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Determination of Fermat varieties with trivial Hasse-Witt map
(An application of the Farey series)

by

Ryusn Sasaki (Tokyo) and KEeisUKE Toki (Yokohama)

1. Introduction. In the present paper, by making use of Farey series (cf.
Section 4), we shall determine the Fermat varieties with trivial Hasse-Witt
map. The precise statement is given below.

Let F,y,< P""! denote the n-dimensional Fermat variety of degree
N over an algebraically closed field k of characteristic p > 0:

Fanp=1{(%0, Xys .oos Xns ) EP" Y| XB+xV+ ... +xV,. =0},
We suppose that n > 1, N > 2 and p 4 N; hence F, v , is a smooth variety. Let
'g‘-': @FH.N.p = @Fn.N.p

denote the Frobenius map, ie., the pth power map of the structure sheaf

Cr,y.,- Weput O =0 , and consider the cohomology group H"(F, ., ().

Then % induces the p-linear endomorphism of the finite-dimensional vector

space H"(F,n,p, 0) over k, which we call the Hasse-Witt map of F, ..
The aim of this paper is to prove the following:

THEOREM. If N < n+1 then H'(F,y ,, 0) = {0}. Assume N > n+1. Then
the Hasse-Witt map of F, x, is zero if and only if there exist positive integers k,
| and m satisfying

1) I<k<sn, 1<I<g<k-1, 1<m<n—k+1,
(2) (k, 1) =1,
(3) {p}n is of the form (IN—m)/k

where {p}y denotes the remainder of dividing p by N.

After recalling an algorithm for computing the Hasse-Witt matrix of

a Fermat hypersurface in Section 2, we shall prove the Theorem in Sections 3, 4.
In case n < 2, N. Suwa and K. Toki obtained the above result (cf. [3]).

Moreover, N. Suwa conjectured that a criterion for the Hasse-Witt map of the
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Fermat variety F, v, to be zero can be written as a simple congruence rela-
tion among n, N and p. We formulated his conjecture in the above form and
proved it.

We wish to thank Professor N. Suwa for suggesting the problem. His
advice was indispensable for the second author to perform this task.

2. The Hasse-Witt matrix of Fermat varieties. Following N. Koblitz [2],
we recall fundamental facts about the Hasse-Witt matrix of Fermat varieties.
Let F=F,y,< P""! be the n-dimensional Fermat hypersurface of degree
N over an algebraically closed field k of characteristic p > O defined by the
equation h =0, where

b=l +xliiek[xgs Xy vovs Xan 1]
Then we have a commutative diagram of structure sheaves
0 = Opnss(—=N) = Opnss —» Op — 0
Wl \# |#
0 = Opn+i(—N) = Opn+r = Op = 0,

where % is the pth power map.
The resulting long exact sequence gives an isomorphism of cohomology

groups
HH(F, @F):; Hn+1(Pn+l’ @P"“(_N))

so that the Frobenius map on H"(F, ¢;) corresponds to the map on
H"*Y(P"*!, Opn+1(—N)) induced by the composition
Opnsi(—N) 5 Opnsi(—pN)EZ3 Opns (= N).

Set
I=41,2,....,N—1},

n+1

W= {w=(Wo, Wy, ..., Was ) EI"?| Y w; =0 (mod N)},

i=0
pVi = {W = (w(]v wh ey W|'a+I)E"V| ]Wl = (l+ l)N}’

where | |: W — Z is defined by |w| = Y725 w;.
Let{ }: Z—1,={0,1,..., N—1} be defined by {z} = z (mod N). Then
the group (Z/NZ)* acts on W by

z-w = ({zwo}, {zw,}, ...y {2Was1})

for any z in (Z/NZ)*. As is easily seen, {I/X"| we W,} forms a basis for
H"™ Y(P"*1, Opn+1(—N)), where X¥ =[]r2g xP.
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‘ The Hasse—Witt matrix HW(F, y.,) of F,y, with respect to this basis is
given b)’ (hv.w)v‘wﬁwus Where
G5 {a non-zero element of F, if w=p-p,
0 otherwise.
We know that

n+1

dim H"*{(P"™*1, @pnsi(—N)) = (”").

Thus we have the following Proposition which reduces our problem to an
arithmetical one.

- PROPOSITION. If N < n+1 then H"(F,n.p, O) = {0}. Assume N > n+2.
en

HW(F,x,) =0
if and only if p-w¢ W, for every we Ws.
3. Proof of the “if” part in the Theorem. First we shall prove the “if” part

which is easier than the “only if” part. In this section, {a}, or {a} is the
remainder of dividing a by N.

Suppose tl_1e characteristic p of the ground field satisfies the conditions in
the Theorem, ie., {p}y can be written in the form
{p}n = (IN—m)/k,

where 1<k<n 1<I<k-1, 1<m<n—k+1 and (k,1)=1. Let

W=(Wo, Wy, ..., Ways) be any element in W, ie, Y'fdw,=N and
0 <w; < N. Changing the suffix, we may assume

wo=w, =...=w, =0 (modk),

Waot1 = Wao42 =00 = Weyy, = 1 (modk), ...,

Wagta +otar-1+1 = Wogtai 4o 4ai_ 42 =000 = Wagray +...4a; = 1 (Mmod k), ...,
Waghay +.tan-2+1 = Wagba . day_pb2 = ... = Wag+ay +... tex-y = k=1 (mod k).

Then we have
k-1
(3.1) I+og+ Y o, =n+2
i=1
and
INw;—mw; =0 (modk) for 0<j<n+l,
iIN—mw;=0 (modk) for B,+1<j<Bisy,

Whel’c ﬁi - au+a1+ s +“:‘—l (I % i é k).
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Define rational numbers d,, d,, ..., Ons1 DY
{pw;} = 0;N—mwjk for 0 <j<a,
{pw;} = (0;— DN +(il/k—C[il/k))N —mwi/k  for Bi+1 <)< Bis1
(1<i<k-1).
Here [«] denotes the greatest integer not exceeding the real number a.

Remembering {p}y = (IN —m)/k, we see that these d,'s are positive integers.

Since
k=1 fiea

20
i=0

i=1 j=pi+1

and

Biv1 n+l

o k—1
Yo+ Y Y 6-D)=Y G—D+(1+a),
Jj=0 i=0

i=1 j=fit+1

we have

n+1

lp-wl = _)_:0 v

g k=1 fi+a

= Y (0;N—mw/k)+ Y{ X ((5j—1)N+{it'/k—[ﬂ/_k])N—mwj/k)}

j=0 i=1 j=pgi+l * .
= AN,

where

n+1 k=1
(3.2) A=Y =D+ +a)+ Y alil/k—Lil/k])—m/k.
i=0 i=1
To prove the “if” part, by the Proposition in Section 2, it suffices to show
lp-wl>N, ie, A>1L

If (k, /) =1 and il =0 (modk), then i =0 (modk). Since 1 <i< k—1 and
(k, 1) =1, it follows that il # 0 (modk); hence

(3.3) il/k—Lil/k] = 1/k.
Thus we have

A 14+ (ki' a)/k —m/k (by (3.2), (3.3))

k=1

= (1+og)—(1 +ag)/k+((1 + o)+ Y o)/k—m/k

i=1

= (1= 1/k)(1 +og) + (n+2)/k—myk  (by (3.1)

> (n+2—mk > (n4+2—(n—k+ 1)k =(k+1)/k>1 (by m< n-—-k+1).
This establishes the proof of the “if” part in the Theorem.
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4. Proof of the “only if” part in the Theorem.

4.1. Preliminaries. Before proving the “only if” part, we recall some
fundamental properties of Farey series (cf. [1]). When a positive integer n is
given, the Farey series of order n is the ascending series of irreducible fractions
in the interval [0, 1], whose denominators are positive integers <n. We
denote by #, the Farey series of order n.

ExampLE. F ¢ = {0/1, 1/6,1/5,1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4,4/S, 5/6, 1/1}.

Let B/A <D/C be two successive terms in #,. Then we call
(B+ D)/(A+ C) the mediant of the two fractions.

LemMMA 1. Let B/A < B'/A" be two successive terms in %,. Then
A+A 2n+1 and AB—-A'B=1.
For the proof, see [1].

As the following Lemmas 2, 3, 4 are easily proved, we shall omit their
proofs. We call the irreducible fractions in the interval [0, 1] the Farey
fractions.

LEMMA 2. Let B/A < B'/A' < B"/A" be three successive terms in F,. Then
B/A" = (B+B")[(A+ A").

LEMMA 3. Let B/A < D/C be two Farey fractions satisfying AD—BC = 1.
Then the fraction (B+D)/(A+C) satisfies

(A+C)D—(B+D)C=(B+D)A—(A+C)B=1;
hence B/A < (B+D)/(A+ C) < D/C, and (B+ D)/(A+C) is also a Farey fraction.

LEMMA 4. Let A, B, C, D be positive integers. Then the following are
equivalent:

(1) AD—BC =1, and B/A < D/C are Farey fractions.

(2) A(B+D)—B(A+C)=1, and B/A <(B+D)/[(A+C) are Farey frac-
tions.

(3) (A+C)D—(B+D)C =1, und (B+D)/(A+C) < D/C are Farey frac-
tions.

In the proof of the “only if” part, we shall often use the following facts.

LemmA 5. Let B/A < D/C be two Farey fractions with AD—BC = 1.
(1) If F/E is a Farey fraction satisfying B/A < F/E < D/C, then E= A+ C

~and the residue {FA}; of FA modulo E is equal to FA— BE.
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(2) If a is a fraction of the form (xB+ yD)/(xA + yC) with relatively prime
positive integers x and y, then « is a Farey fraction.

(3) Let « be a Farey fraction. Then o satisfies B/A <a < D/C if and
only if o is of the form as in (2). In this case x and y are uniquely
determined by o. '

Proof. Using AD—BC =1, we have
E—(A+C)=(AD—BC)E— AFC+AFC—(A+C)
= A(ED—FC—1)+C(AF—BE—1).

By ED—FC > 1, AF—BE > 1, we have the inequality in (I). By the same
argument for the difference E—(AF—BE) as above, we get

0< AF-BE <E,
which shows the last property in (1). Now we shall verify (2). We have
B/A < (xB+yD)/(xA+yC) < D/C < 1/1
by AD—BC=1, x>0, y>0. Moreover, since (x,y)=1 we have

(xB+yD, xA+ yC) = 1. Therefore o is a Farey fraction. The “if” part of (3) has
been proven above. Conversely, let o be a Farey fraction of the form F/E. If we

solve the equation in x, y
A C\(x\ E
BD/\y) \F

using AD—BC =1, then we get
x=ED—-FC>0, y=AF-BE>0.
By (E, F) =1, we have (x, y) = 1. The uniqueness obviously holds. =

4.2. The sequence & (B/A’', B"/A"). Let B'/A’ < B"/A" be Farey frac-
tions such that A'B"—A”B' =1. For a positive integer x, we denote
by &.(B'/A’, B'/A") = &, the sequence {(xB'+yB")/(xA'+yA")}y=0.1.2.... of
fractions between B'/A' and B”/A”. Some terms in &, (x >2) may be
reducible fractions. We introduce a new notation a,, specially for an
irreducible fraction (xB'+ yB”)/(xA’ + yA”). In this case x and y are relatively
prime non-negative integers.
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on
11

B’/A’:aw am= B/A

xBYxA’

(xByB")/(x A+ yA'l=¢qo
§1= 0By NE/xa+lys1)

S (e, 87"

Fig. (B'/A", B"JA")

Note that the denominators of a,,’s become larger as o, » 8 go down, in
the above figure. ‘

As is easily seen, we have
Uy y = Oy

4.2.1) v x=xand y=y,

Bx,y < Oyt yr <  xy >x'y.

Mora-()\_r'er, any oy, with x, y > 0 is equal to the mediant a,., . 4, of some
successive pair oy, <o,

v AN F g pa i =x'+x" yv=1
, "._x”y’_l xXA'+yA" = 1s e, X X +x 5 y_y+yu’

X'y
4.2.2)

Oryr < Oy < [ RN
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Conversely, we have the following:
LEMMA 6. Assume two Farey fractions oy, < Gy, Satisfy
(4.2.3) Xy —=x"y >1
Then there exists 0y, IN F maxix d'+y A" x" A" +3" A"} =1 such that
Uy <Oy < %gry  and  x < max{x’, x"}.
Proof If x' < x” then, by (4.2.1),
(' =y)=x"y'=x"yzxy' -x"y >0 and x">0.
Hence
(XA +y A)—(x A +y A = (X" =x)A+ (' = y)A" > 0.
Thus we can divide the situation of Lemma 6 into the following cases:
(i) X <x” and X A'+y A" <x"A'+y A",
(i) x' > x" and X A'+y A" > x"A+y A,
(iii) X' > x" and X A'+y A" =x"A'+y" A",
(iv) x> x"” and x'A'+y A" <x"A'+y"A".
Here, by (4.2.3),
x",y" >0 in (i) and (iv),
4.24) X',y >0 in (i),
X',y >0 and x”, ¥’ >0 in (iii).

Now we shall prove the lemma in the case (i). By (4.2.4), we can use the
fact (4.2.2). Thus we have a successive pair o, < g I F o g0 4y 40— Satisfying
Uyor gt = Ogpep+ds THED Oy < O p < Qs e and a < x”. We take oy, = tgp-

Similar proofs work in the other cases. m

Let VU be a Farey fraction satisfying B'/A' < V/U < B"[/A". Then, by
Lemma 5 (3), we can write

(425 U=XA+YA", V=XB+ YB’, e, VU=uoyxy,
where X = UB"—VA", Y=VA' -UB'.

We have two terms &, and ¢, in & (B/A', B"/A") such that
&, < VU < &,, where

£y = (B +yB)(xA +yA"), & =(xB+(y+DB")(x4'+(+1A")

for some non-negative integer y.
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LEMMA 7. Let notations be as above.

. (1) If /U = ayy lies on or above & (B'/A’, B'/A") in the Figure then
<X

(2) If WF} = oy,y lies below & (B'/A’, B"/A") in the Figure (ie., X > x),
then there exist ®,, 5, and o, ,, in the Figure with a,b,—a,b, =1, a,, a, < x,
a,+a, > x such that

Eo < tayp, < VU < 5,5, < &

where &, denotes the irreducible expression of &, (i =0, 1).
Moreover,

U>xA"+(y+1)A".

P_roof. By the definition of the sequence &, (B'/4’, B'/A"), we have the
assertion (1). Let X > x. Take the nearest a«, , and a,;, to VU =qayy
satisfying '

(4.2.6) &0 < g, < VU < gy, < &

with a,, a, < x. Tl_len a,+a, > x, i.e,, the mediant of a,, ,, and a,, ,, lies below
& (B/A', B'/A") in the Figure. Moreover, by (4.2.1) and Lemma 6,

ab,—a,b; =1.

By (4.2.6),

Oy by = (@ B'+b B")(a;A'+b, A"y < VU < 0y, 3,

= (a,B'+b,B")/(a,A'+b, A"),

and by Lemma 5 (1),

U>=(a,A+b,A")+(a,A'+b,A")

=(a;+ay)A"+(b;+b,)A" > xA'+(b, +b,)A".

On the other hand, in (4.2.6),

xb;—ya, 20 since &, < a,,p,
and
xby—ya, >0 since &) < a,,,,-
Hence
b,+b,>y(a +ay)/x>y and U>xA+(y+1)A4A". n

4.3. Main Lemmas I, (IL1), (I1.2). In this section we shall prove three
lemmas which will be directly used to prove the “only if” part in the Theorem.
Let n be a positive integer. Let ¥/U be a Farey fraction. Now assume U > n+2.
We can take the successive pair B/4 < D/C in the Farey series %, satisfying

430 B/A < VJU < D/C.

6 — Acta Arithmetica 59.4
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If B/A = 0/1, then the successor D/C of 0/1 in &, must be 1/n. Then, by (4.2.5),
we have V/U = ayy where

(4.3.1) X=U—-nV and Y=V

LemMA 1. Let notations be as above, i.e., 0/1 < V/U < 1/n. Then there is an
integer y = Q0 satisfying

(4.3.2) ylyn+1) < VU < (y+1)/((y+Dn+1).

Moreover, we have the following:
(1) If equality holds in (4.3.2) then

y=1 and V=(U-1)n.
(2) If equality does not hold in (4.3.2) then
U>n+(n+1), {(Vipn+1)}y=V(n+1)—yU and
y+DHU—((y+n+1)V > 0.

Proof. We easily see the existence of a non-negative integer y satisfying
(4.3.2). Both outersides of (4.3.2) are successive terms in &, (0/1, 1/n). If equality
does hold, then y must be positive since U > n+2. Moreover, V/U lies on
%#,(0/1, 1/n). Therefore X =1 and V =(U—1)/n by (4.3.1). Suppose that
cquahty does not hold. Then the third inequality in (2) obviously holds. By
Lemma 5 (1), we get the other relations in (2). »

Next, we assume B/A # 0/1, ie., 0/1 < B/A < V/U < D/C < 1/1. Then
A # C since AD—BC = 1. And it is easily seen that, for any positive integer i,

iA<C if and only if iB<D.

Set a = [C/A]. If a > 1 then we define positive integers E;, F; (i=0, 1, ..., a)
by E;,=C—(a—i)A, F,=D—(a—i)B. Since A(D—iB)— B(C—:A) = l we
have (E;, F;)=1 and

EF,_,—E,_\F,= E(F,—B)—(E,—~A)F,= AF,—~BE;>0 (i=0,1,...,0).

Moreover, since (C—id)—(D—iB)=((C—iA)(A—B)—1)/A>0, we have
E; > F,. Then they form a subseries of #,:

D/C = F,JE, < Fy_{[Eq—y <... < Fo[Eq < 1/1,

and E, <A, Fy<B

If a>1 (resp. a=0), we put E=E,, F=F, (resp. E=C, F=D).

Moreover, we put

(4.33) A_,=A—E (>0), B_,=B-F (20).
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Then we easily see that
AF,—BE,=A_|F-B_E=AF—-BE=1 forl<i<a.
And the fraction B_ /4 _, is a term in &, satisfying 0/1 < B_,/4_, < B/A.
Let M=n—E+1 and K=n—C+1. Then 1< K<M<n and

MB+ AF = KB+ AD = (n+1)B+1, MA+AE = KA+ AC = (n+1)A. We
shall divide the situation of V/U into two cases:

Case (IL1). B/A < VU <((n+1)B+1)/((n+1)A);
Case (IL2). (n+1)B+1)/(n+1)4) < V/U < D/C.
We notice here that the fraction
(n+1)B+1)/((n+1)A) = (MB+ AF)[(MA+ AE) = (KB+ AD)/(KA + AC)

may be reducible.

First, we consider Case (Il.1). In this case we shall take (B/A4, F/E) as
(B'/A’, B"/A") in §4.2.

By the argument before Lemma 7, we have &, and &, in &y (B/A, F/E)
satisfying

(4.3.4) (o = (MB+jF)(MA+JE) < VU < &,
=(MB+(j+1)F)/(MA+(j+1)E)

for some non-negative integer j. Then, by (4.2.5),

(4.3.5) VU =ayy where X=UF—-VE, Y=VA—-UB.

Lemma (IL.1). Let notations be as above.

(1) Assume that V/U lies on or above VM(B/A F/E) in Fig (B/A, F/E).
Then

X<M.

(2) Assume that VU lies befow S u(BfA, F/E) in Fig (B/A, F/E) (ie.,
X > M). Then

U>MA+(j+1)E.
(3) We have the following:
(I.10) A—j—120, n+2—A+j>0.

(IL1.1) (A=j—1NA_+(n+2—A+j)Ad = MA+(j+1)E,
(A—j—1)B_+(n+2—A+j)B=MB+(j+1)F—1.

(IL12) {VA_,}y=VA_,—B_,U, {VA},=VA—BU.
(1L13) (A—j—1){VA_ }y+(n+2—A+j){VA}, < U.

Proof Replacing (B'/A’, B"/A") by (B/A, F/E), in Lemma 7, we get
statements (1), (2). By the inequalities in Case (II.1) and -(4.3.4), we have
0<j< A-1. Moreover, since A <n, we have (II.1.0). By (4.3.3), we get
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equalities (IL.1.1). Since B_,/A_, < V/U < F/E and B/A < V/U < F/E, we get
(I.1.2) by Lemma 5 (1).
Now we shall show (IL.1.3). Its left hand side is equal to

(4.3.6) (A—j—1)(VA_,—B_,U)+(n+2—A+j)(VA—BU)
= V((A—j—D)A_;+(n+2—A+))A)—U((A—j—1)B_,+(n+2—A+))B)
= U—[(MB+(j+1)F)U—(MA+(j+1)E)V]

by (IL1.1) and (IL.1.2).
On the other hand, by (4.3.4), we have

4.3.7) (MB+{j+1)F)Ub(MA+(j+1)E)V.
By (4.3.6) and (4.3.7), we get (IL1.3). =

Second, we consider Case (IL.2). By the argument before Lemma 7, we
have ¢, and ¢, in ¥ (B/A, D/C) satisfying

438) & =(KB+I,D)(KA+1,C)< VU
< (KB+(lo+ D)D)/(KA+(ly+1)C) = &,

for some integer I, > A, uniquely determined by V/U. Now we define a positive
integer i, by

439) i -{”0“*"‘)/("“) if l,+1= A (modn+1),
39 o= [+ 1-A)Yn+ D] +1 i lp+1# A (modn+1).

We put A, = A+iC and B, = B+iD for each non-negative integer i. Then

A,D—B,C=1 for each i. Therefore each B/A, is a Farey fraction and
B/A < Bj/A; < D/C for each i. In particular, for i = iy,

B/A < Biy-1/Ai-1 < Big/A;, < D/C.
Moreover,

A=Uo+D+ioK >0, Aipmy—(lo+D+io—=DK <0,
because

Ay — o+ D) +igK = (n+ (io—(lp+1—A)/(n+ 1)=0
and

Aig-1—(lg+ 1)+ (o= DK = (n+1)(ip—1— (o + 1= A)/(n+1))
—(n+1)<0 if l;+1=A (modn+1),
=< (n+D)([(+1=A)(n+ )] =+ 1-A)/n+1) <0
if I,;+1# A (modn+1).
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Therefore
(4.3.10a) A, —(lg—igK)—1=0
and

43.10b)  (n+2—A,)+Uo—ioK) = —(Asy-1 —(lg+ D) +(io—1)K) > 0.
Let j, = lo—ioK. Then, by (4.3.10b),
jo = A —(n+2)+1 = A+igC—(n+1) > A+C—(n+1).

Since B/A < D/C are a successive pair in #,, we have 4+C > n+1 by Lem-
ma 1. Therefore j, > 0. We note that

4.3.11) KB+1,D = KB +joD, KA+1,C = KA;,+j,C.

Therefore both &, and &, in (4.3.8) are in (B, /A;, D/C). Three Farey
fractions B/A < B, JA,, < D/C are terms in & mayin.ay With 4;,,D—B,,C = 1.

Thus, for the three integers [y, iy and j, defined above, using the two terms
£, and &, in Fy(B;/A;, D/C), we have

(4.3.12) 8o = (KBj, +jo DY(KA;+jo €)
< VU < (KB, +(jo+ DD)(KA;, +(jo+ DC) = ¢,

by (4.3.8) and (4.3.11). In the following we take (B;/4;,, D/C) as (B'//A’, B'/A")
in §4.2. Then, by (4.2.5),

(4.3.13) VJU =ayy where X=UD—-VC,Y=VA, —UB,.

In Case (I1.2), we look at (4.3.12) in place of (4.3.4) in Case (IL.1). Then we can
show the similar lemma to Lemma (II.1) by using the data {K, j,, 4,
Aiy-1, By, Biy—1, C, D} in place of the data {M, j, A, 4_,, B, B_,, E, F}
in Case (IL.1).

Lemma (I1.2). Let notations be as above.
(1) Assume that V]U lies on or above %(B, /A
Then

D/C) in Fig (B;,/Ay,, D/C).

io?
X <K,

(2) Assume that V/U lies below %(B,/A.,. D/C) in Fig (B,/A;,. D/C) (i.e.,
X > K). Then
U > KA, +(jo+1)C.
(3) We have the following:
(1120) A,—j,—1=0, n+2—-A4,+j,>0.
(11‘2.1] (Aio_jo gl l)Aiu -1 +(n+2'_‘A'o+j0)A,o — KA;D +(j0 + l]C,
[A“’"_jo_" l)Bﬁ)—l +(n+2-‘A‘o+jo)Blu e KB.‘U+{j0+ I)D_ I .
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(122) {VA,_}y=VA,_,—B,_,U

ip—1 *
{VA, }y=VA,—B,U.

(1123) (A, —jo—DV{VA;—1}y+n+2—A, +j){VA,} s, <U.

Proof. Replacing (B'/A’, B'/A") by (B, /A;,, D/C), in Lemma 7, we get
statements (1), (2). By (4.3.10a) and (4.3.10b), we have (I1.2.0). Since
Aj—-y=A,—C and B, _, =B, —D, we get (IL2.1). Since B; _,/4;
< VU < D/C and B, /A, < VJU < D/C, we get (11.2.2) by Lemma 5 (1). As for
(I1.2.3), we write

K‘j{)ﬂ Aio’ Aio—l’ Biu’ Bin-la C| D fOf M,j,A, A—]_s B, B—-], E; F,

respectively, in (4.3.6). Then, by (I1.2.1) and (I1.2.2), the left hand side of (I1.2.3)
is equal to

(4.3.14) U—[(KB;,+(jo+1)D)U—(KA, +(jo+1C)V].
On the other hand, by (4.3.12), we have
4.3.15) (KB;,+(jo+1)D)U > (KA, +(jo+1)C)V.

By (4.3.14) and (4.3.15), we get (11.2.3). m

4.4. Proof. Now we shall prove the “only if” part, by using Lemmas I,

(IL.1), (I1.2). We assume N = n+2 and p is a prime number with p ¥ N. In fact
we shall show that either there exists w = (wg, Wy, ..., Was)E W, (i€,

Yrrsw, = N) with p-we W, (e, Y7124 {pw}y = N), or {p} = {p}y is of the
form
{p} = (IN—-m)/k

where I <k <n 1 <I<k—-1,1<m<n—k+1and(k,[)=1/(cf Proposition
in Section 2).

We notice here that if w = (wg, Wy, ..., Wos1)€ W, and Y7o {pw;}y < N
then p-w must belong to W,.

Considering {p}/N as a Farey fraction, we put V = {p}, U= N and we
apply Lemmas I, (IL.1), (I1.2).

(i) Case I: 0/1 < {p}/N < I/n (e, B/A =0/1 in (4.3.0)).

We apply Lemma I to V/U = {p}/N. We look at inequalities (4.3.2). If
equality holds then {p} = (N—1)/n(ie, k =n, [ =1, m = 1). Otherwise we put

w=(l,...,1,yn+1, N—n—(yn+1)) with 1 repeated n times.
Then, by Lemma I (2), we have we W,. Moreover, by Lemma I (2),

p'w=({p},.... {p}, {P}m+ D}y, N—n{p}—{{p}(yn+ D}y)e W,
because
Von{p+{{p}n+ D)}y = nip}+{p}n+1)—yN = {(p}((y+ DHn+1)—yN
= N—(p+DN—((y+1)n+1){p}) < N.
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Now assume B/A # 0/1 in (4.3.0).

(ii) Case (IL1): B/A < {p}/N < ((n+1)B+1)/((n+1)A).
We look at inequalities (4.3.4). By (4.3.5), X = NF—{p}E. By Lemma
(IL1), X < M or X > M where M = n—E+ 1. If X < M then, by Lemma (IL1)

(1),

{p} =(FN—X)/E with X <n—E+1 (e, k=E, I=F,m=X).
If X > M then we put
441) w=(A_p.-s A1, 4,..., 4, N—(A—j—1A_,—(n+2—A+))A)
with A _, (resp. A) repeated A—j— 1 (resp. n+2— A +j) times. Then, by Lemma
(IL1) (2) (3), we have we W, and
442) pw=({pA-1}n:---> {pA_\}ns {pA}ns -, (A}

N—(A—j—=1){pA_ }y—(n+2—A+j){pA}y)eWo.

Here we notice that {{p}4_,}x = {PA_,}x, {{P}4}n = {PA}x-

(iii) Case (11.2): ((n+1)B+1)/((n+1)A4) < {p}/N < D/C.

We look at inequalities (4.3.12). By (4.3.13), X =ND—{p}C. By
Lemma (I1.2), X <K or X > K where K=n—-C+1. If X <K then, by
Lemma (11.2) (1),

{p} =(DN—=X)/C with X <n—-C+1 (ie., k=C,I=D,m=X).
If X > K then we put
443) w=(4, A

ig— 1 **

A » Ay

ig=1* “tig» -+ io
N—(4,—jo— l)Ato—l—(n+2_Aio+jDJAio)
with A4, _, (resp. 4;,) repeated A; —jo—1 (resp. n+2—A;,+Jj,) times. Then, by
Lemma (I1.2) (2) (3), we have we W, and
444) pw=({pAi,-1in o {PAiy-1}ns {pAi}ns oo {pAi}n,
N—(Aio_fo_l]{PAio—1}N“’l"+2—Aiu+fo){P'4io}N)eWo-

Here we notice that {{p} A, _,}y = {PAi-1}n> {P}4i} = {RAiu}n-
Thus we have completed the proof of the “only if” part in the Theorem.

4.5. Examples. In the case N = n+2 (1 < n < 6), we see that if {p}y # 1
then HW(F,x,,) = 0, because

n=1; {p}3=2=N-1

n=2; {pla=3=N-1

n=3; {p}s =2=(N=1)/2
or {p}s=3=N-2,
or {ply=4=N-1.
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n =4 {ple =5=N-1.

n=Ss; {p},=2=(N-1)3,
or {p},=3=(N-1)2,
or {p},=4=N-3,
or {p},=5=N-2,
or {p};,=6=N-1.

n=6; {p}s =3 =(N-2)2,
or {p}s=5=02N-1)3,
or {p}g=T7=N-1.

In N>n+2 with p¥ N, if {p}, =1 then
pw=(l,..,1,N=(n+1)eW, forw=(1,...,1, N—(n+1)eW,

with 1 repeated n+1 times.
In the following, we put up examples with “N > n+2" in which there
exists w in W, with p-we W,, in two cases (II.1), (I1.2), respectively.

(IL1) (i): n=5; N=19, {p} = 7. We have
B/A = 1/3 < {p}/N = 7/19 < D/C = 2/5,

((n+ 1)B+ 1)/((n+ I}A) =7/18 > 7/19 = {p}/N
and

a=[C/A]=[53]1=1,
D/C=F,/[E, < Fo/E,=F/E=1/2 in &;,.
Moreover, M =n—E+1=4, X = NF—{p}E=5> M, and
(4.5.1) ¢&;=(MB+F)/(MA+E)=5/14 < {p}/N < 6/16
= (MB+2F)[(MA+2E)=¢,.
Hence j=1 in (4.34). Applying Lemma 7 (2) to (4.5.1), we have
(o<aiy=4/11 <{p}/N<38=0ay,=¢,.
In Lemma (IL.1) (3),
A—j—1=1, n+2—-A+j=5 A_,=1 (B_,=0, A=3 (B=1),
pA_Jn=17, {pAly=2.
Thus
w=(1,3,3,3,3,3,3)eW, in (44.1),
pw=(7,2,2,2,2,2,2)eW, in (44.2).
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(IL1) (ii): n=15; N =15, {p} = 8. We have
B/A = 1/2 < {p}/N = 8/15 < D/C = 3/5,

(n+1)B+1)/((n+1)4) = 7/12 > 8/15 = {p}/N

and
a=[C/A]=[512]=2,
D/C=F,/E,<F,/JE,=2/3<Fy/E,=F/E=1/1 in %;.
Moreover, M =n—E+1=5 X =NF—{p}E=7> M, and
452) & =(MB)/(MA)=5/10 < {p}/N < 6/11
=(MB+F)/(MA+E)=¢,.

Hence j = 0 in (4.3.4). Applying Lemma 7 (2) to (4.5.2), we have

Eo =10 =1/2 < {p}/N <6/11 =ty s = &.
In Lemma (IL.1) (3),
A—j—1=1, n+2—A+j=5 A_,=1 (B_,=0), A=2 (B=1),

{pA_}v=8, {pAly=1.

Thus
w=(1,2,2,2,2,2,49eW, in (44.1),

prw=(8,1,1,1,1,1,2)eW, in (442).
(IL1) (iii): n=6; N =51, {p} = 32. We have
BJ/A = 3/5 < {p}/N = 32/51 < D/C = 2/3,
((n+1)B+1)/((n+ 1) A) = 22/35 > 32/51 = {p}/N
and
a=[C/A] =[3/5]1=0,
D/C=F/E=2/3 in &,
Moreover, M =n—E+1=4, X = NF—{p}E =6 > M, and
4.53) &, =(MB+4F)/(MA+4E)= 20/32°< {p}/N
< 22/35 = (MB+5F)/(MA+5E)=¢,.
Hence j = 4 in (4.3.4). Applying Lemma 7 (2) to (4.5.3), we have
&y =0y, =5/8<{p}/N <22/35=0a4s5=2¢,.
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In Lemma (IL.1) (3),
A—j—1=0, n+2—A+j=17, A=5 (B=3), {pAly=T.
Thus
w=(5,5,5,55,575,16€W, in (44.1),
pw=(1,7,117,7,7,7,2eW, in (4.4.2).
(IL1) (iv): n=7; N =45, {p} = 26. We have
B/A = 4/7 < {p}/N = 26/45 < D/C = 3/5,
((n-+1)B+1)/((n+1)4) = 33/56 > 26/45 = {p}/N
and
a=[C/A] =[5/T] =0,
D/C=F/E=3/5 in %,
Moreover, M =n—E+1=3, X = NF—{p}E=5> M, and
4.54) £, =(MB+F)/(MA+E)=15/26 < {p}/N < 18/31
= (MB+2F)[(MA+2E)=¢,.
Hence j = 1 in (4.3.4). Applying Lemma 7 (2) to (4.5.4), we have
&y =03, = 15/26 < {p}/N < 11/19 = 03, < &;.
In Lemma (IL.1) (3),
A—j—1=5, n+2—A+j=3, A_,=2 (B_,=1), A4 =7 (B=4),
(PA_Ju=T, (pAlw=2.
Thus
w=1(2,2,222771771149eW, in (44.1),
pw=(7,7,7,7,7,2,2,2,4eW, in (442).
(IL2) (i): n=5; N =29, {p} = 17. We have
B/A = 1/2 < {p}/N = 17/29 < D/C = 3/5,
(n+1)B+1)[(n+1)4) =7/12 < 17/29 = {p}/N.
Moreover, K =n—C+1=1, X = ND—{p}C =2 > K, and
45.5) &, =(KB+2D)/(KA+2C)=1/12 < {p}/N < 10/17
= (KB+3D)/(KA+3C) =¢;.
Hence I, =2 = A in (438). By [p+1—-4=1 # 0 (modn+1), we have
ip = [lp+1 =AY+ DI +1 =1, jo=lo—ioK=1.
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Applying Lemma 7 (2) to (4.5.5), we have
éo=(KBy+D)(KA;+C)=a;,; < {p}/N <ay,
= (KB, +2D)/(KA,+2C)=¢,.
In Lemma (I1.2) (3),
Ai,—Jjo—1=5, n+2—Ay+jo=1, A;-1=2 (B,- =1),
A, =17 (B,=4), {pAl'u—l}N =35, {pAiu}N =3.
Thus
w=(2,2,2,2,2,7,12)e W, in (44.3),
pw=(525,575,53,1)eW, in (4.44).
(I1.2) (ii): n=6; N =97, {p} = 63. We have
B/A =3/5 < {p}/N = 63/97 < D/C = 2/3,
((n+1)B+1)/((n+1)A) = 22/35 < 63/97 = {p}/N.
Moreover, K=n—C+1=4, X =ND—{p}C=5>K, and
(4.56) &, = (KB+19D)[(KA+19C) = 50/77 < {p}/N < 52/80
=(KB+20D)[(KA+20C) =¢,.
Hence I, =19 > A in (4.3.8). By l,+1—-A =15#0 (modn+1),
ig=[lp+1-A)n+1)]+1=3, jo=1l—i,lK=T.
Applying Lemma 7 (2) to (4.5.6), we have
Eo=(KB3+TD)/(KA;+7C) = 04,7 < {p}/N <y,
= (B, +2D)[(A;+2C) = E,.
In Lemma (I1.2) (3),
A,—Jo—1=6, n+2-A, +j,=1, A4

ig—1

=11 (B,

in—1

A, =14 (B,=9), {pAi,-1}vn=14, {pAn=9.

=17),

Thus
w=(11, 11,11, 11,11, 11, 14, 17)e W, in (44.3),
p-w=_(14, 14, 14, 14, 14, 14,9, 4)eW,  in (4.4.4).
(IL.2) (iii): n=7; N =80, {p} = 31. We have
BJ/A = 1/3 < {p}/N = 31/80 < D/C = 2/5,
(n+1)B+1)/((n+1)A) = 9/24 < 31/80 = {p}/N.
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Moreover, K =n—C+1=3, X = ND—{p}C=5> K, and
457 ¢&,=(KB+71D)/(KA+7C)=17/44 < {p}/N < 19/49
= (KB+8D)/(KA+8C) = ¢,.
Hence I, =7> A in (4.38). By l,+1—-A=5#0 (modn+1),
o = [lo+1—AYn+ D] +1=1, jo=Ilo—iK =4.
Applying Lemma 7 (2) to (4.5.7), we have
&o = (KB, +4D)/(KA, +4C) < a3 < {p}/N < a3
= (KB, +5D)/(KA,+5C) = £,.
In Lemma (I1.2) (3),
Ag—jo—1=3, n+2—A, +jo=5 Ay-1=3 By-y=1),
A, =8 (Bi,=3), {PAi-1In=13, {pAi}ly=38.
Thus
w=(3,3,3,8,8,8,8,8,31)e W, in (44.3),
p-w=(13,13,13,8,8,8,8,8, 1)eW, in (444).
(IL2) (iv): n=7; N =189, {p} = 124. We have
B/A = 3/5 < {p}/N = 124/189 < D/C = 2/3,
(n+1)B+1)/((n+1)4) = 25/40 < 124/189 = {p}/N.
Moreover, K=n—C+1=35, X = ND—-{p}C=6>K, and
(458) &, = (KB+44D)/(KA+44C) = 103/157 < {p}/N < 105/160
= (KB+45D)/(KA+45C) =¢,.
Hence l, =44 > 4 in (4.38). By [o+1—A =40=0 (modn+1),
io=(o+1—=A)(n+1)=5, jo=Ilo—i,K=19.
Applying Lemma 7 (2) to (4.5.8), we have
&o = (KBs+19D)(KAs+19C) = as 19 < {p}/N < a1 4
= (Bs+4D)/(A5+4C) = E,.
In Lemma (IL.2) (3),
A —jo—1=0, n+2—A, +j,=8, A,=20 (B,=13),
{PA;,}n = 23.
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Thus
w = (20, 20, 20, 20, 20, 20,20, 20, 29)e W, in (4.4.3),
p-w=(23, 23, 23, 23, 23, 23, 23, 23, 5)e W, in (4.44).
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