odd and that Q,_, =m (mod2). Applying (4.3) shows that

5 — Acta Arithmetica 59.4
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2 =0=2ay,k (mod4) in this last case as well. This finishes the proof of
Theorem 4.

THEOREM 5. Let p=3 (mod8) and q=7 (mod8) be primes and let
N = 2pq. Let k denote the period of the continued fraction expansion of \/ﬁ .

Then k is even and
(-ecr
q

where e=1if 2p<q and e= —1 if 2p > q.

Proof. Since N has a prime divisor congruent to 3 modulo 4 it follows
that k must be even. We will make repeated use of equation (4.4) which we shall
duplicate here:

6.1) quz—gQ:._. — (=1

where X = P,,_,/q,,. From g,|N (2.4) we see that g, is restricted to divisors of
N. The fact that q,|p, (2.5) and pm<ﬂ (1.2) taken together with the
restriction that g, > 1 (1.1) forces 1<g, <,/N. This limits g, to the
following cases:

Case 1. Let g, = 2. Taking (6.1) modulo p we see that

(- () ().

which implies that m must be odd. Using this fact when we take (6.1) modulo
q results in the contradiction that

=)~ ()~ -

and we are forced to conclude that this case does not occur.

Case 2. Let g, = p. Here (6.1) gives rise to

(-
(- () o

We now notice that both p and g are congruent to 3 modulo 4 and, by the law
of quadratic reciprocity, we must have

6

This results in a contradiction and shows that this case fails to arise.

and
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Case 3. Let q,, = 2g9. The analysis for this case is similar to that of the
previous one and we arrive at a contradiction that eliminates this case.

Case 4. Let g,, = 2p. We begin by noting that g,, < \/N implies that we
must have 2p < g for this case to occur. From (6.1) we have

0)-()()- () -

Case 5. Let g,, = g. We note that this case can arise only if 2p > g as g,
must be smaller than ﬂ Again we consider (6.1) to arrive at the conclusion

R E o

This is the required result and the proof of the theorem is complete.
THEOREM 6. Let p=5 (mod8) and q =3 (mod4) be primes and let

N = 2pq. Write the continued fraction expansion of ﬁ as (aq; a, a, ..., a,)
with period k and define Z =¥ (—1y""a;. Then

as required.

6.2) 5= (g) +1 (mod4).

Proof. Since N is divisible by a prime congruent to 3 modulo 4 it follows
from (2.6) that we may write k = 2m for some integer m. We also have equation
(2.4) restricting q,, to divisors of N. From q,,(p,, (2.5) and p,, < ﬁ (1.2) we see

that g,, < \/N. A consequence of this, and the fact that g, > 1 (1.1, is that we
can eliminate gq,, = 1, pg and 2pq from consideration. We now examine the
remaining positive divisors of 2pq as values for g,, and consider, in each case,
equation (6.1).

Case 1. If q,, = 2 then we consider equation (6.1) modulo p and make use
of the fact that — 1 is a quadratic residue modulo p and that 2 is not. This leads
to the contradiction that

== -5
P P p
It follows that this case does not occur.
Case 2. If g,, = 2g then (6.1) becomes
29X*—pQn -y = (=1

Since the right-hand side is odd we must have Q,, -, odd as well. Reducing this
equation modulo 8 gives

6X?—5=(—1)" (mod8),
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which forces X odd and m even. Since m is even and P, _; = 2gX =2 (mod 4)
it follows from (4.2) that £ =0 (mod4). It remains necessary to show that
#) = — 1. Once again we consider equation (6.1), this time modulo g, to see that

(- (-G

Recalling that m is even leads to the desired congruence X = (g)+1 (mod4).

Case 3. If g, = p then taking (6.1) modulo 8 gives us
5X2—6Q2%_, =(—1)" (mod 8)
and the only possible solutions to this are when m, X and Q, -, are all odd.

Since ¢,,, Qm-1 and m are all odd it follows from (4.3) that Z =0 (mod 4).
Looking at (6.1) modulo g gives

(f_’) = (ﬁ) = ((_IE) R |
q q q
and therefore the desired relationship between X and (5) holds for this case.

Case 4. g, = 2p. Parity considerations applied to (6.1) force Q,,-, to be
odd and we then take (6.1) modulo 4 to get 2X?+1 = (—1)™ (mod 4). It is easy
to see that X and m must have the same parity. This leads us to the congruence
P,,_, = 2pX = 2X = 2m (mod 4). Applying équation (4.2) gives us the result
% =2 (mod4). Using the law of quadratic reciprocity and considering (6.1)
modulo p we see that

W(:';) -(9)-GEE)-GHED-

Case 5. q,, = q. From (6.1) it is clear that both X and P, , must be odd.
If we consider equation (6.1) modulo 4 we see that Q,,_, = m+1 (mod?2).
Applying (4.3) we come to the conclusion that £ = 2 (mod 4). We evaluate the
Legendre symbol by ‘using equation (6.1) together with the law of quadratic
reciprocity to obtain

B-E-65-G0

which satisfies the desired relation, thus finishing the proof of Theorem 6.
We use these results in Table 2 by recognizing that

(E) = (=12 “ EE(P-)+I (mod 4).
q q

For the case where the roles of p and ¢ are reversed we note that
I =(;)+1 (mod4) taken together with (3) = (5) (from quadratic reciprocity)
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(E) Ty _(_1)2‘;2
q

7. Concluding comments. The cases considered in this paper, namely
where N is the product of two distinct odd primes or where N is twice such
a product, are, in some sense, both the most general cases and also the simplest
ones, for which we can hope to arrive at relationships between the Legendre
symbols, the alternating sum, X, and the period of the continued fraction
expansion of ﬁ One can expect more complications (and many more
separate cases to examine) when N has 3 or more odd prime factors.

With the exception of those results of the form X = 2a,k (mod4) the
theorems proved in this paper were all of a similar nature. After noting that k,

the period of the continued fraction expansion of \/ﬁ was even we began an
examination of the equation

Pr-1—NQh:-y =(-1)"q,

where m = k/2. This mid-period identity was useful precisely because of the fact
that we could limit g,, to positive factors of 2N (and, if N was even, to factors of
N itself). Eliminating some cases by the size restrictions (q,, > 1, ¢,/2p,,, and
Pm < \/ﬁ) and others by modulo 8 congruences or by quadratic residuacity
results left us with sufficiently few possibilities that a governing relationship
could be deduced.

As a concluding remark the author would like to point out that it is
possible, in. some of the cases treated in this paper, to rewrite the results in

terms of congruences involving the fundamental unit of Q{\/ﬁ ). Witness the
following

shows, as needed, that

in this case as well.

THEOREM 7. Let p= 3 (mod8) and q=7 (mod8) be primes and let
N =2pq. Let T+ U\/!N be the fundamental unit of Q(\/ﬁ). Then U is even and

(E) =(— I)UIZ_
4

Proof. We begin by remarking that, since N =2 (mod4) has a prime
factor congruent to 3 modulo 4, the fundamental unit of Q(ﬁ) must be equal
to Pk_,+Q,¢_1\/N where k is the (necessarily even) period of the continued

fraction expansion of \/’E and where P,_, and Q, -, are as defined in Section
1. We define the mid-period m = k/2. We state here, without proof, the

following identity, valid for the continued fraction expansion of ﬂ, where
N is a non-square integer greater than 2 with period = 2m:

(?l) QZm-l :Qm—l(aQO—l+2Qm—Z}-
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The proof (not included here) is an inductive argument that hinges on the
symmetry of the continued fraction expansion. We will also make use of the
fact that a,, = 0 (mod 2) (2.5). We examine the proof of Theorem 5 and see that
the only two cases that may occur are g, =2p and g,, = q.

Case 1. If g, =2p then (6.1) becomes 2pX?—gQ2%_, = (—1)", which
gives rise to

2X*+Q%_, =(—=1)" (mod4).

Since Q,-, is odd it follows that X =m (mod2). From P,_, =2pX
=0 (mod2) and identity (1.6) it follows that P, _, is odd. Looking at (4.1)
modulo 8 gives us 2a,+4Q,,-, = 2P,,_, (mod8), which leads to

a,+2Q,-,=P,_, (mod4).

Combining the above identity with the fact that Q,,_, is odd and applying (7.1)
gives the result

Qom-1=0,+2Qp-3 = P, (mod4),

Recalling that U = Q,,,—, and P,,_; = 2pX shows that U = 2X = 2m (mod 4).
Now we use the result from Case 4 of Theorem 5 to see that

P

=(=1 = (=12

(8)==1r=c-n
as required.

Case 2. If g,, = g then (6.1) becomes gX2—2pQZ%_, = (—1)™, from which
we obtain

—X2420Q%_, =(—1)" (mod 4).

Since X is clearly odd it follows that Q,,_; = m+1 (mod 2). Here we must split
the remainder of the argument into two pieces, depending on the parity of
Qm— L

If Q,,—, is even then m is odd and (7.1) gives Q,,—; = 0 (mod 4). Recalling
that U = Q,,,~, and using the results of Case 5 in Theorem 5 we see that

(E) =(__])m+l = ] =(_”U,|’2'
q

If Q,,— is odd then m is even. We have U = Q,,,—, = a,,+20,,—, (mod4)
from (7.1). Since both Q,,_, and P,,_; (= gX) are odd it follows from (1.6) that
Pn-2+Qn-2 =1 (mod2). Substituting this last equation into the former one
gives rise to

U=a,+2P,_,+2 (mod4).
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We use the fact that g,, and P, ., are odd and that a,, is even together with
equation (4.1) to see that a,+2P, _, = 0 (mod 4) and this leads to the equality
U =2 (mod4). We make use of the result of Case 5 in Theorem 5 and it
follows that

(E) =(_l)m+l = —1 =(_1)U,|'2
q

as required. This finishes the proof of Theorem 7.
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