
ACTA ARITHMETICA

LX.1 (1991)

On p-class groups of cyclic extensions
of prime degree p of number fields

by

Frank Gerth III (Austin, Tex.)

1. Introduction. Let Q denote the field of rational numbers, and let
F be a finite extension field of Q. Let p be an odd prime number which
does not divide the class number of F and for which ζp 6∈ F , where ζp is
a primitive pth root of unity. (Of course all but finitely many primes p
satisfy these conditions for a given field F .) If I is a nonzero ideal in the
ring of integers OF , let N(I) denote the absolute norm of I. Equivalently,
N(I) = [OF : I]. Let K be a cyclic extension of F of degree p, and let σ
be a generator of Gal(K/F ). Let CK denote the p-class group of K (i.e.,
the Sylow p-subgroup of the ideal class group of K), and let C

(1−σ)i

K =
{a(1−σ)i

: a ∈ CK} for i = 1, 2, . . . Since we have assumed p does not divide
the class number of F , then it is easy to see that CK/C1−σ

K is an elementary
abelian p-group (which we may view as a vector space over the finite field
Fp), and

(1.1) dimFp
(CK/C1−σ

K ) = t− 1− β

where t is the number of primes that ramify in K/F , and

(1.2) pβ = [EF : (EF ∩NK/F K∗)]

(cf. [3]). Here EF is the group of units of F , and NK/F is the norm map
from K∗ to F ∗.

Since the structure of CK/C1−σ
K is known, we focus our attention on

C1−σ
K . We let

(1.3) rK = dimFp
(C1−σ

K /C
(1−σ)2

K ) .

Equivalently rK is the minimal number of generators of C1−σ
K as a module

over Gal(K/F ). We let DK/F denote the relative discriminant of K/F . For
each positive integer t, each nonnegative integer i, and each positive real
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number x, we define

At = {cyclic extensions K of F of degree p with(1.4)
exactly t primes of F ramified in K/F},

At;x = {K ∈ At : N(DK/F ) ≤ xp−1},(1.5)
At,i;x = {K ∈ At;x : rK = i},(1.6)

dt,i = lim
x→∞

|At,i;x|
|At;x|

,(1.7)

d∞,i = lim
t→∞

dt,i.(1.8)

Here |S| denotes the cardinality of a set S. Our goal is to prove the following
theorem.

Theorem 1. Let F be a finite extension of Q. Let p be an odd prime
number which does not divide the class number of F and for which ζp 6∈ F ,
where ζp is a primitive p-th root of unity. For each cyclic extension K
of F of degree p, let N(DK/F ) denote the absolute norm of the relative
discriminant of K/F . Let CK denote the p-class group of K; let σ be a
generator of Gal(K/F ); and let rK denote the minimal number of generators
of C1−σ

K as a module over Gal(K/F ). Let u denote the rank of the group of
units of F . Finally let d∞,i be the density defined by equation (1.8). (Also
see equations (1.4) through (1.7).) Then

d∞,i =
p−i(i+u+1)

∏∞
k=1(1− p−k)

[
∏i

k=1(1− p−k)][
∏i+u+1

k=1 (1− p−k)]
for i = 0, 1, 2, . . .

R e m a r k. Certain special cases of Theorem 1 have been proved in other
papers; namely, the case where F = Q (see [5]) and the case where F is a
quadratic extension of Q (see [7]). For some partial results when ζp ∈ F ,
see [6] and [8].

R e m a r k. As p → ∞, d∞,0 → 1 and d∞,i → 0 for i ≥ 1. So C1−σ
K is

very likely to be trivial for large p. Also C1−σ
K is very likely to be trivial if

u is large. For numerical values of d∞,i when u = 0 or 1, p = 3, 5, 7, or 11,
and i = 0, 1, 2, 3, or 4, see the appendix of [7].

2. Proof of Theorem 1. We let notation be the same as in the previous
section. Since Theorem 1 has already been proved when F = Q and when
F is a quadratic extension of Q, we may assume [F : Q] ≥ 3, and hence the
group of units EF of F is an infinite group. We let ε1, . . . , εu be a system
of fundamental units of F . Our method of proof is a generalization of the
method used when F is a real quadratic extension of Q (see [7], Section 3).
For a cyclic extension K of F of degree p, we let t denote the number of
primes of F that ramify in K. Then N(DK/F ) = paN(p1 . . . ps)p−1, where
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a ≥ 0; p1, . . . , ps are distinct primes of F with N(pi) ≡ 1 (mod p) for
1 ≤ i ≤ s; and s ≤ t. Furthermore s = t precisely when a = 0. When
calculating dt,i in equation (1.7), we may omit the fields where a > 0 since
when s < t,

|{paN(p1 . . . ps)p−1 ≤ xp−1}| = o(|{N(p1 . . . pt)p−1 ≤ xp−1}|) as x →∞.

So we may assume

N(DK/F ) = N(p1 . . . pt)p−1 with N(pi) ≡ 1 (mod p) for 1 ≤ i ≤ t.

Now we let q1, . . . , qu be primes of F satisfying the following conditions:

(i) N(qi) ≡ 1 (mod p) for 1 ≤ i ≤ u;
(ii) εj is a pth power residue (mod qi) for all j 6= i;
(iii) εi is a pth power nonresidue (mod qi) for 1 ≤ i ≤ u.

(R e m a r k. To find such a prime qi, we can proceed as follows. Let

Fi = F (ζp, p
√

ε1, . . . , p
√

εi−1, p
√

εi+1, . . . , p
√

εu) .

Then qi is a prime of F which splits completely in Fi/F but for which a
prime in Fi above qi is inert in Fi( p

√
εi)/Fi.) The primes q1, . . . , qu shall be

fixed throughout this paper, and since

|{N(q1 . . . qu)p−1N(p1 . . . ps)p−1 ≤ xp−1}|
= o(|{N(p1 . . . pt)p−1 ≤ xp−1}|) as x →∞

if s < t, we may assume pi 6= qj for all i and j.
Next we define groups Gi for 1 ≤ i ≤ t by

(2.1) Gi = (OF /piq1 . . . qu)×/(EF /E′F )

where OF is the ring of integers of F , and E′F = {ε ∈ EF : ε ≡ 1
(mod piq1 . . . qu)}. Because of the way we have chosen q1, . . . , qu, there is a
unique cyclic extension Ki of F of degree p whose Galois group is isomor-
phic to a quotient group of Gi such that pi ramifies in Ki/F , but no other
primes ramify in Ki/F except perhaps q1, . . . , qu. (R e m a r k. pi will be the
only prime ramifying in Ki/F when εj is a pth power residue (mod pi) for
1 ≤ j ≤ u.) We let F ′ = F (ζp) and Li = Ki · F ′ for 1 ≤ i ≤ t. Since Li/F ′

is a Kummer extension, there exists µi ∈ F ′ such that Li = F ′( p
√

µi). Let
Pi be a prime of F ′ above pi. By replacing µi by a suitable power of µi, we
may assume that the power of Pi dividing µi is Pbi

i with bi ≡ 1 (mod p).
Now let L = K · F ′. Then L = F ′( p

√
µ) with

(2.2) µ = µa1
1 . . . µat

t

for some integers ai with 1 ≤ ai ≤ p− 1 for 1 ≤ i ≤ t.
Next we let h denote the class number of F . Since p -h by assumption,

there exists a positive integer h′ such that hh′ ≡ 1 (mod p). We let π′j ∈ OF
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satisfy

(2.3) phh′

j = π′jOF

for 1 ≤ j ≤ t. Now recall that εi is a pth power nonresidue (mod qi). So
there exists an integer cij with 0 ≤ cij ≤ p − 1 such that ε

cij

i π′j is a pth
power residue (mod qi). Let

(2.4) πj = ε
c1j

1 . . . εcuj
u π′j

for 1 ≤ j ≤ t. Since εk is a pth power residue (mod qi) for k 6= i, then πj

is a pth power residue (mod qi) for 1 ≤ i ≤ u and 1 ≤ j ≤ t. Also πj is a
generator of the ideal phh′

j for 1 ≤ j ≤ t.
Now we let MK be the t× (u + t) matrix over Fp defined as follows:

(2.5) MK = [mij ], mij ∈ Fp, 1 ≤ i ≤ t, 1 ≤ j ≤ u + t,

(2.6) ζmij
p =


(

εj , µ

Pi

)
for 1 ≤ i ≤ t and 1 ≤ j ≤ u,(

πj−u, µ

Pi

)
for 1 ≤ i ≤ t and u + 1 ≤ j ≤ u + t.

The Hilbert symbol (α,µ
Pi

) ∈ 〈ζp〉 is defined by(
α, L/F ′

Pi

)
p
√

µ =
(

α, µ

Pi

)
p
√

µ

where α is a nonzero element of F ′, and
(

α,L/F ′

Pi

)
is the norm residue symbol.

We note that the product formula for Hilbert symbols implies that the sum of
the entries in each column of MK is zero. Our matrix MK is a generalization
of the matrix MK on p. 96 in [7] that was used in the case where F is a
real quadratic fields. As in [7], the matrix MK provides information about
dimFp

(CK/C1−σ
K ) and dimFp

(C1−σ
K /C

(1−σ)2

K ). More precisely

(2.7) dimFp
(CK/C1−σ

K ) = t− 1− rank M0

where M0 is the t× u matrix consisting of the first u columns of MK , and

(2.8) rK = dimFp
(C1−σ

K /C
(1−σ)2

K ) = t− 1− rank MK − ω

where 0 ≤ ω ≤ u. Also ω = 0 when rank M0 = u. As t →∞, the probability
approaches 1 that rank M0 = u. So the error introduced by disregarding ω
disappears when we calculate the limit in equation (1.8).

Now from properties of Hilbert symbols (cf. [1, Chapter 12] or [2, pp. 348–
354]),

(2.9)
(

εj , µ

Pi

)
=

(
εj , µ

ai
i

Pi

)
=

(
µi, εj

Pi

)−ai

=
(

εj

Pi

)−ai
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for 1 ≤ i ≤ t and 1 ≤ j ≤ u. Here
(

εj

Pi

)
∈ 〈ζp〉 is the pth power residue

symbol defined by(
F ′( p

√
εj)/F ′

Pi

)
p
√

εj =
(

εj

Pi

)
p
√

εj , and
(

F ′( p
√

εj)/F ′

Pi

)
is the Artin symbol. Similarly

(2.10)
(

πj−u, µ

Pi

)
=

(
πj−u, µai

i

Pi

)
=

(
µi, πj−u

Pi

)−ai

=
(

πj−u

Pi

)−ai

for 1 ≤ i ≤ t, u + 1 ≤ j ≤ u + t, and i 6= j − u. Alternatively for i 6= j − u
we can start with

(2.11)
(

πj−u, µ

Pi

)
=

(
πj−u, µai

i

Pi

)
=

(
πj−u, µi

Pi

)ai

.

We note that the product formula
∏

P

(
πj−u,µi

P

)
= 1 over all primes P of

F ′ reduces to

(2.12)
(

πj−u, µi

Pi

)d (
πj−u, µi

Pj−u

)d (
πj−u, µi

Q1

)d

. . .

(
πj−u, µi

Qu

)d

= 1

where Qk is a prime of F ′ above qk for 1 ≤ k ≤ u, and d = [F ′ : F ]. However
we recall that πj−u was defined in equation (2.4) so that πj−u is a pth power

residue (mod qk) for u +1 ≤ j ≤ u + t and 1 ≤ k ≤ u. Hence
(

πj−u,µi

Qk

)
= 1

for u + 1 ≤ j ≤ u + t and 1 ≤ k ≤ u. So from equation (2.12), we get

(2.13)
(

πj−u, µi

Pi

) (
πj−u, µi

Pj−u

)
= 1.

Then from equations (2.11) and (2.13), we get

(2.14)
(

πj−u, µ

Pi

)
=

(
πj−u, µi

Pi

)ai

=
(

πj−u, µi

Pj−u

)−ai

=
(

µi

Pj−u

)−ai

for 1 ≤ i ≤ t, u + 1 ≤ j ≤ u + t, and i 6= j − u.
We now define characters λi and νj as follows

(2.15) λi(I) =
(µi

I

)−1

, 1 ≤ i ≤ t

for ideals I of F ′ relatively prime to piq1 . . . quOF ′ ;

(2.16) νj(I) =
(εj

I

)−1

, 1 ≤ j ≤ u

for ideals I of F ′ relatively prime to pOF ′ ; and

(2.17) νj(I) =
(πj−u

I

)−1

, u + 1 ≤ j ≤ u + t
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for ideals I of F ′ relatively prime to ppj−uOF ′ . Then from equations (2.6),
(2.9), (2.10), and (2.14) through (2.17), we get

(2.18)

ζmij
p =


(νj(Pi))ai for 1 ≤ i ≤ t and 1 ≤ j ≤ u,
(νj(Pi))ai for j − u < i ≤ t and u + 1 ≤ j ≤ u + t− 1,
(λi(Pj−u))ai for 1 ≤ i ≤ t− 1 and u + i < j ≤ u + t.

Also

(2.19) m(j−u)j = −
t∑

k=1
k 6=j−u

mkj for u + 1 ≤ j ≤ u + t

since the sum of the entries in each column of MK is zero. We let a′i be the
integer with 1 ≤ a′i ≤ p− 1 such that

(2.20) aia
′
i ≡ 1 (mod p) for 1 ≤ i ≤ t.

By multiplying the ith row of MK by a′i for each i, we get a new matrix
M ′

K defined as follows.

(2.21) M ′
K = [m′

ij ], m′
ij ∈ Fp, 1 ≤ i ≤ t, 1 ≤ j ≤ u + t,

with

(2.22) ζ
m′

ij
p =


νj(Pi) for 1 ≤ i ≤ t and 1 ≤ j ≤ u,
νj(Pi) for j − u < i ≤ t and u + 1 ≤ j ≤ u + t− 1,
λi(Pj−u) for 1 ≤ i ≤ t− 1 and u + i < j ≤ u + t

and

m′
(j−u)j = −a′j−u

t∑
k=1

k 6=j−u

akm′
kj for u + 1 ≤ j ≤ u + t.

Furthermore

(2.23) rank M ′
K = rankMK .

We observe that m′
(j−u)j is known if we know a1, . . . , at and the values of

m′
kj for 1 ≤ k ≤ t and k 6= j − u. Also m′

tj is known if we know a1, . . . , at

and the values m′
kj for 1 ≤ k ≤ t− 1; that is:

(2.24) m′
tj = −a′t

t−1∑
k=1

akm′
kj for 1 ≤ j ≤ u + t.

Equations (2.21) through (2.24) are the analogs of equations (3.15) through
(3.18) in [7]. (R e m a r k. Because of the way we defined πj in equation
(2.4), θi(Pj) can be omitted from equation (3.16) in [7].)

The procedure now is very similar to the procedure used on pp. 99–101
in [7]. Hence we refer the reader to pp. 99–101 in [7] for the details. However
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we shall mention a few modifications. The matrix Γ will now be a t×(u+ t)
matrix with entries in Fp whose first t−1 rows are arbitrary and whose last
row has entries determined by an equation analogous to equation (2.24).
The quantities δ0(Pi) and δ(Pi,Pj) will be replaced by

δj(Pi) =
{

1 if νj(Pi) = ζ
γij
p ,

0 otherwise,
for 1 ≤ i ≤ t, 1 ≤ j ≤ u;

δ(Pi,Pj) =
{

1 if νj(Pi) = ζ
γij
p ,

0 otherwise,
for j − u < i ≤ t,

u + 1 ≤ j ≤ u + t− 1;

δ(Pi,Pj) =
{

1 if λi(Pj−u) = ζ
γij
p ,

0 otherwise,
for 1 ≤ i ≤ t− 1, u + i < j ≤ u + t.

The analog of equation (3.33) in [7] is then

(2.25) d∞,i = lim
t→∞

wt−1,u+t,i

where wt−1,u+t,i is the probability that a randomly chosen (t− 1)× (u + t)
matrix over Fp has rank equal to t−1−i. The formula for d∞,i in Theorem 1
then follows from equation (2.25) and from Theorem 1.4 in [4].

R e m a r k. The formula for d∞,i in Theorem 1 is not valid for certain
fields F that contain a primitive pth root of unity ζp (cf. [6] and [8]). One
difference between the case where ζp 6∈ F and the case where ζp ∈ F con-
cerns the relationship between µi and πi. (For definitions of µi and πi, see
discussion preceding equation (2.2) and equations (2.3) and (2.4).) If we let
F ′ = F (ζp) when ζp 6∈ F , then F ′( p

√
µi) and F ′( p

√
πi) are disjoint exten-

sions of F ′ since F ′( p
√

µi) is an abelian extension of F , but F ′( p
√

πi) is not
an abelian extension of F . However if ζp ∈ F , then it could happen that
µi = πi. For example, if p = 3 and F = Q(ζ3), then µi and πi can be chosen
so that µi = πi if (πi) is a prime ideal with N((πi)) ≡ 1 (mod 9).

References

[1] E. Art in and J. Tate, Class Field Theory , Benjamin, New York 1967.
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