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Introduction. The study of additive cubic diophantine equations falls
naturally into two parts. The Hardy–Littlewood method establishes a Hasse
principle, showing that if the equations have non-singular solutions in the
p-adic fields then they have a non-trivial solution in rational integers. The
second part of the problem is then to show the existence of p-adic solutions.

For a single equation,

(0.1) a1x
3
1 + . . .+ aNx

3
N = 0 , ai ∈ Z ,

Baker [2] has applied Vaughan’s improvements in the Hardy–Littlewood
method to establish a Hasse principle provided that N ≥ 7. The question
of p-adic solutions was settled by Lewis [19] who showed that there are
non-trivial p-adic solutions when N ≥ 7. Further examples such as

(0.2) x3
1 − 2x3

2 + 7(x3
3 − 2x3

4) + 49(x3
5 − 2x3

6) = 0

show that the result does not hold when N = 6. For a single equation, the
non-trivial p-adic solutions are non-singular so we have

Proposition 1. The equation (0.1) has a non-trivial solution in integers
provided that N ≥ 7.

Davenport and Lewis [15] considered pairs of additive cubic equations

(0.3)
a1x

3
1 + . . .+ aNx

3
N = 0 ,

b1x
3
1 + . . .+ bNx

3
N = 0

with integer coefficients ai, bi. They established the Hasse principle if
N ≥ 18, subject to a rank condition on the coefficients. This was reduced
successively by Cook [11], Vaughan [22], Baker and Brüdern [3] and Brüdern
[6], it now holds for N ≥ 14. Davenport and Lewis also showed that the
equations (0.3) have non-trivial p-adic solutions when N ≥ 16, and examples
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such as

(0.4)
Φ(x1, . . . , x5) + 7Φ(y1, . . . , y5) + 49Φ(z1, . . . , z5) = 0 ,
Ψ(x1, . . . , x5) + 7Ψ(y1, . . . , y5) + 49Ψ(z1, . . . , z5) = 0 ,

where

(0.5)
Φ(x1, . . . , x5) = x3

1 + 2x3
2 + 6x3

3 − 4x3
4 ,

Ψ(x1, . . . , x5) = x3
2 + 2x3

3 + 4x3
4 + x3

5

have no non-trivial solution in the 7-adic field. Cook [12] showed that if
p 6= 7 then the equations (0.3) have a non-trivial p-adic solution if N ≥ 13.

In the case of two equations (0.3), non-trivial p-adic solutions are not
necessarily non-singular. However, Davenport and Lewis [15], Corollary to
Theorem 1, proved that the existence of non-trivial p-adic solutions implies
the existence of a non-singular p-adic solution provided that the columns of
coefficients satisfy a rank condition, namely that no ratio occurs more than
six times among the ai/bi. When this rank condition holds they established
the Hasse principle via the analytic arguments of the Hardy–Littlewood
method. When it does not hold, Proposition 1 combined with elementary
arguments establishes the existence of non-trivial integer solutions to the
equations (0.3). We have

Proposition 2. The equations (0.3) have a non-trivial solution in inte-
gers provided that N ≥ 16.

Here we are concerned with three simultaneous additive cubic equations

(0.6)

a1x
3
1 + . . .+ aNx

3
N = 0 ,

b1x
3
1 + . . .+ bNx

3
N = 0 ,

c1x
3
1 + . . .+ cNx

3
N = 0

with integer coefficients. Little has been published explicitly on this prob-
lem, although some information can be obtained from more general results.
For example, early results of Brauer [5] and Birch [4] would need a large
number of variables. Davenport and Lewis [17] considered systems of addi-
tive diophantine equations

(0.7) ai1x
k
1 + . . .+ aiNx

k
iN = 0 , i = 1, . . . , R

with integer coefficients. They found that the system (0.7) always has non-
trivial solutions, both in integers and in the p-adic fields, provided that

(0.8) N ≥
{

[9R2k log k] for k odd,
[48R2k3 log 3Rk2] for k even, k > 2.

Clearly one would hope to do better for particular small values of R and k.
In the case of the equations (0.6) one can apply a variant of Hua’s Lemma
(see Cook [10]) to establish the Hasse principle when N ≥ 25, provided that
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the columns of coefficients satisfy a rank condition. Recent improvements
in the Hardy–Littlewood method enable us to do better than this.

As with pairs of equations, there are combinatorial problems arising from
linear dependence amongst the columns in the matrix of coefficients of the
system. We shall call an r×nr matrix partitionable if it consists of n disjoint
r×r submatrices which all have non-zero determinant. In the case r = 2 the

situation is fairly simple; a submatrix
[
ai aj

bi bj

]
has non-zero determinant

if and only if the ratios ai/bi and aj/bj are distinct. Therefore, in this case,
whether a matrix is partitionable or not, can easily be seen from repetitions
in the sequence ai/bi.

However, when r ≥ 3 things become much more difficult, a fact which
might have obstructed further progress with problems of this class. Low,
Pitman and Wolff [20] recognized that the appropriate analogue to control
partitionable matrices is the following combinatorial result (for a proof see
Aigner [1] or Low, Pitman and Wolff [20]).

Proposition 3. An r × rn matrix A over a field is partitionable if and
only if every submatrix consisting of t columns from A has rank ≥ t/n.

There will be many delicate questions associated with relatively large
submatrices of low rank. We shall establish the Hasse principle for the sys-
tem (0.6), via the Hardy–Littlewood method, subject to a rank condition on
the matrix of coefficients. If the system does not satisfy this rank condition
then it is easy to establish the existence of non-trivial integer solutions from
Propositions 1 and 2.

Definition. We say that the system (0.6) satisfies the rank condition if
no six columns of coefficients form a matrix of rank 1 and no fifteen columns
of coefficients form a matrix of rank 2.

Theorem 1 (Hasse principle). Suppose that in the system (0.6), N ≥
22, the rank condition is satisfied and that there is a non-singular solution
in every p-adic field. Then the system (0.6) has a non-trivial solution in
rational integers.

The rank condition, and the condition N ≥ 22, allow us to apply the
Hardy–Littlewood method to the problem. We obtain an asymptotic for-
mula for the number of solutions to (0.6) in a 22-dimensional box of side
(C − 1)P , where C > 1 is some suitable constant, with some additional
restrictions on the variables. The main term is

ΓSP 13

where Γ is a positive constant and S is the singular series. Then S is
bounded below by some positive constant if and only if there is a non-
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singular solution to the system (0.6) in every p-adic field.
We may take N = 22, by setting excess variables to the value 0. The

rank condition is then equivalent to the conditions that

(i) any non-trivial linear combination of the equations (0.6) contains at
least 7 variables explicitly;

(ii) any two linearly independent linear combinations of the equations
(0.6) contain at least 16 variables explicitly.

It is now straightforward to modify the arguments of §5 of Davenport
and Lewis [17] to obtain the following.

Proposition 4. Suppose that in the system (0.6), N ≥ 22 and the rank
condition is satisfied. For any prime p, if the system has a non-trivial sol-
ution in the p-adic field then it has a non-singular solution in the p-adic
field.

We may now replace Theorem 1 with

Theorem 1A. Suppose that in the system (0.6), N ≥ 22, the rank condi-
tion is satisfied and that there is a non-trivial solution in every p-adic field.
Then the system (0.6) has a non-trivial solution in rational integers.

Thus the problem now reduces to establishing that the equations (0.6)
have non-trivial p-adic solutions. The bounds (0.8) have been reduced by
Cook [13] and Low, Pitman and Wolff [20]. In the particular case (0.6) of
three additive cubic equations Stevenson [21] showed that if N ≥ 28 then the
equations have non-trivial p-adic solutions except possibly when p = 3, 7.

Theorem 2. Suppose that N ≥ 22. Then the equations (0.6) have non-
trivial p-adic solutions except (possibly) for p = 3 and for those primes
p ≡ 1 mod 3 with p ≤ 43.

Combining Theorems 1A and 2 with elementary arguments when the
rank condition fails we obtain

Theorem 3. Suppose that the equations (0.6) have N ≥ 22 and a non-
trivial p-adic solution for p = 3 and for those primes p ≡ 1 mod 3 with
p ≤ 43. Then the equations (0.6) have a non-trivial solution in rational
integers.

For any given set of equations (0.6) it is easy to check whether the p-
adic conditions are satisfied using a computer. The number of variables
is essentially best possible since combining the counter-examples (0.2) and
(0.4) gives a system of three equations in 21 variables having no non-trivial
7-adic solution. Further, if we adjoin a third congruence, say

Ξ = x3
6 + x3

7 + x3
8 ≡ 0 mod 7 ,
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to Φ and Ψ in (0.5) we obtain a system of three congruences modulo 7 which
only have singular solutions. This leads to a system of three equations in 24
variables for which we cannot use Hensel’s Lemma to establish the existence
of 7-adic solutions.

Thus any refinement of the Hardy–Littlewood method to deal with three
cubic forms in 21 (or fewer) variables must impose conditions on 7-adic
solutions. It seems likely that the arguments would be much more involved
(see [2] and [6] for the corresponding results for one or two cubic forms).
Further, an analogue of Theorem 2 when N = 21 would lead to a larger set
of exceptional primes.

CHAPTER 1

THE HASSE PRINCIPLE

1. Excluding simple cases. There are some situations in which it is
very easy to find solutions to the system (0.6). In order to formulate this in
a suitable and brief manner we introduce some notation. Let

M =

 a1 . . . a22

b1 . . . b22
c1 . . . c22


be the matrix of coefficients associated to (0.6). Also, for any subset J ⊂
{1, 2, . . . , 22}, we let

MJ =

 aj

bj
cj


j∈J

be the submatrix of M consisting of the jth columns, j ∈ J .
In the arguments below we shall often “normalize” the system (0.6), that

is, taking linear combinations of the three equations, in order to produce,
for example, a large number of zeros in a row. Also we shall re-index the
variables to collect such zeros together, into blocks. We shall then always
redenote the coefficients by ai, bi, ci without further comments. This should
not lead to confusion, and avoids abundant notational complications.

Of course we may assume at once that any column contains at least
one non-zero coefficient; otherwise there is a non-trivial solution to (0.6) for
obvious reasons.

Lemma 1. Suppose there is a J ⊂ {1, . . . , 22} with |J | ≥ 6 and rk(MJ )
= 1. Then (0.6) has a non-trivial integer solution.

P r o o f. Suppose |J | = 6 and rk(MJ ) = 1. Normalizing the system
(0.6) we may assume that bi = ci = 0 for 1 ≤ i ≤ 6. By Proposition 2 there
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is a y = (y7, . . . , y22) 6= 0 with

(1.1)
b7y

3
7 + . . .+ b22y

3
22 = 0 ,

c7y
3
7 + . . .+ c22y

3
22 = 0 .

But if y is a solution, then ηy also solves (1.1) for all η ∈ Z. Putting these
solutions into the remaining equation we are left with the single equation

a1x
3
1 + . . .+ a6x

3
6 + a(y)η3 = 0

for some integer a(y). This has an integer solution (x1, . . . , x6, η) by Propo-
sition 1. Now (x1, . . . , x6, ηy7, . . . , ηy22) solves (0.6).

Lemma 2. Suppose there is a J ⊂ {1, . . . , 22} with |J | ≥ 15 and
rk(MJ ) = 2. Then (0.6) has a non-trivial integer solution.

P r o o f. Here we may assume that c1 = . . . = c15 = 0. Thus, solving the
single equation c16x3

16 + . . .+ c22x
3
22 = 0 first, and then using an argument

similar to the one just given, one is left with a pair of equations in 16
variables to which Proposition 2 may again be applied.

By Lemmata 1 and 2, if (0.6) does not satisfy the rank condition, then
(0.6) has a non-trivial integer solution. In other words, Theorem 3 follows
from Theorems 1A and 2. Hence, for the remainder of this chapter we shall
assume that the rank condition is satisfied.

Based on this assumption we are now able to deduce the following result.

Lemma 3. There is a set S ⊂ {1, . . . , 22} with |S| = 4 such that for all
T ⊂ S with |T | = 3 one has detMT 6= 0.

P r o o f. Since M has rank 3, there is a 3 × 3 submatrix, M1,2,3 say,
with non-zero determinant. Taking linear combinations we may suppose
that a2 = a3 = b1 = b3 = c1 = c2 = 0. Now, if there is a column, the jth,
say, with all entries non-zero, then |S| has the required properties. If there
is no such column then any column contains at least one zero, and after
redenoting the coefficients the matrix M must be of the shape

M =

 a′1 . . . a′u 0 . . . 0 0 . . . 0 a′′1 . . . a
′′
l a′′′1 . . . a′′′m 0 . . . 0

0 . . . 0 b′1 . . . b
′
v 0 . . . 0 b′′1 . . . b

′′
l 0 . . . 0 b′′′′1 . . . b′′′′n

0 . . . 0 0 . . . 0 c′1 . . . c
′
w 0 . . . 0 c′′′1 . . . c′′′m c′′′′1 . . . c′′′′n


with u+v+w+l+m+n = 22, with all entries occurring explicitly being non-
zero, and with a′1 = a1, b′1 = b2, c′1 = c3. By our conditions on submatrices
of rank 1 and 2 we also have

u ≤ 5 , v ≤ 5 , w ≤ 5 ,
u+ v + l ≤ 14 , u+ w +m ≤ 14 , v + w + n ≤ 14 .
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We now easily deduce that at least two of the numbers l,m, n are non-zero.
Without lost of generality we may suppose that mn 6= 0. Then the matrix a′1 0 a′′′1 0

0 b′1 0 b′′′′1

0 0 c′′′1 c′′′′1


has the required properties.

2. Preparing the equations for the circle method. The treatment
of the system (0.6) now depends on whether M contains a large submatrix
of rank 2, or not. Let R be the maximal number of columns of M forming
an 3×R matrix of rank 2. Of course R ≤ 14.

C a s e I. R ≤ 12. In this case we first pick four indices according to
Lemma 3. We may suppose that these are 1, 2, 3, 4. Taking linear com-
binations we may also suppose that b1 = c1 = a2 = c2 = a3 = b3 = 0. A
prominent role will be played by the ternary linear forms

(1.2) γi = aiα1 + biα2 + ciα3 (1 ≤ i ≤ 22) .

Let {j, k, l} ⊂ {1, 2, 3, 4}. Then detMj,k,l 6= 0. Therefore, for all i ≥ 5 we
may write

(1.3) γi = ϑγj + λγk + µγl

where ϑ, λ, µ are suitable rational numbers depending on i, j, k, l. However,
if in (0.6) the variables xv, for v ≥ 5, are replaced by dvxv with suitable
integers dv 6= 0, then we may assume that ϑ, λ, µ are always integers, as we
shall from now on suppose.

C a s e I I. 13 ≤ R ≤ 14. Here we choose a maximal submatrix, of
R columns and of rank 2. We may suppose that this is MK where K =
{1, 2, 25−R, 26−R, . . . , 22}. Taking linear combinations we arrange that

(1.4) M =

 a1 0 0 a4 . . . a10 a11 a12 . . . a22

0 b2 0 b4 . . . b10 b11 b12 . . . b22
0 0 c3 c4 . . . c10 c11 0 . . . 0


where ci 6= 0 for 3 ≤ i ≤ 10, and c11 = 0 or c11 6= 0 depending on whether
R = 14 or R = 13.

In this case Lemma 3 is not very useful. A partial surrogate can be
obtained as follows. The numbers a4, . . . , a10, b4, . . . , b10 cannot all be zero
since this would imply that there is a 3× 6 submatrix of rank 1. As we may
exchange the rows with the ai’s and the bi’s by symmetry we may assume
that a4 6= 0. Hence at least the matrices M1,2,3,M1,2,4, and M2,3,4 have
non-zero determinant. Hence we have (1.3) with i, j, k any of these triples,
and as in Case I we suppose that ϑ, λ, µ in (1.3) are integers.
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One final normalization of the system (0.6) is now required which applies
to both cases. Since (0.6) is a system of odd degree there are of course non-
singular real solutions ξ = (ξ1, . . . , ξ22) to (0.6) with all ξi 6= 0. By changing
certain variables xi into −xi if necessary we may also suppose ξi > 0; and
since (0.6) is homogeneous even ξi > 1 may be assumed. For later use we
now fix a constant C with

(1.5) ξ3i ≤ C (1 ≤ i ≤ 22) .

All these conventions understood, we are now prepared to apply a three-
dimensional version of the Hardy–Littlewood method. Let P be a large
parameter tending to infinity, and let

(1.6) A = {P < x ≤ CP : p|x⇒ p ≤ P η}

where η is a small positive constant to be fixed later on. Let N be the
number of solutions of (0.6) subject to

(1.7)
P < xi ≤ CP (1 ≤ i ≤ 4) ,

xi ∈ A (5 ≤ i ≤ 22) .

Bringing in the exponential sums

f(α) =
∑

P<x≤CP

e(αx3) ,(1.8)

g(α) =
∑
x∈A

e(αx3) ,(1.9)

and recalling (1.2), we may write

(1.10) N =
∫
U

f(γ1)f(γ2)f(γ3)G(α) dα

where U is the three-dimensional unit cube [(logP )P−3, 1 + (logP )P−3]3,
and

(1.11) G(α) =
22∏

i=5

g(γi) .

The unit cube is dissected into major and minor “arcs” as follows. Let
δ > 0 be a fixed small real number with 4η < δ, and let M(q, t) denote the
box

{α : |αi − ti/q| ≤ (logP )δP−3} ,
and write M for the union of all M(q, t) with 1 ≤ ti ≤ q ≤ (logP )δ for
1 ≤ i ≤ 3, and (q, t1, t2, t3) = 1. Let m = U\M.

If B ⊂ U is a measurable set it is useful to write N (B) for the integral
(1.10) with integration restricted to the subset B.
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In §§4 and 5 we shall show that

(1.12) N (m) = o(P 13) ,

by arguments which are different in the two cases. In §6 the major arcs are
treated, and we will find an asymptotic formula

(1.13) N (M) = ΓSP 13 + o(P 13)

where Γ is a certain positive constant, and S is the singular series defined
in (1.67) below. Finally, the singular series will be related to the p-adic
solubility of (0.6). In the next section, however, we collect various auxiliary
results for frequent use later on.

3. Auxiliary estimates. We begin with various well known properties
of the exponential sum f(α). It is convenient to introduce the intervals

(1.14) E(q, t) = {α : |qα− t| ≤ P−9/4}
and to write E for the union of all E(q, t) with 1 ≤ t ≤ q ≤ P 3/4, (t, q) = 1.

Lemma 4. Let 0 < δ < 1/4. Then either |f(α)| < P 3/4+δ, or α (mod 1)
∈ E.

This is a slightly amplified form of Weyl’s inequality; see Vaughan [24],
Lemma 1.

For our next results we require the functions

S(q, t) =
q∑

x=1

e

(
tx3

q

)
;(1.15)

w(β) =
CP∫

P

e(βγ3) dγ .(1.16)

We also introduce a multiplicative function κ(q), defined at prime powers
by

κ(p3l+1) = 2p−l−1/2 ; κ(p3l+2) = p−l−1 ; κ(p3l) = p−l ,

and remark that by Lemmata 4.3 and 4.4 of Vaughan [23] we have

(1.17) q−1S(q, t) � κ(q)

whenever (q, t) = 1.

Lemma 5. For α ∈ E(q, t),

f(α) = q−1S(q, t)w(α− t/q) +O(q1/2+ε) .

When (q, t) = 1 and q ≤ P 3/4 we also have

f(α) � Pκ(q)(1 + P 3|α− t/q|)−1/2 .
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P r o o f. The first part is Theorem 4.1 of Vaughan [23]. The second part
is easily deduced therefrom by using κ(q) ≥ q−1/2 and an estimate for w(β)
obtained from a partial integration in (1.16).

From the definition of κ we have∑
q≤X

qκ(q)4 ≤
∏

p≤X

(
1 +

∞∑
l=1

plκ(pl)4
)
�

∏
p≤X

(
1 +

10
p

)
� (logX)10 .

Now the following estimates are immediate.

Lemma 6. We have ∫
E

|f(α)|4 dα� P (logP )10 ,∫
E

|f(α)|5 dα� P 2 .

We also need mean value estimates of Hua’s Lemma type. We collect
these in our next lemma.

Lemma 7. Let s ≥ 4. Then
1∫

0

|g(α)|s dα� Pϑ(s)

where

ϑ(4) = 2 + ε , ϑ(6) = 13/4 + ε , ϑ(20/3) = 23/6 + ε ,

ϑ(7) = 33/8 + ε , ϑ(8) = 5 .

P r o o f. The value for ϑ(6) follows from Theorem 4.4 of Vaughan [25]
providing η is sufficiently small. Interpreting the integral as the number of
solutions of the underlying diophantine equation when s = 4 or 8, the values
for ϑ(4) and ϑ(8) follow from Hua’s Lemma (Vaughan [23], Lemma 2.5) and
Theorem 2 of Vaughan [24]. The other values now can be deduced via
Hölder’s inequality.

Lemma 8. Let ν 6= 0 be fixed. Then, uniformly in µ ∈ R,
1∫

0

|f(α)g(να+ µ)6| dα� P 4+ε .

P r o o f. Let δ > 0 be small. Since g(α) has period one,
1∫

0

|g(να+ µ)|6 dα ≤ |ν|+ 1
|ν|

1∫
0

|g(β)|6 dβ � P 13/4+ε
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by Lemma 7. Therefore the contribution from all α ∈ [0, 1] where |f(α)| <
P 3/4+δ is � P 4+2δ. For the remaining α we have α (mod 1) ∈ E. By
Hölder’s inequality and Lemmata 6 and 7,∫

E

|f(α)g(να+ µ)6| dα

≤
( ∫

E

|f(α)|4 dα
)1/4( 1∫

0

|g(να+ µ)|8 dα
)3/4

� P 4+ε.

As δ was arbitrarily small this proves the lemma.

The next two lemmata are variants of Lemmata 2.1 and 2.2 of Brüdern
[6], which are more convenient in the present context.

Lemma 9. Let Ψ(α) be a trigonometric sum,

Ψ(α) =
∑
|h|≤H

ψ(h)e(αh)

where logH � logP , and where Ψ(α) ≥ 0 for all α ∈ R. Then∫
E

|f(α)|3Ψ(α) dα� P 3/8+εψ(0) + P ε
∑
h6=0

|ψ(h)| .

Lemma 10. Let Ψ(α, β) be a double trigonometric sum,

Ψ(α, β) =
∑

|h|,|k|≤H

ψ(h)e(αh+ βk)

where logH � logP , and where Ψ(α, β) ≥ 0 for all (α, β) ∈ R2. Then∫
E

∫
E

|f(α)|3|f(β)|3Ψ(α, β) dα

� P 3/4+εψ(0, 0) + P 3/8+ε
∑
h6=0

(|ψ(h, 0)|+ |ψ(0, h)|) + P ε
∑
h,k

|ψ(h, k)| .

We only sketch a proof of Lemma 10. Lemma 9 can be established by
the same method. Using Lemma 5 and the argument in §2 of Brüdern [6]
one readily establishes that the left hand side of the proposed inequality in
Lemma 10 is

� P ε
∑

q≤P 3/4

∑
r≤P 3/4

κ(q)3κ(r)3
∑
h,k

|ψ(h, k)||cq(h)cr(k)|

where cq(h) is Ramanujan’s sum,

cq(h) =
q∑

a=1
(a,q)=1

e(ah/q) .
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One now observes that κ(q) � qε−1/3, and that∑
q≤X

qκ(q)3 � X1/2+ε .

The proof can now be completed as in §2 of [6].

4. The minor arcs in Case I. In this section it is assumed throughout
that M is of the special shape specified in §2. We first draw a number of
corollaries from the results of the previous section. They all rely on the
trivial inequality

(1.18) |z1 . . . zm| ≤ |z1|m + . . .+ |zm|m .

Let 5 ≤ i < j < k ≤ 22, and suppose that detMi,j,k 6= 0. Then the
change of variable (α1, α2, α3) → (γi, γj , γk) is non-singular. Therefore, by
(1.2) and Lemma 7,∫

U

|g(γi)g(γj)g(γk)|6 dα

�
1∫

0

1∫
0

1∫
0

|g(γi)g(γj)g(γk)|6 dγidγjdγk � P 39/4+ε .

In the matrix M5,6,...,22 there are no six columns forming a 3×6 submatrix of
rank 1, and no 13 columns forming a submatrix of rank 2. By Proposition 2,
M5,6,...,22 is partitionable. Therefore we may apply (1.18) to deduce from
(1.11) that

G(α) ≤
∑′

i,j,k

|g(γi)g(γj)g(γk)|6

where
∑′ denotes a sum over all i, j, k with 5 ≤ i < j < k ≤ 22 and

detMi,j,k 6= 0. Integrating this over U we obtain

(1.19)
∫
U

|G(α)| dα � P 39/4+ε.

The same argument, but using the case s = 8 of Lemma 7, gives

(1.20)
∫
U

|G(α)|4/3 dα � P 15 .

Let {i, j, k} ⊂ {1, 2, 3, 4}. Again we have that detMi,j,k 6= 0. Denote
the set of all α ∈ U where |f(γl)| > P 3/4+δ for all l ∈ {i, j, k}, by B(i, j, k).
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Then γl ∈ E, and from Lemma 6 we find that

(1.21)
∫

B(i,j,k)

|f(γi)f(γj)f(γk)|4 dα

�
∫
E

∫
E

∫
E

|f(γi)f(γj)f(γk)|4 dγidγjdγk � P 3+ε .

We dissect the minor arcs further, according to the size of the |f(γl)|.
The procedure is not dissimilar from our recent work on cubic diophantine
inequalities [7]. Let i, j, k, l be any permutation of 1, 2, 3, 4, and put

F = {α ∈ m : |f(γv)| < P 3/4+δ (1 ≤ v ≤ 4)},
Gi = {α ∈ m : |f(γi)| ≥ P 3/4+δ ; |f(γv)| < P 3/4+δ (1 ≤ v ≤ 4; v 6= i)},
Hij = {α ∈ m : |f(γv)| ≥ P 3/4+δ (v = i, j) ; |f(γw)| < P 3/4+δ (w = k, l)},
Ki = {α ∈ m : |f(γi)| < P 3/4+δ ; |f(γv)| ≥ P 3/4+δ (1 ≤ v ≤ 4; v 6= i)},
L = {α ∈ m : |f(γv)| ≥ P 3/4+δ (1 ≤ v ≤ 4)}.

It is clear that any α ∈ m is contained in one of these sets. If B denotes
any of these sets we have to show that N (B) = o(P 13). From the definition
of N (B) and (1.19) we immediately have

N (F) � P 3+4δ+39/4+ε � P 13−δ .

The set Ki is also fairly simple. Note that α ∈ Ki implies α ∈ B(j, k, l).
Hence, by (1.20), (1.21) and Hölder’s inequality,

(1.22) N (Ki) � P 3/4+δ(P 3+ε)1/4(P 15)3/4 � P 13−δ .

For the set L we also wish to use (1.20) and Hölder’s inequality. Then
N (L) = o(P 13) would follow providing we can show that

(1.23)
∫
L

|f(γ1)f(γ2)f(γ3)f(γ4)|4 dα = o(P 7) .

To prove this first note that α ∈ L implies α ∈ B(i, j, k) ∩m for any triple
i, j, k with 1 ≤ i < j < k ≤ 4. By (1.18), the integral in (1.23) is

≤
∑

1≤i<j<k≤4

∫
B(i,j,k)∩m

|f(γi)f(γj)f(γk)|16/3 dα.

The argument used in (1.21) gives

(1.24)
∫

B(i,j,k)

|f(γi)f(γj)f(γk)|5 dα � P 6 .

Thus, (1.23) would follow providing we are able to show

Lemma 11. For α ∈ B(i, j, k) ∩ m we have |f(γi)f(γj)f(γk)| �
P 3(logP )−η.
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P r o o f. This is essentially contained in Lemma 19 of Davenport and
Lewis [17]. When α ∈ B(i, j, k) we have γv (mod 1) ∈ E. Hence, by
Lemma 4, for v = i, j, k there are integers tv, qv with (qv, tv) = 1, qv ≤ P 3/4

and |qvγv − tv| ≤ P−9/4. We now show that

|f(γi)f(γj)f(γk)| > P 3(logP )−η

implies α ∈ M. To see this we apply Lemma 5 and use κ(q) � qε−1/3.
Then

|f(γi)f(γj)f(γk)| � P 3(qiqjqk)ε−1/3
∏

v=i,j,k

(
1 + P 3

∣∣∣∣γv −
tv
qv

∣∣∣∣)−1/3

.

Combining the last two inequalities we have

qiqjqk � (logP )4η ;
∣∣∣∣γv −

tv
qv

∣∣∣∣ � (logP )4ηP−3 (v = i, j, k) .

For w = 1, 2, 3 we may write

αw = ϑw,iγi + λw,jγj + µw,kγk

where ϑw,i, λw,j , µw,k are certain rational numbers. Thus there is an integer
constant K, and integers q, u1, u2, u3 with q|Kqiqjqk, (q, u1, u2, u3) = 1 and

|αw − uw/q| � (logP )4ηP−3 (1 ≤ w ≤ 3) .

Since q � (logP )4η this gives α ∈ M, and establishes the lemma. Also the
proof that N (L) = o(P 13) is now complete.

Next we estimate the contribution from the sets Gi. We prepare for the
treatment by recalling the definition of Gi, and apply Hölder’s inequality.
Then

N (Gi) � P 9/4+3δ
( ∫

Gi

|f(γi)|3|G(α)| dα
)1/3( ∫

U

|G(α)| dα
)2/3

.

The second integral here is estimated in (1.19). We shall prove that

(1.25)
∫

Gi

|f(γi)|3|G(α)| dα � P 12+1/4+ε;

the required bound N (Gi) = o(P 13) is then immediate. To attack the
integral in (1.25) we decompose the indices j, 5 ≤ j ≤ 22, into two disjoint
sets J1,J2, of nine elements each. We shall specify Jt in a moment but
note already that these sets will be chosen such that MJ1 and MJ2 are still
partitionable. Now define

Gt(α) =
∏

j∈Jt

g(γj)
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and consider the integrals

It =
∫

Gi

|f(γi)|3|Gt(α)|2 dα (t = 1, 2) .

Before proceeding further we note that the estimation of this integral is
essentially identical for all possible values of i, that is, 1 ≤ i ≤ 4. We
therefore illustrate the method in the typical case i = 4, which is actually
slightly more demanding than the cases 1 ≤ i ≤ 3; and avoid unwanted
complications of a notational character.

Thus concentrating on the case i = 4, we change variables to (γ1, γ2, γ4)
(which is a non-singular transformation), and obtain in the now familiar
way

It �
∫
E

|f(γ4)|3
1∫

0

1∫
0

|Gt(α)|2 dγ1dγ2dγ4(1.26)

=
∫
E

|f(γ4)|3Ψt(γ4) dγ4, say.

From |Gt(α)|2 ≥ 0 we have at once Ψt(γ4) ≥ 0. Also, recalling (1.2) in the
form

(1.27) γv = ϑvγ1 + λvγ2 + µvγ4

with integers ϑv, λv, µv, we also see that

Ψt(γ4) =
∑

y,z∈A9

Θ(y,z)=Λ(y,z)=0

e(γ4M(y,z)) =
∑

h

ψhe(γ4h)

where y = (y1, . . . , y9), z = (z1, . . . , z9),

Θ(y,z) = Θt(y,z) =
∑
j∈Jt

ϑj(y3
j − z3

j ) ,

Λ(y,z) = Λt(y,z) =
∑
j∈Jt

λj(y3
j − z3

j ) ,(1.28)

M(y,z) = Mt(y,z) =
∑
j∈Jt

µj(y3
j − z3

j ) ,

and ψh is the number of solutions to the simultaneous conditions

Θt(y,z) = Λt(y,z) = 0 , Mt(y,z) = h , x ∈ A9 , y ∈ A9 .

In particular, ψh ≥ 0, and ψh = 0 for |h| � P 3. We are now in a position
to apply Lemma 9 to (1.26), and obtain

(1.29) It � P 3/8+εψ0 + P ε
∑

h

ψh .
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The matrices MJt
were supposed to be partitionable. Therefore the method

used in (1.19) is readily adopted to show that

ψ0 �
∫
U

|Gt(α)|2 dα(1.30)

�
∑

k,l,m∈Jt

det Mk,l,m 6=0

∫
U

|g(γk)g(γl)g(γm)|6 dγkdγldγm � P 39/4+ε .

The sum over ψh is more difficult to estimate, and it is here where J1,J2

have to be chosen carefully. Consider the matrix

(1.31) N =

ϑv

λv

µv


5≤v≤22

formed with the numbers introduced in (1.27). Since M5,6,...,22 is partition-
able, N is also partionable, and we choose one partition into six disjoint
submatrices N (1), . . . , N (6), of rank 3.

Let V be the set of all v with 5 ≤ v ≤ 22 and ϑv = λv = 0. Then
for v ∈ V, γ4 and γv are linearly dependent. Hence MV∪{4} has rank 1,
which implies |V| ≤ 4. Also, of course, any N (j) may contain at most one

column

ϑv

λv

µv

 with v ∈ V. We may suppose that these columns are in

N (1), N (2), N (4) and N (5), if any.
Next consider repetitions in the sequence ϑv/λv (5 ≤ v ≤ 22, v 6∈ V). Let

W be a set of indices with ϑw/λw (w ∈ W) all equal. Then the submatrix
of N formed with the columns corresponding to V ∪ W has rank 2, which
implies that |W| ≤ 12− |V|. It is also clear that for fixed W any N (j) may
contain at most two columns from V ∪W. Therefore any set of three N (j)

contains at most six columns corresponding to a v ∈ V ∪W.
Now choose J1 to be the set of all v corresponding to the nine columns

in N (1), N (2), N (3), and J2 to be the set of all v corresponding to the nine
columns in N (4), N (5), N (6). The preceding arguments show that for t = 1
and t = 2, Jt contains a subset Kt with |Kt| = 7 such that for v ∈ Kt

not both ϑv and λv are zero, and such that the sequence ϑv/λv (v ∈ Kt)
contains no value more than four times. (If two v ∈ V have gone into Jt

then there may be only four such equal ratios, and if not there might be five
or six equal ratios but an excess can be dropped in the reduction from Jt

to Kt.)
We are now prepared to estimate

∑
h ψh, which we first express as an
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integral using (1.9). We have∑
h

ψh =
∑

y,z∈A9

Θ(y,z)=Λ(y,z)=0

1(1.32)

=
1∫

0

1∫
0

∏
j∈Jt

|g(ϑjβ1 + λjβ2)|2 dβ1dβ2

≤ P 4
1∫

0

1∫
0

Ht(β1, β2) dβ1dβ2

where
Ht(β1, β2) =

∏
j∈Kt

|g(ϑjβ1 + λjβ2)|2 .

Here we used a trivial estimate for g(α).
Suppose first that the sequence ϑj/λj , j ∈ Kt contains no value more

than three times. Then, by a now familiar argument, via (1.18) we infer
that

Ht(β1, β2) ≤
∑

j,l∈Kt

λjϑl 6=λlϑj

|g(ϑjβ1 + λjβ2)g(ϑlβ1 + λlβ2)|7 .

Also the change of variable ξ1 = ϑjβ1+λjβ2, ξ2 = ϑlβ1+λlβ2 is non-singular
whenever λjϑl 6= λlϑj ; and therefore, integrating the previous inequality, we
deduce from Lemma 7 that

(1.33)
1∫

0

1∫
0

Ht(β1, β2) dβ1dβ2 �
1∫

0

1∫
0

|g(ξ1)g(ξ2)|7 dξ1dξ2 � P 33/4+ε .

Now suppose that Kt contains a subset L with |L| = 4 such that the
ϑl/λl with l ∈ L are all equal. Then there is a non-singular transformation
(β1, β2) → (ξ1, ξ2) such that

ϑlβ1 + λlβ2 = %lξ1

ϑkβ1 + λkβ2 = %kξ1 + σkξ2

if l ∈ L ,
if k ∈ Kt\L

where %j , σj are integers with %l 6= 0 for all l ∈ L and σk 6= 0 for all
k ∈ Kt\L. Now

1∫
0

1∫
0

Ht(β1, β2) dβ1dβ2

�
1∫

0

∏
l∈L

|g(%lξ1)|2
1∫

0

∏
k∈Kt\L

|g(%kξ1 + σkξ2)|2 dξ2dξ1 .
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The inner integral here equals∑]

xk,yk

e
(
ξ1

∑
k∈Kt\L

%k(x3
k − y3

k)
)
≤

∑]

xk,yk

1

where
∑]

xk,yk
denotes a six-fold sum over (xk, yk)k∈Kt\L ∈ A6 subject to

the additional constraint ∑
k∈Kt\L

σk(x3
k − y3

k) = 0 .

Thus, by Hölder’s inequality, and Lemma 7,∑]

xk,yk

1 =
1∫

0

∏
k∈Kt\L

|g(σkα)|2 dα

≤
∏

k∈Kt\L

( 1∫
0

|g(σkα)|6 dα
)1/3

� P 13/4+ε .

This shows that the inner integral is bounded by � P 13/4+ε uniformly in
ξ1, and now using Lemma 7 with s = 8 together with Hölder’s inequality in
much the same way as before we deduce that

1∫
0

1∫
0

Ht(β1, β2) dβ1dβ2 � P 13/4+ε
1∫

0

∏
l∈L

|g(%lξ1)|2 dξ1 � P 13/4+5+ε

so that (1.33) actually holds in all cases. From (1.29), (1.30), (1.32) and
(1.33) we get It � P 12+1/4+ε. Of course the left hand side of (1.25) is
≤ I1 + I2. This completes the proof of (1.25). A satisfactory estimate for
N (Gi) is now available.

It remains to treat the sets Hij . Again we concentrate on the case i = 2,
j = 4 in order to avoid unnecessary notational complications, and content
ourselves with the remark that all the other cases can be handled in the
same way.

The method has a certain affinity to our treatment of Gi. Again we
consider the matrix N introduced in (1.31) together with a partition of N
into six disjoint submatrices N (1), . . . , N (6), of rank 3.

We need an estimate for the number of columns of N with ϑi = 0. Let
J be the set of all i, 5 ≤ i ≤ 22 with ϑi = 0. Then the matrix M{2,4}∪J
has rank 2, by a simple argument. Hence |J | ≤ 10. Also, any N (j) may
contain at most two columns with ϑi = 0. Hence we may pick two N (j),
say N (1), N (2), such that among the six columns in these two matrices there
are at most two with ϑi = 0. We denote the set of all indices corresponding
to the columns in N (1), N (2) by S, and the set of the remaining indices
from {5, 6, . . . , 22}, by U . Then |S| = 6, |U| = 12, and MS and MU are
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partitionable matrices, by construction. Now write, for T = S or U ,

(1.34) GT (α) =
∏
t∈T

g(γt)

so that G(α) = GS(α)GU (α). From the definition of H2,4 and Hölder’s
inequality we have

(1.35) N (H2,4) � P 3/2+2δ
( ∫

H2,4

|f(γ2)f(γ4)|3|GS(α)|2 dα
)1/3

×
( ∫

U

|GS(α)|1/2|GU (α)|3/2 dα
)2/3

.

Now

|GS(α)|1/2|GU (α)|3/2 =
∏
r∈R

|g(γr)|1/2

where R is the sequence formed from S and three copies of U . Now, the
matrix (Mr)r∈R = (MsMuMuMu)s∈S,u∈U consists of one copy of MS and
three copies of MU , and is therefore partitionable. It has 42 columns, and
therefore we may use (1.18) to deduce that

|GS(α)|1/2|GU (α)|3/2 ≤
∑

5≤k,l,m≤22
det Mk,l,m 6=0

|g(γk)g(γl)g(γm)|7 .

Integrating this inequality we find after a change of variable and an appli-
cation of Lemma 7 that

(1.36)
∫
U

|GS(α)|1/2|GU (α)|3/2 dα � P 99/8+ε .

In the first integral in (1.35) we first change variables to γ1, γ2, γ4 and recall
the notation (1.27). Then, as in (1.26) we obtain

(1.37)
∫

H2,4

|f(γ2)f(γ4)|3|GS(α)|2 dα

�
∫
E

∫
E

|f(γ2)f(γ4)|3
1∫

0

|GS(α)|2 dγ1 dγ2 dγ4

�
∫
E

∫
E

|f(γ2)f(γ4)|3Ψ(γ2, γ4) dγ2dγ4 , say.

It is clear that Ψ(γ2, γ4) ≥ 0. Redefine the forms Θ,Λ,M introduced in
(1.28) by replacing the summation over j ∈ Jt by j ∈ S so that Θ,Λ,M are
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forms in twelve variables now. Then

Ψ(γ2, γ4) =
∑
h,k

ψh,ke(γ2h+ γ4k)

where ψh,k is the number of solutions to

Θ(x,y) = 0 , Λ(x,y) = h , M(x,y) = k , x,y ∈ A6 .

We wish to use Lemma 10 now. Preparing for its application we note that

ψ0,0 =
∫
U

∏
s∈S

|g(ϑsβ1 + λsβ2 + µsβ3)|2 dβ .

The matrix formed from

ϑs

λs

µs

 with s ∈ S partitions into N (1) and N (2)

so that by Cauchy’s inequality (or equivalently (1.18)), and two changes of
variable, we find that

(1.38) ψ0,0 �
1∫

0

1∫
0

1∫
0

|g(ξ1)g(ξ2)g(ξ3)|4 dξ � P 6+ε .

Note that
∑

h,k ψh,k is the number of solutions to Θ(x,y) = 0 with x,y ∈
A6. By construction there is a set V ⊂ S with |V| = 4 and ϑv 6= 0 for v ∈ V.
Therefore, by (1.9), (1.18) and Lemma 7,∑

h,k

ψh,k ≤ P 4
1∫

0

∏
v∈V

|g(ϑvα)|2 dα

≤ P 4
∑
v∈V

1∫
0

|g(ϑvα)|8 dα� P 9 .

Next we observe that
∑

h ψh,0 equals the number of solutions to Θ(x,y) =
M(x,y) = 0 with x,y ∈ A6, which we may rewrite as∑

h

ψh,0 =
1∫

0

1∫
0

∏
s∈S

|g(ϑsβ1 + µsβ2)|2 dβ1dβ2 .

Of course in N (1) there must be two columns with ϑiµj−ϑjµi 6= 0, otherwise
we would have detN (1) = 0, which is not the case. The same argument
applies to N (2). Hence there is a subset W ⊂ S with |W| = 4 such that for
w ∈ W no both ϑw, µw are zero, and such that any ratio ϑw/µw occurs at
most twice. Then, by now familiar arguments,

(1.39)
∑

h

ψh,0 ≤ P 4
1∫

0

1∫
0

∏
w∈W

|g(ϑwβ1 + µwβ2)|2 dβ1β2
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≤ P 4
∑

v,w∈W
ϑwµv 6=ϑvµw

1∫
0

1∫
0

|g(ϑwβ1 + µwβ2)g(ϑvβ1 + µvβ2)|4 dβ1dβ2

� P 8+ε.

By exchanging the roles of µs and λs, M and Λ, this argument also shows
that ∑

k

ψ0,k � P 8+ε .

Collecting together we deduce from Lemma 10 that (1.37) is

(1.40) � P 3/4+εψ0,0 + P 3/8+ε
∑

h

(ψ0,h + ψh,0) + P ε
∑
h,k

ψh,k � P 9+ε.

This and (1.36) are put into (1.35), so that we can now infer

N (H2,4) � P 3/2+2δ(P 9+ε)1/3(P 99/8+ε)2/3 � P 13−δ.

The proof of (1.12) in Case I is now complete.

5. Minor arcs in case II. There are a number of new problems in the
treatment of the minor arcs in Case II. Partly they arise since the matrix
M1,2,4 may well be singular, and partly because the situation is no longer
“symmetric” in the three equations (0.6) in that there are many zeros in
one row. However, this latter fact can also be used to good advantage, but
a rather different dissection of m will then be required.

We begin with the remark that the matrix M5,6,...,22 is still partitionable.
This does not follow directly from Proposition 2, but a partition can be
constructed as follows. Suppose first that R = 14. Then c11 = 0. Now
consider M11,12,...,22. Here all ci are zero. But this matrix may not contain
a submatrix of rank 1, and consisting of six columns. Hence no value occurs
more than five times in the sequence ai/bi, 11 ≤ i ≤ 22. Now group the
indices together into six sets of two elements each such that in any of these
sets one has aibj 6= ajbi. Then take one of the six columns with ck 6= 0.
Thus detMi,j,k 6= 0. This partitions M5,6,...,22.

Now suppose that R = 13. Then c11 6= 0. There must be two linearly
independent columns Mi, Mj , say, with 5 ≤ i, j ≤ 11 (otherwise there is
a submatrix of seven columns of rank 1). If detMi,j,k = 0 for all k with

12 ≤ k ≤ 22 then all the vectors Mk =

 ak

bk
0

 with 12 ≤ k ≤ 22 would

lie in the plane spanned by Mi and Mj . However, the vectors Mk with
12 ≤ k ≤ 22 span the coordinate plane z = 0, which gives a contradiction.
Hence there is a k with 12 ≤ k ≤ 22 and detMi,j,k 6= 0. Now we are left with
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ten columns with ci = 0 and five columns with ci 6= 0. Therefore further
five disjoint submatrices of rank 3 can be constructed as in the case R = 14.

We shall first consider the contribution from the sets

(1.41) gj = {α ∈ m : |f(γj)| ≤ P 3/4+δ}

when j = 3 or j = 4.
First suppose that R = 14. Then we write

(1.42) G(α) = G1(α)G2(α)

where

(1.43) G1(α) =
10∏

i=5

g(γi), G2(α) =
22∏

i=11

g(γi) .

Note that G2(α) does not depend on α3. Thus we may conclude that

N (g4) � P 3/4+δ
1∫

0

1∫
0

|f(γ1)f(γ2)G2(α)|(1.44)

×
1∫

0

|f(γ3)G1(α)| dα3dα2dα1 .

To estimate the inner integral we observe that γ3 = c3α3. Therefore, by
(1.18) and Lemma 8,

1∫
0

|f(γ3)G1(α)| dα3 �
10∑

i=5

c3∫
0

|f(γ3)|
∣∣∣∣g(

ci
c3
γ3 + aiα1 + biα2

)∣∣∣∣6 dγ3

� P 4+ε

uniformly in α1, α2. It remains to show that

(1.45) I =
1∫

0

1∫
0

|f(γ1)f(γ2)G2(α)| dα2dα1

satisfies

(1.46) I � P 8+3δ ;

then from (1.44) we deduce that

(1.47) N (g4) = o(P 13)

as needed.
To prove (1.46) first recall that the sequence ai/bi, 11 ≤ i ≤ 22, contains

no value more than five times. An argument similar to (1.19) and (1.20)
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now shows that

(1.48)
1∫

0

1∫
0

|G2(α)| dα1dα2

≤
∑

11≤ν,µ≤22
aνbµ 6=aµbν

1∫
0

1∫
0

|g(aνα1 + bνα2)g(aµα1 + bµα2)|6 dα1dα2

� P 13/2+ε

and

(1.49)
1∫

0

1∫
0

|G2(α)|4/3 dα1dα2 � P 10 .

Hence, by (1.45) and (1.48), the contribution to I from the set of all α where
|f(γ1)| < P 3/4+δ and |f(γ2)| < P 3/4+δ is � P 8+2δ+ε. Now consider the
contribution from the set N of all α where |f(γ1)| > P 3/4+δ and |f(γ2)| >
P 3/4+δ. Then γi (mod 1) ∈ E for i = 1 and i = 2. As in (1.21) we see via
Hölder’s inequality and Lemma 6 that∫ ∫

N

|f(γ1)f(γ2)G2(α)| dα1dα2

�
( ∫

E

∫
E

|f(γ1)f(γ2)|4 dγ1dγ2

)1/4( 1∫
0

1∫
0

|G(α)|4/3 dα1dα2

)3/4

� P 8+ε ,

which is again acceptable. It remains to consider the contribution from
the sets Nj of all α where |f(γj)| > P 3/4+δ but |f(γi)| ≤ P 3/4+δ (where
{i, j} = {1, 2}). Pick two subscripts k, l with 11 ≤ k, l ≤ 22 such that γk, γl

are not linearly dependent on γ1. For simplicity suppose that k = 11, l = 12.
For all α ∈ N1 we have γ1 (mod 1) ∈ E, and Hölder’s inequality gives∫ ∫

N1

|f(γ1)f(γ2)G2(α)| dα1dα2 � P 3/4+δ(J11J12)1/8K3/4

where

(1.50)

Jν =
∫
E

|f(γ1)|4
1∫

0

|g(γν)|8 dγνdγ1 ,

K =
1∫

0

1∫
0

22∏
t=13

|g(γt)|4/3 dα1dα2 .
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By Lemmata 6 and 7 we have at once Jν � P 6+ε. Also, any ratio al/bl
occurs at most five times when 13 ≤ l ≤ 22 so that by Lemma 7,

(1.51) K ≤
∑

13≤ν,µ≤22
aνbµ 6=aµbν

1∫
0

1∫
0

|g(γν)g(γµ)|20/3 dα1dα2 � P 23/3+ε .

Thus the contribution from N1 is also � P 8+2δ. The contribution from N2

can be estimated in the same way, by interchanging the roles of γ1 and γ2.
This proves (1.46) and (1.47).

We now estimate N (g3). Recall the notation (1.49) and observe that
µv = 0 if and only if cv = 0. Hence in the matrix (1.31) one has µ11 = µ12 =
. . . = µ22 = 0. Thus, on changing variables to γ1, γ3, γ4, the method used to
estimateN (g4) applies toN (g3) as well, and gives of courseN (g3) = o(P 13).

Our next task is to estimate N (gj) when R = 13. Success in the above
method is dependent on the large number of zeros among the cj ’s, and
we have now one more non-zero cj . Therefore we first pick three indices,
k, l,m, say, with 5 ≤ k < l ≤ 11 < m ≤ 22 such that Mk,l,m has non-zero
determinant (such a matrix does in fact exist, see our proof that M5,...,22

is partitionable when R = 13). For simplicity we may suppose that k =
10, l = 11,m = 12. Then we decompose G(α) as

G(α) = G3(α)G4(α)G5(α)

where

G3(α) =
9∏

i=5

g(γi) ; G4(α) =
22∏

i=13

g(γi) ; G5(α) = g(γ10)g(γ11)g(γ12) .

The change of variable (α1, α2, α3) → (γ10, γ11, γ12) is non-singular. Hence,
from Lemma 7, ∫

U

|G5(α)|6 dα � P 39/4+ε .

Hölder’s inequality can now be used to dispose of the factor G5 by writing

N (g4) � T 5/6P (1/6)(39/4+ε)P 3/4+δ

where

T =
∫
U

|f(γ1)f(γ2)f(γ3)G3(α)G4(α)|6/5 dα

=
1∫

0

1∫
0

|f(γ1)f(γ2)G4(α)|6/5
1∫

0

|f(γ3)G3(α)|6/5 dα3 dα2 dα1
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in analogy to (1.44). In the inner integral a trivial estimate for f and Lemma
8 give

1∫
0

|f(γ3)G3(α)|6/5 dα3 ≤ P 1/5
9∑

i=5

1∫
0

|f(c3α3)||g(γi)|6 dα3 � P 21/5+ε

uniformly in α1, α2. This is the same method we applied to the inner integral
in (1.44). Now, again by trivial estimates,

1∫
0

1∫
0

|f(γ1)f(γ2)G4(α)|6/5 dα1 dα2

≤ P 2/5
1∫

0

1∫
0

|f(γ1)f(γ2)||G4(α)|6/5 dα1 dα2 = P 2/5I∗ , say.

We shall prove that
I∗ � P 8+3δ .

Collecting together we deduce that T � P 12+3/5+4δ, and this gives

(1.52) N (g4) � P 13−1/8+6δ ,

which is more than required. The bound for I∗ can be proved in much the
same way as the bound for I in (1.45), with |G4(α)|6/5 taking the role of
|G2(α)|. In fact, since any ratio occurs at most five times in the sequence
aν/bν when 13 ≤ ν ≤ 22, we have

|G4(α)| ≤
∑

13≤ν,µ≤22
aνbµ 6=aµbν

|g(γν)g(γµ)|5

so that we deduce from Lemma 7 that
1∫

0

1∫
0

|G4(α)|6/5 dα � P 13/2+ε ,

1∫
0

1∫
0

|G4(α)|(4/3)(6/5) dα � P 10 ,

which serve as surrogates for (1.48) and (1.49). Then, following our treat-
ment of I, it only remains to estimate the contribution from N1 and N2.
Here a little more care is required in picking the numbers k, l. It is clear
that among the numbers a13/b13, . . . , a22/b22 a ratio with bj = 0 can occur
at most four times (otherwise, since b1 = 0, there would be a 6 × 3 sub-
matrix of M of rank 1, which is not the case). All the other ratios av/bv
may occur five times, but for these we find automatically that γv is linearly
independent of γ1. Hence, by picking γl, γk from the largest blocks of equal
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ratios with bv 6= 0, we can arrange that in the sequence av/bv, 13 ≤ v ≤ 22,
v 6= k, l, any ratio occurs at most four times. For simplicity we may suppose
that k = 13, l = 14. Then we have∫

N1

|f(γ1)f(γ2)||G4(α)|6/5 dα � (J13J14)1/8(K∗)3/4 .

Here Jk is given by (1.50), and

K∗ =
1∫

0

1∫
0

( 22∏
v=15

|g(γv)|(4/3)(6/5)
)
(|g(γ13)g(γ14)|4/15) dα .

By Hölder’s inequality we find, as in (1.51), that K∗ � P 23/3+ε. This com-
pletes the proof of (1.52). It must now suffice to remark that the treatment
carries over to the set g3 just as in the case R = 14.

We now distinguish two cases, whether M1,3,4 is singular or not (that is,
whether b4 = 0 or not).

First suppose that detM1,3,4 6= 0. Then Mi,j,k is non-singular for all
1 ≤ i < j < k ≤ 4, just as in Case I. In particular, the change of variable
α → (γ1, γ3, γ4) is non-singular. Slightly digressing from earlier usage we
now write

γv = ϑvγ1 + λvγ3 + µvγ4

and consider the associated matrix N defined in (1.31). This matrix is
partitionable since M5,6,...,22 is partitionable. By Proposition 2, the largest
n × 3 submatrix of rank 2 consists of n ≤ 12 columns. Let V be the set of
all v with 5 ≤ v ≤ 22 and ϑv 6= 0. By the condition on rank 2 submatrices
we have at once |V| ≥ 6.

If |V| = 6 or |V| = 7 then we are exactly in the same situation we were
faced with in estimating N (g3) and N (g4). Hence the arguments given
above apply here as well, and we immediately have the bound

N (g1) = o(P 13) .

From (1.41) and the definitions in §4 we easily deduce that

m = g3 ∪ g4 ∪ g1 ∪ K2 ∪ L .

Now recall the treatment of K2 in §4. The only ingredients are (1.20) and
(1.21), and these estimates hold providing that detM1,3,4 6= 0 and M5,6,...,22

is partitionable. Thus (1.22) holds here as well. The treatment of the set
L required also (1.20), which is available here, and Lemma 11 and (1.24).
Here we needed that all 3× 3 submatrices of M1,2,3,4 have rank 3, which is
our initial hypothesis currently. Hence, as in §4 we have N (L) = o(P 13),
and this finally gives N (m) = o(P 13).

Now suppose that |V| ≥ 8. Recall that the treatment of H3,4 in §4
depended on the facts that |V| ≥ 8, that M5,6,...,22 is partitionable, and that
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detM1,3,4 6= 0. All these conditions being fulfilled here, we may refer to §4
for the estimate

N (H3,4) = o(P 13).
Now note that

m = g3 ∪ g4 ∪ H3,4 ∪ K1 ∪ K2 ∪ L.

We saw already that the sets Ki and L can be treated as in §4, so that again
we arrive at N (m) = o(P 13). This establishes (1.12) in Case II when M1,3,4

is non-singular.
It remains to complete the estimation of N (m) when M1,3,4 is singular.

In this case we wish to change variables to γ2, γ3, γ4, which is possible since
M2,3,4 has non-vanishing determinant. Thus, for v ≥ 5 we write

γv = ϑvγ2 + λvγ3 + µvγ4 .

Also we may write
γ1 = d3γ3 + d4γ4

with dk non-zero rationals. Thus, the matrix of coefficients of the linear
forms γv in γ2, γ3, γ4 is of the shape

(1.53)

 0 1 0 0 ϑ5 . . . ϑ22

d3 0 1 0 λ5 . . . λ22

d4 0 0 1 µ5 . . . µ22

 .

As before let V be the set of all v with 5 ≤ v ≤ 22 and ϑv 6= 0. Any row in
(1.53) may contain at most 14 zeros (since R ≤ 14). Hence |V| ≥ 7.

We wish to estimate the contribution from the set

h2 = {α ∈ m : |f(γ2)| ≤ P 3/4+δ , |f(γl)| ≥ P 3/4+δ (l = 3, 4)}
first. Here the argument again bifurcates according to |V| = 7 or |V| ≥ 8.

First suppose that |V| = 7. For notational simplicity we shall also sup-
pose that V = {5, 6, . . . , 11}. Then we decompose G into

G(α) = G6(α)G7(α)

where

G6(α) =
11∏

i=5

g(γi) , G7(α) =
22∏

i=12

g(γi) ,

and observe that the definition of h2 leads to the estimate

N (h2) � P 3/4+δ
∫
E

∫
E

|f(γ1)f(γ3)f(γ4)G7(α)|(1.54)

×
1∫

0

|G6(α)| dγ2dγ3dγ4 .
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Now consider the inner integral here. We have, by (1.18) and Schwarz’s
inequality,

1∫
0

|G6(α)| dγ2 ≤
11∑

i=5

1∫
0

|g(γi)|7 dγ2

≤
11∑

i=5

( 1∫
0

|g(γi)|6 dγ2

)1/2( 1∫
0

|g(γi)|8 dγ2

)1/2

.

But, for s = 3 or s = 4,
1∫

0

|g(γi)|2s dγ2 =
∑

x3
1+...+x3

s=y3
1+...+y3

s
xi,yi∈A

e
( s∑

i=1

(λiγ3 + µiγ4)(x3
i − y3

i )
)

≤
∑

x3
1+...+x3

s=y3
1+...+y3

s
xi,yi∈A

1 =
1∫

0

|g(α)|2s dα .

Hence, by Lemma 7, (1.54) and Hölder’s inequality,

N (h2) � P 3/4+33/8+2δ
∫
E

∫
E

|f(γ3)f(γ4)f(γ1)G7(α)| dγ3dγ4(1.55)

� P 39/8+2δ
( ∫

E

∫
E

|f(γ3)f(γ4)|4 dγ3dγ4

)1/4

×
( 1∫

0

1∫
0

|f(γ1)G7(α)|4/3 dγ3dγ4

)3/4

.

By a now familiar argument the sequence d3/d4, λ12/µ12, . . . , λ22/µ22 does
not contain a value occurring more than five times. Hence

|f(γ1)G7(α)|4/3 ≤ |f(γ1)g(γt)|8 +
∑

12≤i<j≤22
λiµj 6=λjµi

|g(γi)g(γj)|8

for some t such that γt and γ1 are linearly independent. Then as usual we
deduce from Lemma 7 and the bound (Vaughan [24], Theorem 2)

1∫
0

|f(α)|8dα� P 5

that
1∫

0

1∫
0

|f(γ1)G7(α)|4/3 dγ3dγ4 � P 10 .
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The first integral in (1.55) is estimated by Lemma 6, and we arrive at

(1.56) N (h2) � P 39/8+2δ(P 2+ε)1/4(P 10)3/4 � P 13−δ ,

which is acceptable.
Now suppose that |V| ≥ 8, choose a partition of the submatrix N

(as defined in (1.31)) of the matrix (1.53), and write this partition as
N (1), . . . , N (6), where as on earlier occasions the N (j) are disjoint 3 × 3
submatrices of N , of rank 3. From |V| ≥ 8 we deduce that there must be
two N (j) which have at least two columns with ϑk 6= 0, say N (1), N (2). De-
note the set of all indices corresponding to the columns in N (1) and N (2)

by D, and the other indices in {5, 6, . . . , 22} by E . Then, using the notation
introduced in (1.34), we find from Schwarz’s inequality that

(1.57) N (h2)

� P 3/4+δ
( ∫

E

∫
E

|f(γ3)f(γ4)f(γ1)|2
1∫

0

|GD(α)|2 dγ2dγ3dγ4

)1/2

×
( ∫

U

|GE(α)|2 dα
)1/2

.

By construction the submatrix of N formed with the columns from E is
partitionable. Hence the second integral is readily seen to be � P 15. Thus

(1.58) N (h2) � P 15/2+3/4+δJ1/2

where J denotes the first triple integral in (1.57).
Let C be the set of all (γ3, γ4) ∈ E×E where |f(γ1)| ≥ P 3/4+δ, and let D

be the set of all such (γ3, γ4) where the opposite inequality |f(γ1)| < P 3/4+δ

holds. Then J = JC + JD where JB denotes the contribution to J arising
from a subset B ⊂ E×E. Note that the two-dimensional changes of variable
(γ3, γ4) → (γ1, γ3) and (γ3, γ4) → (γ1, γ4) are both non-singular, and that
(γ3, γ4) ∈ C implies that γ1 (mod 1) ∈ E. The variable γ2 being unaffected
by these transformations we deduce via (1.18) that

JC � J13 + J14 + J34

where
Jkl =

∫
E

∫
E

|f(γk)f(γl)|3Ψk,l(γk, γl) dγkdγl

with

Ψk,l(γk, γl) =
1∫

0

|GD(α)|2 dγ2 .

For d ∈ D we write

γd = ϑdγ2 + λ
(kl)
d γk + µ

(kl)
d γl
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and then see that

Ψk,l(γk, γl) =
∑

h1,h2

ψk,l(h1, h2)e(h1γk + h2γl)

where ψk,l(h1, h2) is the number of solutions to∑
d∈D

ϑd(x3
d − y3

d) = 0 ,∑
d∈D

λ
(kl)
d (x3

d − y3
d) = h1 ,∑

d∈D

µ
(kl)
d (x3

d − y3
d) = h2 .

Recall that at least four numbers ϑd are non-zero. Hence the integrals Jkl

are the same as the integrals occurring on the right hand side of (1.37).
Thus, as in (1.40) we see that Jkl � P 9+ε, and hence JC � P 9+ε.

For the treatment of D we imitate the proof of Lemma 10. In the notation
introduced there, and bringing in the upper bound for f(γ1) we obtain the
initial estimate

JD � P 3/2+2δ−2
∑

q3≤P 3/4

∑
q4≤P 3/4

κ(q3)2κ(q4)2
∑

h3,h4

|cq3(h3)cq4(h4)|ψ(h3, h4).

Here we have dropped an unimportant double index from ψ. The contribu-
tion from terms with h3 = h4 = 0 is

� P 3/2+2δ−2
∑

q3≤P 3/4

∑
q4≤P 3/4

q3q4κ(q3)2κ(q4)2ψ(0, 0) � P 7+3δ

by (1.38) and the easy bound∑
q≤X

κ(q)2 � Xε .

For the contribution from terms with h3 = 0 and h4 6= 0 we use κ(q4)2 �
q

ε−2/3
4 � P 1/4+εq−1

4 for q4 ≤ P 3/4, and may now proceed as in the proof of
Lemma 10. We find that these terms contribute

� P 3/2+3δ−2+1/4
∑

q3≤P 3/4

q3κ(q3)2
∑

q4≤P 3/4

q−1
4

∑
h4 6=0

|cq4(h4)|ψ(0, h4)

� P 1/2+4δ
∑
h4 6=0

ψ(0, h4) � P 8+1/2+5δ � P 9 .

In the final estimate we used (1.40). Of course terms with h4 = 0, h3 6= 0
can be treated by the same method. In much the same way we also see that
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the contribution from terms with h3h4 6= 0 is

� P 3/2−2+3δ+1/2
∑

q3,q4≤P 3/4

(q3q4)−1
∑

h3h4 6=0

|cq3(h3)cq4(h4)|ψ(h3, h4)

� P 4δ
∑

h3,h4

ψ(h3, h4) � P 9+5δ .

This follows via (1.38). Hence we now have JD � P 9+5δ, and the same
bound therefore holds for J . This is put into (1.58) to infer that

N (h2) � P 13−1/4+6δ .

Hence (1.56) is now verified in all cases.
The remaining part of m is easier to deal with. We observe that

m = g3 ∪ g4 ∪ h2 ∪ K1 ∪ L ;

and since M2,3,4 has non-vanishing determinant and M5,6,...,22 is partition-
able, the treatment of K1 in §4 applies here as well. Thus it remains to
estimate the contribution from L, which is a bit harder than in Case I. The
method from §4 is readily adopted to show that

(1.59)
∫
L

|f(γi)f(γj)f(γk)|24/5 dα = o(P 72/5−9) = o(P 17/5)

providing 1 ≤ i < j < k ≤ 4 and detMi,j,k 6= 0.
When R = 14 we choose i = 1, j = 2, k = 4, and when R = 13 we choose

i = 2, j = 3, k = 4. Then, by (1.59) and Hölder’s inequality,

N (L) � (o(P 17/5))5/24
( ∫

U

|f(γl)G(α)|24/19 dα
)19/24

where l = 4 when R = 14 and l = 1 when R = 13. Now, by (1.18),

|f(γl)G(α)|24/19 ≤ |G(α)|4/3 +
22∑

j=5

∣∣∣f(γl)
22∏

i 6=j
i=5

g(γi)
∣∣∣4/3

.

Thus, providing that any 18×3 submatrix of Ml,5,6,...,22 is partitionable, we
may integrate the previous inequality and find in much the same way as in
(1.20) that ∫

U

|f(γl)G(α)|24/19 dα � P 15 .

This implies thatN (L) = o(P 13), and it remains to show that any 18×3 sub-
matrix ofMl,5,6,...,22 is partitionable. Write, for brevity, U = {l, 5, 6, . . . , 22},
and define M ′

j = MU\{j} to have a shorthand for the submatrix of MU with
the jth column taken out.
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First consider the case R = 14, l = 4. For M ′
l = M ′

4 there is nothing to
prove. If 5 ≤ j ≤ 10 then M ′

j contains exactly six columns with cj 6= 0 and
twelve columns with cj = 0. Now the method used at the beginning of this
section is readily adopted to construct a partition of M ′

j . If 11 ≤ j ≤ 22
then M ′

j contains exactly seven columns with cj 6= 0 and eleven columns
with cj = 0. Again the method from the beginning of this section (this
time from the consideration of the case R = 13 there) can be used to find a
partition.

Now let R = 13, l = 1. Again for M ′
1 there is nothing to show. But,

when 5 ≤ j ≤ 11, then M ′
j contains exactly six columns with cj 6= 0, and

when 12 ≤ j ≤ 22, then M ′
j contains exactly seven columns with cj 6= 0.

Thus we may again refer to the beginning of this section for a method to
find a partition.

This establishes (1.12) in case II.

6. Asymptotics on the major arcs. The treatment of the major
arcs is by standard endgame technique in the Hardy–Littlewood method.
We can closely follow Davenport and Lewis [17], and the argument is only
given in outline.

Let αj = tj/q + βj . Then, by (1.2),

γv =
avt1 + bvt2 + cvt3

q
+ avβ1 + bvβ2 + cvβ3(1.60)

=
dv

qv
+ ηv, say,

with integers dv, qv satisfying (dv, qv) = 1 and qv|q. Then, from Lemma 5
we have at once

f(γv) = q−1
v S(qv, dv)w(ηv) +O(P ε)

for 1 ≤ v ≤ 4 and α ∈ M(q, t). Also, for these α we have

(1.61) g(γv) = q−1
v S(qv, dv)w∗(ηv) +O(P (logP )−10δ)

where

w∗(β) =
1
3

(CP )3∫
P 3

α−2/3%

(
logα
η logP

)
e(αβ) dα

and %(α) is Dickman’s function (for a precise definition see [8]) of which we
only need to know that it is continuous, positive and bounded for α ∈ [1, C].
A proof of (1.61) is given in §13 of Brüdern [6]. The measure of M is
� (logP )9δP−9, and with the trivial bounds w(β) � P , w∗(β) � P and
q−1S(q, d) � 1 we see that

(1.62) N (M) = S1J + o(P 13)
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where

(1.63)

J =
∫

M(1,0,0,0)

w(η1)w(η2)w(η3)w(η4)
22∏

j=5

w∗(ηj) dβ1dβ2dβ3 ,

S1 =
∑

q≤(log P )δ

∑∗

t

(q1 . . . q22)−2S(q1, d1) . . . S(q22, d22) ,

and where
∑∗

t denotes a sum over 1 ≤ t1, t2, t3 ≤ q with (t1, t2, t3, q) = 1.
The method of proof of Lemma 30 of Davenport and Lewis [17] is readily
adopted to show that

(1.64) J = ΓP 13 + o(P 13)

for some constant Γ > 0.
Now we complete the partial singular series (1.62). Here we require the

bound

(1.65)
∑∗

t

(q1 . . . q22)−1/3 � qε−4/3 ,

the numbers qj being given by (1.60). To see this note that M2,3,...,22 is
partitionable. Hence, by (1.18),∑∗

t

(q1 . . . q22)−1/3 ≤
∑

2≤i<j<k≤22
det Mi,j,k 6=0

∑∗

t

(qiqjqk)−7/3 .

Now the method of proof of Lemma 23 in Davenport and Lewis [17] is readily
adopted (there are only obvious modifications in the exponent to be made)
to bound the inner sum by qε−4/3. This gives (1.65).

The bound q−1
v S(qv, dv) � q

ε−1/3
v is implicit in (1.17). We also have

q−1
v S(qv, dv) = q−1S(q, avt1 + bvt2 + cvt3)

as is readily checked from (1.15). Hence, from (1.65) and (1.63) we deduce
that

(1.66) S1 = S + o(1)

where

(1.67) S =
∞∑

q=1

q−22
∑∗

t

22∏
i=1

S(q, ait1 + bit2 + cit3) .

Combining (1.62), (1.64) and (1.66) we arrive at (1.13).
By (1.65), the series (1.67) is absolutely convergent. The proof of

Lemma 31 in Davenport and Lewis [17] applies here as well, with their
reference to their Lemma 23 replaced by our (1.65), which suffices. We
restate this lemma here for convenience.
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Lemma 12. Suppose the equations (0.6) have a non-singular p-adic sol-
ution for all primes p. Then S > 0.

Under the hypothesis of Lemma 12 we have N � P 13 from (1.12) and
(1.13). In particular, this proves Theorem 1A.

CHAPTER 2

p-ADIC ARGUMENTS

1. Introduction to p-adic solutions. We label the three additive
cubic equations as

F (x) = a1x
3
1 + . . .+ aNx

3
N = 0 ,

G(x) = b1x
3
1 + . . .+ bNx

3
N = 0 ,(2.1)

H(x) = c1x
3
1 + . . .+ cNx

3
N = 0

with integer coefficients, where N ≥ 22. The purpose of this chapter is to
prove Theorem 2 which we restate here for convenience.

Theorem 2. Suppose that N ≥ 22. Then the equations (2.1) have a non-
trivial p-adic solutions except (possibly) for p = 3, 7, 13, 19, 31, 37 and 43.

Recall that Davenport and Lewis [15] showed that the congruences

(2.2)
Φ = x3

1 + 2x3
2 + 6x3

3 − 4x3
4 ≡ 0 (mod 7) ,

Ψ = x3
2 + 2x3

3 + 4x3
4 + x3

5 ≡ 0 (mod 7)

have no non-trivial solutions. Adjoining a third congruence, say

(2.3) Ξ = x3
6 + x3

7 + x3
8 ≡ 0 (mod 7) ,

we can obtain a system of three congruences (mod 7) which only have sin-
gular solutions. In theory, for the exceptional primes p ≥ 7, it is possible
to decide the question of p-adic solutions computationally. We outline a
procedure for this in §§12–15, although the computations are too long to
be practical at present. We have not been able to settle the question of
3-adic solutions; the indications from Davenport and Lewis [15] and Cook
[12] are that the 3-adic case could take up more pages than all the other
primes put together. For any given system of 3 equations it is reasonably
straightforward to check if there are solutions in the exceptional p-adic fields
not settled by the theorem.

2. Preliminaries. Let γ = γ(p) be given by γ(p) = 1, p 6= 3, γ(3) = 2.
Hensel’s lemma shows that the equations (2.1) will have a non-trivial p-adic
solution provided that the congruences

(2.4) F (x) ≡ G(x) ≡ H(x) ≡ 0 (mod pγ)
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have a solution of rank 3. A solution x = ζ of the congruences (2.4) is said
to be of rank S if the matrix a1ζ1 . . . aNζN

b1ζ1 . . . bNζN
c1ζ1 . . . cNζN


has rank S (mod p).

Lemma 13. Suppose that the congruences (2.4) have a solution of rank 3.
Then the equations (2.1) have a non-trivial p-adic solution.

This is Lemma 9 of Davenport and Lewis [17].

In order to obtain a solution of rank 3 we use a p-adic normalization
argument due to Davenport and Lewis [17]. Since it works in the general
setting of R additive equations of odd degree k > 1,

(2.5) Fi(x) = ai1x
k
1 + . . .+ aiNx

k
N = 0 , i = 1, . . . , R ,

we state the results in this more general setting.
Two systems of additive forms F1, . . . , FR and G1, . . . , GR are said to be

p-equivalent if one system can be obtained from the other by a combination
of the operations

(2.6) (I) f ′i(x) = fi(pv(1)x1, . . . , p
v(N)xN ) for 1 ≤ i ≤ R ,

where v(1), . . . , v(N) are integers and

(2.7) (II) f ′′i (x) = αi1f1(x) + . . .+ αiRfR(x) for 1 ≤ i ≤ R ,

where the αij are rational numbers with det(αij) 6= 0. If the system F1, . . .
. . . , FR has a simultaneous non-trivial zero in the p-adic field then so does
any p-equivalent system.

Let

(2.8) θ(F1, . . . , FR) =
∏
a

det(a)

where the product is taken over all R × R submatrices of (aij). This defi-
nition differs slightly from that in §4 of Davenport and Lewis [17], where
permutations of the columns of a are allowed, the effect of which is to raise
θ to the power of R! and does not affect the following arguments for R ≥ 3.
As in §4 of Davenport and Lewis [17] a p-adic compactness argument shows
that it is sufficient to prove the theorem under the additional hypothesis
that

(2.9) θ(F1, . . . , FR) 6= 0 ,

since if θ = 0 we can choose sequences of forms Fµ
1 , . . . , F

µ
R converging to

F1, . . . , FR p-adically and with θ(Fµ
1 , . . . , F

µ
R) 6= 0.
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We may now assume that “θ 6= 0”, a property that is preserved un-
der p-equivalence. From all the systems of forms that are p-equivalent to
F1, . . . , FR, and so have θ 6= 0, and have integral coefficients we select a
system f1, . . . , fR for which the power of p dividing θ(f1, . . . , fR) is least.
Such a system of forms is said to be p-normalized .

Lemma 14. A p-normalized system of forms can be written (after renum-
bering the variables) as

(2.10) fi(x) = F ∗i (x1, . . . , xm) + pG∗i (xm+1, . . . , xN )

for i = 1, . . . , R where

(2.11) m ≥ N/k

and each of x1, . . . , xm occurs in at least one of F ∗1 , . . . , F
∗
R with a coefficient

not divisible by p.
Moreover , if we form any s linearly independent combinations of f∗1 , . . .

. . . , f∗R (mod p) and denote by qs the minimum number of variables occurring
in at least one of these combinations with a coefficient not divisible by p then

(2.12) qs ≥ sN/Rk

for s = 1, . . . , R.

This is Lemma 11 of Davenport and Lewis [17].

Returning now to the specific case k = 3, N ≥ 22 we have to show that
the congruences

(2.13)

F ∗ ≡ a1x
3
1 + . . .+ amx

3
m ≡ 0 (mod pγ) ,

G∗ ≡ b1x
3
1 + . . .+ bmx

3
m ≡ 0 (mod pγ) ,

H∗ ≡ c1x
3
1 + . . .+ cmx

3
m ≡ 0 (mod pγ) ,

where

(2.14) m ≥ 8 , q = q1 ≥ 3 and q2 ≥ 5 ,

have a solution of rank 3 (mod p).

Lemma 15. If p ≡ 2 (mod 3) then the congruences (2.13) have a solution
of rank 3 (mod p).

P r o o f. In this case every residue (mod p) is a cubic residue, so that after
a substitution yi = x3

i we may treat the congruences as linear equations in
Zp. Relabelling the variables and using row operations we may take the
matrix of coefficients as

[I c4 . . . cm] = [I C]
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say, where I is the 3× 3 identity matrix and c4, . . . , cm are the columns of
C. We take y1 = y2 = y3 = 1 and solve Cη = −(1, 1, 1)T to give a solution
of rank 3.

Lemma 16. The congruence

(2.15) ax3 + by3 + cz3 ≡ 0 (mod p)

is always soluble with at least one of x, y, z 6≡ 0 (mod p).

This is Theorem 1 of Lewis [19].

Let r, s, t denote the lengths of the longest, second longest and third
longest blocks of columns lying in a 1-dimensional subspace of Z3

p . Then
r ≥ s ≥ t ≥ 1. Let µ(d) denote the maximum number of columns lying in a
d-dimensional subspace of Z3

p . Then

(2.16) qd = m− µ(3− d) ;

in particular, r = µ(1) and q2 = m− r. Thus the inequalities

(2.17) m ≥ 8 , q2 ≥ 5 , q ≥ 3

are equivalent to

(2.18) m ≥ 8 , µ(1) ≤ m− 5 , µ(2) ≤ m− 3 .

We observe that if µ(1) = m − 5, µ(2) = m − 3 and the corresponding 1-
and 2-dimensional subspaces of columns are disjoint then

(2.19) m ≥ µ(1) + µ(2) = 2m− 8 ,

or m ≤ 8.

Lemma 17. Suppose that m > 8. Then either we can choose a subset of
8 columns and still have q ≥ 3 and q2 ≥ 5, or there is a subset of 9 columns
which can be partitioned into 3 independent 1-dimensional subsets, each
containing 3 columns.

P r o o f. While m > 8 we reduce m to m− 1 using the following rule:
If µ(2) < m−3 or if µ(2) = m−3 and µ(1) = m−5 we discard a column

from the longest 1-dimensional block of columns. This reduces m to m− 1
and preserves the properties “µ(1) ≤ m− 5” and “µ(2) ≤ m− 3” since the
blocks cannot be disjoint. (If there were 2 1-dimensional blocks of columns
of length m− 5 then µ(2) ≥ 2m− 10 ≥ m− 1, contrary to (2.18).)

Otherwise we have µ(1) < m−5 and µ(2) = m−3. In this case we discard
a column from the longest 2-dimensional block of columns. This reduces m
to m−1 and preserves the properties “µ(1) ≤ m−5” and “µ(2) ≤ m−3”. (If
there were 2 disjoint 2-dimensional blocks of lengthm−3 thenm ≥ 2(m−3),
or m ≤ 6; otherwise we discard a column in the intersection of the 2 blocks.
Since µ(1) < m − 5, any 2 2-dimensional blocks of length m − 3 meet in
exactly m− 6 columns. Then the m columns fall into 1-dimensional blocks
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of length 3, 3 and m − 6. If m > 9 we discard a column from the third of
these blocks.)

In the second of the possible outcomes described in Lemma 17 we may
suppose that the independent columns are multiples of the orthonormal basis
e1, e2, e3. The required solution of rank 3 then follows by applying Lemma
16 to 3 independent congruences. We shall now suppose that p ≡ 1 (mod 3),
so that γ = 1, and m = 8, q2 ≥ 5 and q ≥ 3 in the congruences (2.13).

3. The case r = 3. In this case the system of congruences (2.13) is
equivalent to one with coefficient matrix

(2.20)

 1 α1 α2 0 0 a1 a2 a3

0 0 0 1 0 b1 b2 b3
0 0 0 0 1 c1 c2 c3

 ,
where α1α2 6≡ 0 (mod p).

Lemma 18. Let p > 7. Suppose that

f = a1x
3
1 + . . .+ aνx

3
ν , g = b1x

3
1 + . . .+ bνx

3
ν

where ν ≥ 5 and ai, bi are not both zero (mod p) for i = 1, . . . , ν. Suppose
further that any form λf + µg, (λ, µ) 6≡ (0, 0) (mod p), contains at least
3 variables with non-zero coefficients (mod p). Then the congruences

(2.21) f(x) ≡ g(x) ≡ 0 (mod p)

have a solution of rank 2 (mod p).

This is proved in §§3–5 of Cook [12].
Now q ≥ 3 so we can find a solution ζ of the congruences

ζ3
4 + b1ζ

3
1 + b2ζ

3
2 + b3ζ

3
3 ≡ 0 (mod p) ,

ζ3
5 + c1ζ

3
1 + c2ζ

3
2 + c3ζ

3
3 ≡ 0 (mod p)

having rank 2 (mod p). In order to solve the congruences corresponding to
(2.20) we now need to solve

x3
1 + α2x

3
2 + α3x

3
3 ≡ d

where d = −a1ζ
3
1 − a2ζ

3
2 − a3ζ

3
3 . This we achieve with the following lemma,

which is the case k = 3 of Davenport and Lewis [14].

Lemma 19. The congruence

ax3 + by3 + cz3 ≡ d (mod p)

is always soluble if abcd 6≡ 0 (mod p).

(If d ≡ 0 (mod p) then the solubility follows from Lemma 16.)
The solution constructed in this way clearly has rank 3 (mod p), so we

have proved
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Lemma 20. Let p > 7 and p ≡ 1 (mod 3). If r ≥ 3 then the congruences
(2.13) have a solution of rank 3 (mod p).

4. The case q = 3. In this case the congruences (2.13) are equivalent
to a system with coefficient matrix

(2.22)

 1 0 0 a1 a2 a3 a4 a5

0 1 0 b1 b2 b3 b4 b5
0 0 1 c1 c2 0 0 0

 ,
where c1c2 6≡ 0 (mod p).

Lemma 21. For p ≡ 1 (mod 3), p > 7, the congruence

(2.23) ax3 + by3 ≡ c (mod p)

is always soluble if abc 6≡ 0 (mod p).

This is the case k = 3 of Theorem 3 of Chowla, Mann and Straus [9].

Lemma 22. For p ≡ 1 (mod 3), p > 7, and abc 6≡ 0 (mod p) the congru-
ence

(2.24) ax3 + by3 + cz3 ≡ 0 (mod p)

is always soluble with xy 6≡ 0 (mod p).

This is essentially Lemma 6 of Stevenson [21]; she assumed that c = 1
but we can multiply by c−1 (mod p) to reduce to that case.

We begin by solving the congruence

(2.25) z3 + c1y
3
1 + c2y

3
2 ≡ 0 (mod p)

with zy1 6≡ 0 (mod p). We then have to solve 2 congruences of the form

(2.26)
f0 = x3

1 + a3x
3
3 + a4x

3
4 + a5x

3
5 ≡ A (mod p) ,

g0 = x3
2 + b3x

3
3 + b4x

3
4 + b5x

3
5 ≡ B (mod p) .

Lemma 23. Let p ≡ 1 (mod 3), p > 7. Suppose that any linear combina-
tion λf0 + µg0, where (λ, µ) 6≡ (0, 0) (mod p), contains at least q∗ variables
explicitly (mod p), where q∗ ≥ 3. Then the congruences (2.26) have a solu-
tion of rank 2 (mod p).

P r o o f. When A ≡ B ≡ 0 (mod p) this follows from Lemma 18 so now
we suppose that A and B are not both zero (mod p). If q∗ = 4 then any
non-trivial solution has rank 2 (mod p), and the result follows from Lemma
8 of Stevenson [21].

Now q∗ = 3, the longest block of columns in a 1-dimensional space has
length 2 so any solution of (2.26) with at least 3 variables non-zero (mod p)
will have rank 2. We can replace the congruences (2.26) with an equivalent
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system

(2.27)
f1(x) = x3

1 + a2x
3
2 + a4x

3
4 + a5x

3
5 ≡ a (mod p) ,

g1(x) = x3
3 + b4x

3
4 + b5x

3
5 ≡ b (mod p)

where a and b are not both zero (mod p).
Suppose first that b ≡ 0 (mod p). Using Lemma 22 we can solve

g(x3, x4, x5) ≡ 0 (mod p) with x3x4 6≡ 0 (mod p). Then (−x3,−x4,−x5)
is also a solution. Let a′ = a4x

3
4 + a5x

3
5. If a − a′, a + a′ are both zero

(mod p) then a ≡ 0 (mod p), contrary to b ≡ 0 (mod p) and a, b not both
zero (mod p). Therefore we can choose one of the solutions ±(x3, x4, x5)
so that c = a ± a′ 6≡ 0 (mod p). Using Lemma 21 we can then solve
x3

1 + a2x
3
2 ≡ c (mod p) to give the required solution of rank 2.

Now b 6≡ 0 (mod p) and we choose x3 = ±1 so that b′ = b − x3
3 6≡

0 (mod p), and using Lemma 21 we can solve b4x3
4 + b5x

3
5 ≡ b′ (mod p) and

one of x4, x5 is non-zero (mod p). The congruence for f1 becomes

(2.28) x3
1 + a2x

3
2 ≡ a′ (mod p) .

If a′ 6≡ 0 (mod p) we can again use Lemma 21 to give a solution with one of
x1, x2 non-zero (mod p), and the simultaneous solution has rank 2.

Now a′ ≡ 0 in (2.28) and we take x1 = x2 = 0 in our simultaneous
solution. If xi 6≡ 0 (where i = 4 or 5) the solution has rank 2 unless
ai ≡ 0 (mod p), in which case, renumbering so that i = 4, the congruences
become

(2.29)
x3

1 + a2x
3
2 + a5x

3
5 ≡ a (mod p) ,

x3
3 + b4x

3
4 + b5x

3
5 ≡ b (mod p) ,

where none of the coefficients are zero (mod p). Thus the values a − a5,
a, a + a5 are distinct (mod p), and so are b − b5, b, b + b5. Thus we can
take x5 to be one of 0, ±1 so that a − a5x

3
5, b − b5x

3
5 are both non-zero

(mod p). We can then solve the resulting congruences using Lemma 21, to
give a simultaneous solution of rank 2 (mod p) and complete the proof of
the lemma.

The solution to (2.26) of rank 2 then gives a simultaneous solution of
rank 3 to the congruences with coefficient matrix (2.22), completing the
argument when q = 3.

5. The case t = 2. We now have r = s = t = 2 and q ≥ 4 so the
congruences are equivalent to a system

x3
1 + ax3

2 + a1w
3
1 + a2w

3
2 ≡ 0 (mod p) ,

y3
1 + by3

2 + b1w
3
1 + b2w

3
2 ≡ 0 (mod p) ,

z3
1 + cz3

2 + c1w
3
1 + c2w

3
2 ≡ 0 (mod p)
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where the coefficients are all non-zero. We take w1 = −1, w2 = 0 and then
solve three independent congruences

x3
1 + ax3

2 ≡ a1 , y3 + by3
2 ≡ b1 , z3 + cz3

2 ≡ c1 (mod p)

using Lemma 21. Clearly this solution has rank 3 (mod p).
Now we may suppose that t = 1.

6. The case s = 2. Now r = s = 2, t = 1 and we begin by observing
that the congruences (2.13) are equivalent to a system with coefficient matrix 1 a 0 0 a0 a1 a2 a3

0 0 1 b b0 b1 b2 b3
0 0 0 0 c0 c1 c2 c3

 .
The cubic residues (mod p) form a subgroup of the nonzero residue

classes. If Q is a cubic non-residue (mod p) then S = {1, Q,Q2} is a set
of representatives from the 3 cosets. Using substitutions x → αx we can
bring the coefficients c0, c1, c2, c3 into the set S. Then 2 of them, c0 and c1
say, must be equal and we multiply the third congruence by c−1

0 to make
c0 = c1 = 1. We then replace f0, g0 by f0−a0h0, g0−b0h0 to give a coefficient
matrix  1 a 0 0 0 a1 a2 a3

0 0 1 b 0 b1 b2 b3
0 0 0 0 1 1 c2 c3

 .
Since t = 1, a1 and b1 are not both 0. If a1b1 6≡ 0 (mod p) we take the

last 4 variables to be 1,−1, 0, 0 and solve

x3
1 + ax3

2 ≡ a1 , y3
1 + by3

2 ≡ b1 (mod p)

to give the required solution of rank 3.
Now we may suppose that exactly one of a1, b1 is 0 (mod p), say a1 ≡

0 (mod p). Then a2a3 6≡ 0 (mod p) since q ≥ 4. If c2 = c3 we take the last 4
variables to be 1,−1, 1,−1 and then solve two congruences

x3 + ax3
1 ≡ a3 − a2 (mod p) ,

y3 + by3
1 ≡ b3 − b2 + b1 (mod p) ,

where possibly the solution is trivial. However, the non-zero variables are
based on the columns

(2.30)
0 0 a2

0 b1 b2
1 1 c2

where a2 6≡ 0 (mod p), and so the solution has rank 3 (mod p).
Now c2 6= c3 and we relabel so that c2 6= 1. Using Lemma 22 we

see that the congruence z3 + w3
1 + c2w

3
2 6≡ 0 (mod p) has a solution with
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w1w2 6≡ 0 (mod p). Since c2 is a cubic non-residue we must also have
z 6≡ 0 (mod p). We take the last variable w3 = 0 and then solve two
congruences x3 + ax3

1 ≡ A, y3 + by3
1 ≡ B (mod p), and again these solutions

may be trivial. Again, the non-zero variables are based on the columns
(2.30) and so the solution has rank 3 (mod p).

7. The case r = 2, q = 5. Now r = 2, s = t = 1 and the system is
equivalent to

(2.31)
f0 = x3 + ax3

1 + a1w
3
1 + . . . + a4w

3
4 ≡ 0 (mod p) ,

g0 = y3 + b1w
3
1 + . . . + b4w

3
4 ≡ 0 (mod p) ,

h0 = z3 + c1w
3
1 + . . . + c4w

3
4 ≡ 0 (mod p) .

Since q ≥ 3 it follows from Lemma 18 that the congruences g0 ≡ h0 ≡
0 (mod p) have a solution of rank 2, and in particular must contain at least
3 non-zero variables. Then f0 ≡ 0 (mod p) becomes

x3 + ax3
1 ≡ A (mod p)

and if A 6≡ 0 (mod p) this has a non-trivial solution. The resulting solution
contains non-zero variables on 3 columns of the form

α α1 α2

0 β1 β2

0 γ1 γ2

where α(β1γ2 − β2γ1) 6≡ 0 (mod p). Therefore the solution has rank 3
(mod p).

Now we may suppose that the solution of g0 ≡ h0 ≡ 0 has A ≡ 0 (mod p).

Lemma 24. Suppose that q > `. Then any solution to the congruences
f0 ≡ g0 ≡ h0 ≡ 0 (mod p) with at least m−` variables non-zero is necessarily
of rank 3.

P r o o f. Recall that µ(2), the maximum number of columns in a 2-
dimensional space, is m − q. Therefore, in this solution, the non-zero vari-
ables cannot lie in a block of columns restricted to a 2-dimensional space.
Therefore the solution has rank 3.

Now r = 2 so q = 4 or 5.
Suppose q = 5. If at least 4 of y, z, w1, . . . , w4 are non-zero then the com-

mon solution has rank 3 (mod p). Now suppose that only 3 of y, z, w1, . . . , w4

are non-zero. The corresponding sections of g0, h0 are equivalent to a pair
where the coefficient matrix is [

1 0 b
0 1 c

]
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and b, c are cubic residues (mod p). If this solution has A ≡ 0 then the
system of congruences has coefficient matrix

(2.32)

 1 a 0 0 0 a1 a2 a3

0 0 1 0 b b1 b2 b3
0 0 0 1 c c1 c2 c3

 .
Consider the sections

(2.33)
f∗ = x3 + ax3

1 + a1w
3
1 + a2w

3
2 + a3w

3
3 ≡ 0 (mod p) ,

g∗ = b1w
3
1 + b2w

3
2 + b3w

3
3 ≡ 0 (mod p) .

Suppose that some form λf∗ + µg∗, (λ, µ) 6≡ (0, 0) (mod p), has q∗ ≤ 2
variables explicitly (mod p). Then the corresponding form λf + µg has at
most 4 variables and this is not possible since q = 5. Therefore we may
apply Lemma 18 to obtain a solution of rank 2 (mod p). In particular, some
non-zero variable will have a non-zero coefficient in f∗.

The third congruence then becomes z3 + cw3 ≡ C (mod p) and, since
c is a cubic residue (mod p), we can solve this with w 6≡ 0 and then solve
y3 ≡ B = −bw3 (mod p). The non-zero variables are based on columns

0 0 a′

1 b b′

0 c c′

where a′ 6≡ 0 (mod p), and so the solution has rank 3.

8. The case r = 2, q = 4. We begin as in §7. If at least 5 of
y, z, w1, . . . , w4 in our solution of g0 ≡ h0 ≡ 0 (mod p) are non-zero then we
have a common solution of rank 3.

Now suppose that exactly 4 of the variables are non-zero and that there is
no solution with exactly 3 variables non-zero. Replacing f by f−aib

−1
i g etc.

we may suppose that the non-zero variables are y, z, w1, w2. If the resulting
solution of (2.31) has rank 2 then the coefficient matrix is 1 a 0 0 0 0 a3 a4

0 0 1 0 b1 b2 b3 b4
0 0 0 1 c1 c2 c3 c4

 .
Since s = 1, b1c2 − b2c1 6≡ 0 (mod p). Taking w4 = −1 we use Lemma 23 to
give a solution of rank 2 to the congruences

y3 + b1w
3
1 + b2w

3
2 + b3w

3
3 ≡ b4 (mod p) ,

z3 + c1w
3
1 + c2w

3
2 + c3w

3
3 ≡ c4 (mod p) .

Let A = −a3w
3
3 +a4 and solve x3 +ax3

1 ≡ A (mod p). If A 6≡ 0 this gives
the required solution of rank 3 (mod p).

If A ≡ 0 then w3 6≡ 0 (mod p). Since we are assuming that there is no
solution to g0 ≡ h0 with just 3 variables non-zero at least 2 of y, z, w1, w2
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are non-zero. If w1w2 6≡ 0 we consider the variables w1, w2, w3. If z 6≡ 0
consider the variables z, w3 and one of y, w1, w2. In each case the variables
are non-zero and the corresponding columns have non-zero determinant.
Now z and one of w1 and w2, w2 say, are zero (mod p) so we consider the
variables y, w1, and w3. Since s = 1 we have c1 6≡ 0 so∣∣∣∣∣∣

0 0 a3

1 b1 b3
0 c1 c3

∣∣∣∣∣∣ = a3c1 6≡ 0

(a3 6≡ 0 because q = 4). Thus we have a solution of rank 3 (mod p).
Now suppose there is a solution of g0 ≡ h0 ≡ 0 with exactly 3 of

y, z, w1, . . . , w4 non-zero. We proceed as for the case q = 5 and obtain
the forms f∗, g∗ as in (2.33). If q∗ ≥ 3 then the proof goes through as in
the case q = 5 so now suppose that q∗ ≤ 2. Either

(a) one of the bi’s, b1 say, is 0 and the coefficients in (2.33) are

1 a a1 a2 a3

0 0 0 b2 b3.

We take w2 = w3 = 0, solve

x3 + ax3
1 + a1w

3
1 ≡ 0 (mod p)

non-trivially and then continue exactly as in the case q = 5. Or
(b) the last 3 columns in (2.33) lie in a 1-dimensional space, ai = λbi for

i = 1, 2, 3. Then the system of congruences is equivalent to a system with
coefficient matrix  1 a α 0 α1 0 0 0

0 0 1 0 b b1 b2 b3
0 0 0 1 c c1 c2 c3

 .
Since s = 1 we have bi 6≡ 0 and bicj − bjci 6≡ 0 for i 6= j, 1 ≤ i, j ≤ 3. Now
b and c are cubic residues so we can solve

y3 + bw3 ≡ 0 (mod p) ,
z3 + cw3 ≡ 0 (mod p)

with all 3 variables non-zero. Let A = −αy3 − α1w
3. If A 6≡ 0 we use a

non-trivial solution of x3 + α1x
3
1 ≡ A to give a solution of rank 3. If A ≡ 0

the solution (y, z, w) still gives a solution of rank 3 (mod p) unless α1 ≡ αb.
So far we have used S = {1, Q,Q2} as our set of coset representatives,

however Davenport and Lewis [15] showed (Lemma 9) that there is a set
S1 = {1, A,B} of coset representatives with

1 +A+B ≡ 0 (mod p) .

Using substitutions x → αx we can bring the coefficients c, c1, c2, c3
into S1. Since c is a cubic residue it will be 1. Either c1, c2, c3 contain a
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repetition, say c1 = c2, or c1, c2, c3 are 1, A,B. We construct a solution of
h0 ≡ 0 by taking z = −w = u and either w1 = −w2 = v, w3 = 0 if c1 = c2,
or w1 = w2 = w3 = v if c1, c2, c3 are 1, A,B. The congruences f0 ≡ g0 ≡ 0
become

(2.34)
x3 + ax3

1 + αy3 − αbu3 ≡ 0 (mod p) ,
y3 − bu3 + βv3 ≡ 0 (mod p) .

If β ≡ 0 (mod p) we solve y3 ≡ bu3 to give a solution of rank 3. Otherwise
we can apply Lemma 18 to give a solution of rank 2 to these congruences
(2.34), and this gives a solution of rank 3 to the congruences (2.31).

From now on we may suppose that r = 1.

9. The case q = 6. Now the columns of coefficients lie in general
position in Z3

p , so any non-trivial solution of f0 ≡ g0 ≡ h0 (mod p) has
rank 3. We use exponential sums to count the solutions. The number N of
solutions (mod p) to the congruences (2.13) is given by

(2.35) p3N =
∑ ∑ ∑

u1,u2,u3 (mod p)

T (Λ1) . . . T (Λ8) ,

where

Λj = u1aj + u2bj + u3cj ,(2.36)

T (Λ) =
∑

x (mod p)

e(Λx3/p) .(2.37)

Separating out the term u1 = u2 = u3 = 0 in (2.35) we see that

(2.38) p3N − p8 =
∑ ∑ ∑

u 6≡0

T (Λ1) . . . T (Λ8) .

We classify the points u 6≡ 0 according to the number τ of linear forms
Λi which are 0 (mod p). Since q = 6 we have τ ≤ 2 and

(2.39) p3N − p8 =
∑

0 +
∑

1 +
∑

2

where
∑

j is the sum over those points u (mod p) for which exactly j forms
Λi are 0 (mod p).

Since any 3 different forms Λi, Λj , Λk are independent, the mapping
(Λi, Λj , Λk) → (u1, u2, u3) is a bijection (mod p) and so

|
∑

0| ≤ max
i,j,k

distinct

∑ ∑ ∑
Λi 6≡0,Λj 6≡0,Λk 6≡0

|T (Λi)T (Λj)T (Λk)|8/3(2.40)

=
∑ ∑ ∑

u1 6≡0, u2 6≡0, u3 6≡0

|T (u1)T (u2)T (u3)|8/3 =
( ∑

u 6≡0

|T (u)|8/3
)3

.
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Let

(2.41) Sr =
∑
u 6≡0

|T (u)|r .

We have, from Lemma 2.5.1 of Dodson [18],

(2.42) S2 = 2p(p− 1)

and, from eq. (35) of Cook [12],

(2.43) S4 = 6p2(p− 1) .

From Hölder’s inequality we have

S8/3 ≤ S
2/3
2 S

1/3
4

and so

(2.44) |
∑

0 | ≤ S2
2S4 = 24p4(p− 1)3 .

The contribution to
∑

1 coming from those points u 6≡ 0 for which
Λ8 ≡ 0 is at most

p
∑ ∑ ∑
u 6≡0, Λ8≡0

|T (Λ1) . . . T (Λ7)| ≤ pmax
i 6=j
i 6=8

∑ ∑ ∑
u 6≡0, Λ8≡0
Λi 6≡0, Λj 6≡0

|T (Λi)T (Λj)|7/2 .

The mapping (Λi, Λj , Λ8) → (u1, u2, u3) is a bijection, so the right hand
term is

(2.45) p
∑
u1 6≡0

∑
u2 6≡0

|T (u1)T (u2)|7/2 = p
( ∑

u 6≡0

|T (u)|7/2
)2

.

From Hölder’s inequality we have S7/2 ≤ S
1/4
2 S

3/4
4 so

(2.46) |
∑

1 | ≤ 8pS1/2
2 S

3/2
4 = 96

√
3 p9/2(p− 1)2 .

The contribution to
∑

2 coming from those points u 6≡ 0 for which
Λ7 ≡ Λ8 ≡ 0 is at most

(2.47) p2
∑ ∑ ∑

u 6≡0, Λ7≡Λ8≡0

|T (Λ1) . . . T (Λ6)|

≤ p2 max
i

∑ ∑ ∑
Λ7≡Λ8≡0, Λi 6≡0

|T (Λi)|6 = p2
∑
u 6≡0

|T (u)|6 = p2S6 ,

since the mapping (Λi, Λ7, Λ8) → (u1, u2, u3) is a bijection. Thus

(2.48) |
∑

2| ≤
(
8
2

)
p2S6 = 28 p2S6 .

Now for u 6≡ 0 (mod p) we have

(2.49) |T (u)| ≤ 2
√
p
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so

(2.50) S6 ≤ 4pS4 = 24p3(p− 1) .

From (2.39) we now deduce

N ≥ p5 − p−3(
∑

0 +
∑

1 +
∑

2)(2.51)

≥ p5 − p−3(24p7 + 96
√

3 p13/2 + 672p6)

= p3{p2 − (24p+ 96
√

3p+ 672)} > 1

for p > 60.

10. The case q = 5. We can suppose that the form h0 contains 5
non-zero coefficients and that these coefficients are in the set S = {1, A,B}
of coset representatives with 1 +A+B ≡ 0 (mod p). We may also suppose
that the coefficients c0, . . . , c4, say, satisfy c0 = c1 = 1 and either c2 = c3
(type I) or c2 = 1, c3 = A, c4 = B (type II). Now the coefficient matrix can
be taken as

(2.52)

 1 0 0 a a1 . . . a4

0 1 0 b b1 . . . b4
0 0 1 0 1 c2 c3 c4

 .
We solve h0 ≡ 0 by taking −z = w1 = ζ and either w2 = −w3 = η (type I)
or w2 = w3 = w4 = η (type II). The first two congruences then become

(2.53)
x3 + aw3 + a1ζ

3 + αη3 ≡ 0 (mod p) ,
y3 + bw3 + b1ζ

3 + βη3 ≡ 0 (mod p) .

Suppose that α ≡ β ≡ 0 (mod p). If the coefficients are of type I then
a2 = a3, b2 = b3, c2 = c3, the two columns are equal and r > 1. Now the
coefficients are of type II, c2 = 1 and we have

(2.54)
a2 + a3 + a4 ≡ 0 (mod p) ,
b2 + b3 + b4 ≡ 0 (mod p) ,
1 + c3 + c4 ≡ 0 (mod p) .

Since we also have c1 = 1 we replace the column with index 2 by the column
with index 1. If the congruences (2.54) still hold then the two columns are
equal and r > 1.

Lemma 25. Let p > 13, p ≡ 1 (mod 3). If abc 6≡ 0 (mod p) then the
congruence

(2.55) ax3 + by3 + cz3 ≡ 0 (mod p)

has a solution with xyz 6≡ 0 (mod p).

P r o o f. Using substitutions x → αx etc. we may suppose that the
coefficients a, b, c ∈ S = {1, Q,Q2}. If a, b, c are not all equal (mod p) we
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may suppose that b 6= c. By Lemma 22 there is a solution with yz 6≡ 0.
Since b 6= c we also have x 6≡ 0.

Now a, b, c are equal, on multiplying by a−1 the congruence is

(2.56) x3 + y3 + z3 ≡ 0 (mod p)

and we count the number N of solutions (mod p), using exponential sums.
We have

(2.57) |N − p2| ≤ p−1S3 ≤ p−1 2
√
pS2 = 4p1/2(p− 1) .

The number of solutions to (2.56) with exactly 2 variables non-zero is
9(p − 1), and there is one trivial solution. Thus we have a solution with
xyz 6≡ 0 (mod p) provided that

(2.58) p2 > 4p1/2(p− 1) + 9(p− 1) + 1 ,

and this is satisfied when p ≥ 37. When p = 19 we take x = 1, y = −2 and
z = 4, and when p = 31 we take x = −1, y = 8, z = 8.

Now we return to the congruences (2.53) and suppose that a1 ≡ α ≡ 0.
We take x = w = 0 and solve

(2.59) y3 + b1ζ
3 + βη3 ≡ 0

with all three variables non-zero, then take z = −ζ. The resulting solution
to the system of 3 congruences has at least 5 variables non-zero and so has
rank 3, from Lemma 24. A similar argument works if b1 ≡ β ≡ 0 (mod p).

Now suppose that “q∗ ≤ 2” for the congruences (2.53), i.e. three of the
columns lie in a 1-dimensional subspace. The only remaining possibility is
that a1/b1 ≡ a2/b2 ≡ α/β (mod p). We solve the single congruence

(2.60) aw3 + a1ζ
3 + αη3 ≡ 0 (mod p)

with all three variables non-zero, and then take z = −ζ. This provides a
solution to the system of congruences with at least 5 variables non-zero, and
so of rank 3.

Now “q∗ ≥ 3” so we can apply Lemma 19 to show that the congruences
(2.53) have a solution of rank 2, and so with at least 3 variables non-zero.
If ζη 6≡ 0 we have z, w1, w2 and w3 non-zero, and since q = 5 Lemma 24
shows that the solution has rank 3.

Suppose that η ≡ 0 but ζ 6≡ 0. We have z = −ζ 6≡ 0 and two of x, y, w
are non-zero. Thus we have a solution supported by three columns

0 α∗ α′

0 β∗ β′

1 γ γ

where α∗β′ − α′β∗ 6≡ 0, and so the solution has rank 3 (mod p).
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Suppose that ζ ≡ 0 but η 6≡ 0. Then 2 of x, y, w are non-zero so we have
a solution supported by columns [ai, bi, ci]T for some i and two of

1 0 a
0 1 b
0 0 0

where ab 6≡ 0 (mod p). Therefore the solution has rank 3.
We are now left with the case when the only solutions of (2.53) have

ζ ≡ η ≡ 0 (mod p). We have a solution to

(2.61)
x3 + aw3 ≡ 0 (mod p) ,
y3 + bw3 ≡ 0 (mod p)

with all three variables non-zero. The coefficients a, b must be cubic residues
(mod p) and the number of non-trivial solutions (mod p) to the congruences
(2.61) is 9(p − 1). We repeat the calculations of §9, counting the number
of solutions to the three congruences which have some variable other than
x, y, w non-zero.

We estimate
∑

3, the contribution coming from the terms with exactly 4
forms Λi ≡ 0 by noting that such Λi lie in a 2-dimensional subspace. Since
r = 1 any two forms Λi, Λj with i 6= j are linearly independent. Since q = 5
it follows that any two triples of forms of rank 2 can intersect in at most
one form Λ. In order to estimate the number of such triples we identify the
forms Λi with the vertices of the complete graph K8. A triple (Λi, Λj , Λk)
corresponds to a triangle (i, j, k) in K8. Since two triples can meet in at
most one form the corresponding triangles are edge-disjoint. Each vertex of
K8 has degree 7 and so can lie in at most 3 such triangles, and therefore
there are at most 8 such triangles in all. Hence

|
∑

3| ≤ 8p3S5

and

N ≥ p5 − p−3(
∑

0 +
∑

1 +
∑

2 +
∑

3)(2.62)
≥ p5 − p−3(S3

8/3 + 8pS2
7/2 + 28p2S6 + 8p3S5) > 1 + 9(p− 1)

for p > 61. However, the argument can be refined further. Suppose (1, 2, 3)
is a triple occurring in the term

∑
3. Then the forms Λ1, Λ2, Λ3 lie in a 2-

dimensional space, and any two of them are linearly independent. Therefore
the pairs (1, 2), (2, 3) and (3, 1) cannot occur in the contribution

∑
2. Thus

the contribution
∑

2 +
∑

3 can be bounded by

max
0≤r≤8

(rp3S5 + (28− 3r)p2S6)

and we then deduce that N > 1 + 9(p− 1) for p = 61.
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11. The case q = 4. In this case we can take the coefficient matrix to
be  1 0 α1 α2 0 a1 a2 a3

0 1 β1 β2 0 b1 b2 b3
0 0 0 0 1 1 c2 c3

 .
Since r = 1 the coefficients αi, βi are non-zero and α1β2−α2β1 6≡ 0 (mod p).
Further, at least one of a1 and b1 is non-zero.

We begin by taking −z = w1 = ζ, w2 = w3 = 0 to give a solution to
h0 ≡ 0. We then have to solve two congruences

(2.63)
x3 + α1v

3
1 + α2v

3
2 + a1ζ

3 ≡ 0 ,
y3 + β1v

3
1 + β2v

3
2 + b1ζ

3 ≡ 0 ,

and we may apply Lemma 20 to give a solution of rank 2. If ζ 6≡ 0 then this
leads to a solution of rank 3 to the 3 simultaneous congruences.

We show that the congruences (2.63) have a solution with ζ 6≡ 0 by
using exponential sums to count the number of solutions. The number N0

of solutions to (2.63) with ζ ≡ 0 satisfies

|N0 − p2| ≤ p−2
∑ ∑

(u1,u2) 6≡(0,0)

|T (u1)T (u2)T (Λ3)T (Λ4)|(2.64)

= (p−1S2)2 = 4(p− 1)2

so
N0 ≤ p2 + 4(p− 1)2 .

Suppose first that the columns of coefficients in (2.63) are pairwise lin-
early independent. Then the number N of solutions to (2.63) satisfies

|N − p3| ≤ p−2(S2
5/2 + 5pS4) ≤ p−2(S3/2

2 S
1/2
4 + 5pS4)(2.65)

= (48p)1/2(p− 1)2 + 30p(p− 1) ,

using minor modifications to the arguments of Cook [12]. If the columns are
not pairwise linearly independent then a1/b1 equals one of the other ratios
(mod p). There is now a contribution

∑
2 arising from points (u1, u2) with

two forms Λ ≡ 0, but there are only 3 forms Λi for which exactly one Λ ≡ 0.
Thus the upper bound in (2.65) can be replaced by

(2.66) p−2(S2
5/2 + 3pS4 + p2S3) ≤ p−2(S3/2

2 S
1/2
4 + 3pS4 + p2S

1/2
2 S

1/2
4 )

= (48p)1/2(p− 1)2 + 18p(p− 1) + (12p)1/2p(p− 1) .

Thus we will have the required solution with ζ 6≡ 0 provided that

p3 − {(48p)1/2(p− 1)2 + (12p)1/2p(p− 1) + 18p(p− 1)} > p2 + 4(p− 1)2 ,

i.e. p ≥ 151.
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For p < 151 we repeat the calculations to see if

p3 − p−2(S2
5/2 + 3pS4 + p2S3) > p2 + 4(p− 1)2

and find that the required solution with ζ 6≡ 0 also exists for p = 151 and
139.

12. The case q = 4 continued. Now let p < 139 be a fixed prime,
p ≡ 1 (mod 3), p > 13. We consider the congruences (2.63). If we can
show that they have a solution with all variables non-zero (mod p) then the
arguments of §11 show that we have the desired solution of rank 3.

Either a1 6≡ 0 or b1 6≡ 0 so we may suppose that β1, β2, b1 are non-zero
(mod p). Let Q be a cubic non-residue (mod p) and S = {1, Q,Q2}. Using
substitutions x→ αx we have β1, β2, b1 ∈ S and amongst the 4 coefficients
of the second congruence, two will be equal. Thus we may replace the
congruences (2.63) by

(2.67)
f0 = x3

1 + a3x
3
3 + a4x

3
4 + a5x

3
5 ≡ 0 (mod p) ,

g0 = x3
2 + x3

3 + b4x
3
4 + b5x

3
5 ≡ 0 (mod p)

where b3, b4 ∈ S. At most two of the columns can be linearly dependent and
we suppose that these columns are multiples of 0/1. Thus at most one of
a3, a4, a5 can be zero (mod p) and ai/bi 6≡ aj/bj for i 6= j (3 ≤ i, j ≤ 5).

Suppose first that b4 = b5. Then

x = (x, u1,−u, v,−v)
clearly satisfies g0(x) ≡ 0 (mod p). Further,

f0(x) = x3 − a3u
3 + (a4 − a5)v3 .

Since b4 = b5 we have a4 − a5 6≡ 0 (mod p). Therefore, by Lemma 25, the
congruence f0(x) ≡ 0 has a solution with all variables non-zero (mod p),
provided that p > 13.

Now we may assume that b4 6= b5 and see that there are only 3 cases to
consider for g0 (after renumbering x4 and x5):

(2.68)

x3
2 + x3

3 + x3
4 + Qx3

5 ,

x3
2 + x3

3 + x3
4 +Q2x3

5 ,

x3
2 + x3

3 +Qx3
4 +Q2x3

5 .

For each of these three cases g0 we form a list of the solutions to g0 ≡
0 (mod p) with all 4 variables non-zero (the list either contains all the solu-
tions, or 1000 solutions if there are more). We then let f0 run through all
the possible forms by letting a3, a4, a5 vary so that at most one ai ≡ 0 and
the ratios ai/bi are distinct (mod p). For each f0 we run down the list of
solutions to find a solution to f0 ≡ 0 (mod p).

(In fact the result still holds if we only have solutions with x1 = 0, for
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we have x2, . . . , x5 and z non-zero. By Lemma 24 this will be enough to
ensure that we have a solution of rank 3.)

In this way a computer verified that the congruences (2.67) have a solu-
tion with all variables non-zero, provided that p ≥ 31.

13. The case q = 6, computations. Now suppose p > 7 is one of the
remaining exceptional primes and begin by writing the coefficient matrix in
the form  1 0 a a1 . . . a5

0 1 b b1 . . . b5
0 0 c c1 . . . c5

 .
Let S = {1, A,B} be a set of coset representatives (mod p) for which 1+A+
B ≡ 0 (mod p). Using substitutions x → αx we can bring the coefficients
c, c1, . . . , c5 into S. There must be at least 2 pairs of repeated values amongst
c, c1, . . . , c5 so we can suppose c = c1, c2 = c3. After multiplying the third
congruence by c−1 and taking suitable linear combinations of f, g, h the
coefficient matrix becomes 1 0 0 a1 a2 a3 a4 a5

0 1 0 b1 b2 b3 b4 b5
0 0 1 1 c c c4 c5


with c, c4, c5 ∈ S. Further, since the columns are in general position, all the
coefficients appearing are non-zero. We relabel so that c4 ≤ c5.

If c4 = c5 then x, y,−u, u, v,−v, w,−w satisfies the third congruence and
puts the first 2 congruences into the form

x3 + a1u
3 + (a2 − a3)v3 + (a4 − a5)w3 ≡ 0 (mod p) ,

y3 + b1u
3 + (b2 − b3)v3 + (b4 − b5)w3 ≡ 0 (mod p) .

If “q∗ ≥ 3” then these congruences have a solution of rank 2, using
Lemma 20. If “q∗ < 3” then 3 of the columns lie in a 1-dimensional space and
we have a non-trivial solution of a single ternary cubic αζ3 +βξ3 +γη3 ≡ 0.
This leads to a non-trivial solution of the system of 3 congruences, and since
q = 6 the solution will be non-singular.

We are now left with 9 forms h0 with coefficients
0 0 1 1 1 1 1 A
0 0 1 1 1 1 1 B
0 0 1 1 1 1 A B
0 0 1 1 A A 1 A
0 0 1 1 A A 1 B
0 0 1 1 A A A B
0 0 1 1 B B 1 A
0 0 1 1 B B 1 B
0 0 1 1 B B A B .
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For each of these forms we would form a list of all non-trivial solutions of
h0 ≡ 0 (mod p). The computer then runs through all the (p− 1)10 possible
forms f0, g0 and checks that there is a common solution, or lists f0, g0, h0

as a counter-example.

14. The case q = 5, computations. Here p > 13 and we can write
the coefficient matrix in the form 1 0 a 0 a1 a2 a3 a4

0 1 b 0 b1 b2 b3 b4
0 0 0 1 1 c2 c3 c4


where c2, c3, c4 and b ∈ S = {1, A,B}, either c2 = c3 or {c2, c3, c4} =
{1, A,B}. The argument of §10 fails only when a and b are cubic residues,
so now b = 1 and a is a cubic residue (mod p).

Further, the argument of §10 fails only when the congruences

x3 + aw3 + a1ζ
3 ≡ 0 ,

y3 + w3 + b1ζ
3 ≡ 0

have no solution with ζ 6≡ 0. We begin by forming a list L of the triples of
coefficients a, a1, b1 for which this can happen, with a a cubic residue.

There are now 10 possible forms h0, where c2, c3, c4 are
1 1 c
A A c
B B c
1 A B

with c ∈ S, after reordering the variables. For each h0 we could form a
list of the non-trivial solutions to h0 ≡ 0 (mod p) and then run through all
possible f0, g0 by letting a, a1, b1 run through the values in the list L, and
letting a2, a3, a4, b2, b3, b4 run through all p6 possible values. For each pair
f0, g0 we run down the list of solutions to h0 ≡ 0 to see if there is a common
solution of rank 3 (mod p). If there is not then we check the coefficients to
see that r = 1 and q = 5. If these conditions are satisfied we list the triple
f0, g0, h0 as a counter-example.

15. The case q = 4. In this case we only consider p = 19 and the
coefficient matrix is  1 0 α1 α2 0 a1 a2 a3

0 1 β1 β2 0 b1 b2 b3
0 0 0 0 1 1 c2 c3


where c2, c3, β1, β2 ∈ S. On ordering the variables so that c2 ≤ c3 there
are 6 forms h0 to consider and for each h0 we begin by forming a list of all
nontrivial solutions to h0 ≡ 0 (mod p).
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The argument of §11 fails only if the congruences (2.63) have no solution
with ζ 6≡ 0. We run through all possible coefficients, with βi ∈ S, α1β2 −
α2β1 6≡ 0 and form a list L′ of the coefficients β1, β2, α1, α2, a1, b1 for which
there is no solution with ζ 6≡ 0 (mod p).

For each of the 6 forms h0 we run through all possible pairs of forms
f0, g0 by letting a2, a3, b2, b3 run through all possible values, and the other
coefficients run through the list L′. For each pair f0, g0 we run through
all the solutions of h0 ≡ 0 (mod p) to see if there is a common solution of
rank 3 (mod p). If there is not then we check the coefficients to see that
r = 1 and q = 4. If these conditions are satisfied we list the triple f0, g0, h0

as a counter-example.
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[6] J. Br üdern, On pairs of diagonal cubic forms, Proc. London Math. Soc. (3) 61
(1990), 273–343.
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