On p-class groups of cyclic extensions of prime degree p of number fields

by
Frank Gerth III (Austin, Tex.)

1. Introduction. Let \boldsymbol{Q} denote the field of rational numbers, and let F be a finite extension field of \boldsymbol{Q}. Let p be an odd prime number which does not divide the class number of F and for which $\zeta_{p} \notin F$, where ζ_{p} is a primitive p th root of unity. (Of course all but finitely many primes p satisfy these conditions for a given field F.) If I is a nonzero ideal in the ring of integers \mathcal{O}_{F}, let $N(I)$ denote the absolute norm of I. Equivalently, $N(I)=\left[\mathcal{O}_{F}: I\right]$. Let K be a cyclic extension of F of degree p, and let σ be a generator of $\operatorname{Gal}(K / F)$. Let C_{K} denote the p-class group of K (i.e., the Sylow p-subgroup of the ideal class group of K), and let $C_{K}^{(1-\sigma)^{i}}=$ $\left\{a^{(1-\sigma)^{i}}: a \in C_{K}\right\}$ for $i=1,2, \ldots$ Since we have assumed p does not divide the class number of F, then it is easy to see that $C_{K} / C_{K}^{1-\sigma}$ is an elementary abelian p-group (which we may view as a vector space over the finite field \boldsymbol{F}_{p}), and

$$
\begin{equation*}
\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K} / C_{K}^{1-\sigma}\right)=t-1-\beta \tag{1.1}
\end{equation*}
$$

where t is the number of primes that ramify in K / F, and

$$
\begin{equation*}
p^{\beta}=\left[E_{F}:\left(E_{F} \cap N_{K / F} K^{*}\right)\right] \tag{1.2}
\end{equation*}
$$

(cf. [3]). Here E_{F} is the group of units of F, and $N_{K / F}$ is the norm map from K^{*} to F^{*}.

Since the structure of $C_{K} / C_{K}^{1-\sigma}$ is known, we focus our attention on $C_{K}^{1-\sigma}$. We let

$$
\begin{equation*}
r_{K}=\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K}^{1-\sigma} / C_{K}^{(1-\sigma)^{2}}\right) . \tag{1.3}
\end{equation*}
$$

Equivalently r_{K} is the minimal number of generators of $C_{K}^{1-\sigma}$ as a module over $\operatorname{Gal}(K / F)$. We let $D_{K / F}$ denote the relative discriminant of K / F. For each positive integer t, each nonnegative integer i, and each positive real
number x, we define

$$
\begin{align*}
A_{t}= & \{\text { cyclic extensions } K \text { of } F \text { of degree } p \text { with } \tag{1.4}\\
& \text { exactly } t \text { primes of } F \text { ramified in } K / F\}, \\
A_{t ; x}= & \left\{K \in A_{t}: N\left(D_{K / F}\right) \leq x^{p-1}\right\}, \tag{1.5}\\
A_{t, i ; x}= & \left\{K \in A_{t ; x}: r_{K}=i\right\}, \tag{1.6}\\
d_{t, i}= & \lim _{x \rightarrow \infty} \frac{\left|A_{t, i ; x}\right|}{\left|A_{t ; x}\right|}, \tag{1.7}\\
d_{\infty, i}= & \lim _{t \rightarrow \infty} d_{t, i} . \tag{1.8}
\end{align*}
$$

Here $|S|$ denotes the cardinality of a set S. Our goal is to prove the following theorem.

Theorem 1. Let F be a finite extension of \boldsymbol{Q}. Let p be an odd prime number which does not divide the class number of F and for which $\zeta_{p} \notin F$, where ζ_{p} is a primitive p-th root of unity. For each cyclic extension K of F of degree p, let $N\left(D_{K / F}\right)$ denote the absolute norm of the relative discriminant of K / F. Let C_{K} denote the p-class group of K; let σ be a generator of $\operatorname{Gal}(K / F)$; and let r_{K} denote the minimal number of generators of $C_{K}^{1-\sigma}$ as a module over $\operatorname{Gal}(K / F)$. Let u denote the rank of the group of units of F. Finally let $d_{\infty, i}$ be the density defined by equation (1.8). (Also see equations (1.4) through (1.7).) Then

$$
d_{\infty, i}=\frac{p^{-i(i+u+1)} \prod_{k=1}^{\infty}\left(1-p^{-k}\right)}{\left[\prod_{k=1}^{i}\left(1-p^{-k}\right)\right]\left[\prod_{k=1}^{i+u+1}\left(1-p^{-k}\right)\right]} \quad \text { for } i=0,1,2, \ldots
$$

Remark. Certain special cases of Theorem 1 have been proved in other papers; namely, the case where $F=\boldsymbol{Q}$ (see [5]) and the case where F is a quadratic extension of \boldsymbol{Q} (see [7]). For some partial results when $\zeta_{p} \in F$, see [6] and [8].

Remark. As $p \rightarrow \infty, d_{\infty, 0} \rightarrow 1$ and $d_{\infty, i} \rightarrow 0$ for $i \geq 1$. So $C_{K}^{1-\sigma}$ is very likely to be trivial for large p. Also $C_{K}^{1-\sigma}$ is very likely to be trivial if u is large. For numerical values of $d_{\infty, i}$ when $u=0$ or $1, p=3,5,7$, or 11 , and $i=0,1,2,3$, or 4 , see the appendix of $[7]$.
2. Proof of Theorem 1. We let notation be the same as in the previous section. Since Theorem 1 has already been proved when $F=\boldsymbol{Q}$ and when F is a quadratic extension of \boldsymbol{Q}, we may assume $[F: \boldsymbol{Q}] \geq 3$, and hence the group of units E_{F} of F is an infinite group. We let $\varepsilon_{1}, \ldots, \varepsilon_{u}$ be a system of fundamental units of F. Our method of proof is a generalization of the method used when F is a real quadratic extension of \boldsymbol{Q} (see [7], Section 3). For a cyclic extension K of F of degree p, we let t denote the number of primes of F that ramify in K. Then $N\left(D_{K / F}\right)=p^{a} N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)^{p-1}$, where
$a \geq 0 ; \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}$ are distinct primes of F with $N\left(\mathfrak{p}_{i}\right) \equiv 1(\bmod p)$ for $1 \leq i \leq s$; and $s \leq t$. Furthermore $s=t$ precisely when $a=0$. When calculating $d_{t, i}$ in equation (1.7), we may omit the fields where $a>0$ since when $s<t$,

$$
\left|\left\{p^{a} N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)^{p-1} \leq x^{p-1}\right\}\right|=o\left(\left|\left\{N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}\right)^{p-1} \leq x^{p-1}\right\}\right|\right) \quad \text { as } x \rightarrow \infty .
$$

So we may assume

$$
N\left(D_{K / F}\right)=N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}\right)^{p-1} \quad \text { with } N\left(\mathfrak{p}_{i}\right) \equiv 1(\bmod p) \quad \text { for } 1 \leq i \leq t
$$

Now we let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{u}$ be primes of F satisfying the following conditions:
(i) $N\left(\mathfrak{q}_{i}\right) \equiv 1(\bmod p)$ for $1 \leq i \leq u$;
(ii) ε_{j} is a p th power residue $\left(\bmod \mathfrak{q}_{i}\right)$ for all $j \neq i$;
(iii) ε_{i} is a p th power nonresidue $\left(\bmod \mathfrak{q}_{i}\right)$ for $1 \leq i \leq u$.
(Remark. To find such a prime \mathfrak{q}_{i}, we can proceed as follows. Let

$$
F_{i}=F\left(\zeta_{p}, \sqrt[p]{\varepsilon_{1}}, \ldots, \sqrt[p]{\varepsilon_{i-1}}, \sqrt[p]{\varepsilon_{i+1}}, \ldots, \sqrt[p]{\varepsilon_{u}}\right)
$$

Then \mathfrak{q}_{i} is a prime of F which splits completely in F_{i} / F but for which a prime in F_{i} above \mathfrak{q}_{i} is inert in $\left.F_{i}\left(\sqrt[p]{\varepsilon_{i}}\right) / F_{i}.\right)$ The primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{u}$ shall be fixed throughout this paper, and since

$$
\begin{aligned}
&\left|\left\{N\left(\mathfrak{q}_{1} \ldots \mathfrak{q}_{u}\right)^{p-1} N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)^{p-1} \leq x^{p-1}\right\}\right| \\
&=o\left(\left|\left\{N\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}\right)^{p-1} \leq x^{p-1}\right\}\right|\right) \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

if $s<t$, we may assume $\mathfrak{p}_{i} \neq \mathfrak{q}_{j}$ for all i and j.
Next we define groups G_{i} for $1 \leq i \leq t$ by

$$
\begin{equation*}
G_{i}=\left(\mathcal{O}_{F} / \mathfrak{p}_{i} \mathfrak{q}_{1} \ldots \mathfrak{q}_{u}\right)^{\times} /\left(E_{F} / E_{F}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

where \mathcal{O}_{F} is the ring of integers of F, and $E_{F}^{\prime}=\left\{\varepsilon \in E_{F}: \varepsilon \equiv 1\right.$ $\left.\left(\bmod \mathfrak{p}_{i} \mathfrak{q}_{1} \ldots \mathfrak{q}_{u}\right)\right\}$. Because of the way we have chosen $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{u}$, there is a unique cyclic extension K_{i} of F of degree p whose Galois group is isomorphic to a quotient group of G_{i} such that \mathfrak{p}_{i} ramifies in K_{i} / F, but no other primes ramify in K_{i} / F except perhaps $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{u}$. (Remark. \mathfrak{p}_{i} will be the only prime ramifying in K_{i} / F when ε_{j} is a p th power residue $\left(\bmod \mathfrak{p}_{i}\right)$ for $1 \leq j \leq u$.) We let $F^{\prime}=F\left(\zeta_{p}\right)$ and $L_{i}=K_{i} \cdot F^{\prime}$ for $1 \leq i \leq t$. Since L_{i} / F^{\prime} is a Kummer extension, there exists $\mu_{i} \in F^{\prime}$ such that $L_{i}=F^{\prime}\left(\sqrt[p]{\mu_{i}}\right)$. Let \mathfrak{P}_{i} be a prime of F^{\prime} above \mathfrak{p}_{i}. By replacing μ_{i} by a suitable power of μ_{i}, we may assume that the power of \mathfrak{P}_{i} dividing μ_{i} is $\mathfrak{P}_{i}^{b_{i}}$ with $b_{i} \equiv 1(\bmod p)$. Now let $L=K \cdot F^{\prime}$. Then $L=F^{\prime}(\sqrt[p]{\mu})$ with

$$
\begin{equation*}
\mu=\mu_{1}^{a_{1}} \ldots \mu_{t}^{a_{t}} \tag{2.2}
\end{equation*}
$$

for some integers a_{i} with $1 \leq a_{i} \leq p-1$ for $1 \leq i \leq t$.
Next we let h denote the class number of F. Since $p-h$ by assumption, there exists a positive integer h^{\prime} such that $h h^{\prime} \equiv 1(\bmod p)$. We let $\pi_{j}^{\prime} \in \mathcal{O}_{F}$
satisfy

$$
\begin{equation*}
\mathfrak{p}_{j}^{h h^{\prime}}=\pi_{j}^{\prime} \mathcal{O}_{F} \tag{2.3}
\end{equation*}
$$

for $1 \leq j \leq t$. Now recall that ε_{i} is a p th power nonresidue $\left(\bmod \mathfrak{q}_{i}\right)$. So there exists an integer $c_{i j}$ with $0 \leq c_{i j} \leq p-1$ such that $\varepsilon_{i}^{c_{i j}} \pi_{j}^{\prime}$ is a p th power residue $\left(\bmod \mathfrak{q}_{i}\right)$. Let

$$
\begin{equation*}
\pi_{j}=\varepsilon_{1}^{c_{1 j}} \ldots \varepsilon_{u}^{c_{u j}} \pi_{j}^{\prime} \tag{2.4}
\end{equation*}
$$

for $1 \leq j \leq t$. Since ε_{k} is a p th power residue $\left(\bmod \mathfrak{q}_{i}\right)$ for $k \neq i$, then π_{j} is a p th power residue $\left(\bmod \mathfrak{q}_{i}\right)$ for $1 \leq i \leq u$ and $1 \leq j \leq t$. Also π_{j} is a generator of the ideal $\mathfrak{p}_{j}^{h h^{\prime}}$ for $1 \leq j \leq t$.

Now we let M_{K} be the $t \times(u+t)$ matrix over \boldsymbol{F}_{p} defined as follows:

$$
\begin{gather*}
M_{K}=\left[m_{i j}\right], \quad m_{i j} \in \boldsymbol{F}_{p}, \quad 1 \leq i \leq t, 1 \leq j \leq u+t, \tag{2.5}\\
\zeta_{p}^{m_{i j}}= \begin{cases}\left(\frac{\varepsilon_{j}, \mu}{\mathfrak{P}_{i}}\right) & \text { for } 1 \leq i \leq t \text { and } 1 \leq j \leq u, \\
\left(\frac{\pi_{j-u}, \mu}{\mathfrak{P}_{i}}\right) & \text { for } 1 \leq i \leq t \text { and } u+1 \leq j \leq u+t .\end{cases} \tag{2.6}
\end{gather*}
$$

The Hilbert symbol $\left(\frac{\alpha, \mu}{\mathfrak{P}_{i}}\right) \in\left\langle\zeta_{p}\right\rangle$ is defined by

$$
\left(\frac{\alpha, L / F^{\prime}}{\mathfrak{P}_{i}}\right) \sqrt[p]{\mu}=\left(\frac{\alpha, \mu}{\mathfrak{P}_{i}}\right) \sqrt[p]{\mu}
$$

where α is a nonzero element of F^{\prime}, and $\left(\frac{\alpha, L / F^{\prime}}{\mathfrak{P}_{i}}\right)$ is the norm residue symbol. We note that the product formula for Hilbert symbols implies that the sum of the entries in each column of M_{K} is zero. Our matrix M_{K} is a generalization of the matrix M_{K} on p. 96 in [7] that was used in the case where F is a real quadratic fields. As in [7], the matrix M_{K} provides information about $\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K} / C_{K}^{1-\sigma}\right)$ and $\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K}^{1-\sigma} / C_{K}^{(1-\sigma)^{2}}\right)$. More precisely

$$
\begin{equation*}
\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K} / C_{K}^{1-\sigma}\right)=t-1-\operatorname{rank} M_{0} \tag{2.7}
\end{equation*}
$$

where M_{0} is the $t \times u$ matrix consisting of the first u columns of M_{K}, and

$$
\begin{equation*}
r_{K}=\operatorname{dim}_{\mathcal{F}_{p}}\left(C_{K}^{1-\sigma} / C_{K}^{(1-\sigma)^{2}}\right)=t-1-\operatorname{rank} M_{K}-\omega \tag{2.8}
\end{equation*}
$$

where $0 \leq \omega \leq u$. Also $\omega=0$ when rank $M_{0}=u$. As $t \rightarrow \infty$, the probability approaches 1 that rank $M_{0}=u$. So the error introduced by disregarding ω disappears when we calculate the limit in equation (1.8).

Now from properties of Hilbert symbols (cf. [1, Chapter 12] or [2, pp. 348354]),

$$
\begin{equation*}
\left(\frac{\varepsilon_{j}, \mu}{\mathfrak{P}_{i}}\right)=\left(\frac{\varepsilon_{j}, \mu_{i}^{a_{i}}}{\mathfrak{P}_{i}}\right)=\left(\frac{\mu_{i}, \varepsilon_{j}}{\mathfrak{P}_{i}}\right)^{-a_{i}}=\left(\frac{\varepsilon_{j}}{\mathfrak{P}_{i}}\right)^{-a_{i}} \tag{2.9}
\end{equation*}
$$

for $1 \leq i \leq t$ and $1 \leq j \leq u$. Here $\left(\frac{\varepsilon_{j}}{\mathfrak{P}_{i}}\right) \in\left\langle\zeta_{p}\right\rangle$ is the p th power residue symbol defined by

$$
\left(\frac{F^{\prime}\left(\sqrt[p]{\varepsilon_{j}}\right) / F^{\prime}}{\mathfrak{P}_{i}}\right) \sqrt[p]{\varepsilon_{j}}=\left(\frac{\varepsilon_{j}}{\mathfrak{P}_{i}}\right) \sqrt[p]{\varepsilon_{j}}, \quad \text { and } \quad\left(\frac{F^{\prime}\left(\sqrt[p]{\varepsilon_{j}}\right) / F^{\prime}}{\mathfrak{P}_{i}}\right)
$$

is the Artin symbol. Similarly

$$
\begin{equation*}
\left(\frac{\pi_{j-u}, \mu}{\mathfrak{P}_{i}}\right)=\left(\frac{\pi_{j-u}, \mu_{i}^{a_{i}}}{\mathfrak{P}_{i}}\right)=\left(\frac{\mu_{i}, \pi_{j-u}}{\mathfrak{P}_{i}}\right)^{-a_{i}}=\left(\frac{\pi_{j-u}}{\mathfrak{P}_{i}}\right)^{-a_{i}} \tag{2.10}
\end{equation*}
$$

for $1 \leq i \leq t, u+1 \leq j \leq u+t$, and $i \neq j-u$. Alternatively for $i \neq j-u$ we can start with

$$
\begin{equation*}
\left(\frac{\pi_{j-u}, \mu}{\mathfrak{P}_{i}}\right)=\left(\frac{\pi_{j-u}, \mu_{i}^{a_{i}}}{\mathfrak{P}_{i}}\right)=\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{i}}\right)^{a_{i}} \tag{2.11}
\end{equation*}
$$

We note that the product formula $\prod_{\mathfrak{P}}\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}}\right)=1$ over all primes \mathfrak{P} of F^{\prime} reduces to

$$
\begin{equation*}
\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{i}}\right)^{d}\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{j-u}}\right)^{d}\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{Q}_{1}}\right)^{d} \ldots\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{Q}_{u}}\right)^{d}=1 \tag{2.12}
\end{equation*}
$$

where \mathfrak{Q}_{k} is a prime of F^{\prime} above \mathfrak{q}_{k} for $1 \leq k \leq u$, and $d=\left[F^{\prime}: F\right]$. However we recall that π_{j-u} was defined in equation (2.4) so that π_{j-u} is a p th power residue $\left(\bmod \mathfrak{q}_{k}\right)$ for $u+1 \leq j \leq u+t$ and $1 \leq k \leq u$. Hence $\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{Q}_{k}}\right)=1$ for $u+1 \leq j \leq u+t$ and $1 \leq k \leq u$. So from equation (2.12), we get

$$
\begin{equation*}
\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{i}}\right)\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{j-u}}\right)=1 \tag{2.13}
\end{equation*}
$$

Then from equations (2.11) and (2.13), we get

$$
\begin{equation*}
\left(\frac{\pi_{j-u}, \mu}{\mathfrak{P}_{i}}\right)=\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{i}}\right)^{a_{i}}=\left(\frac{\pi_{j-u}, \mu_{i}}{\mathfrak{P}_{j-u}}\right)^{-a_{i}}=\left(\frac{\mu_{i}}{\mathfrak{P}_{j-u}}\right)^{-a_{i}} \tag{2.14}
\end{equation*}
$$

for $1 \leq i \leq t, u+1 \leq j \leq u+t$, and $i \neq j-u$.
We now define characters λ_{i} and ν_{j} as follows

$$
\begin{equation*}
\lambda_{i}(I)=\left(\frac{\mu_{i}}{I}\right)^{-1}, \quad 1 \leq i \leq t \tag{2.15}
\end{equation*}
$$

for ideals I of F^{\prime} relatively prime to $\mathfrak{p}_{i} \mathfrak{q}_{1} \ldots \mathfrak{q}_{u} \mathcal{O}_{F^{\prime}}$;

$$
\begin{equation*}
\nu_{j}(I)=\left(\frac{\varepsilon_{j}}{I}\right)^{-1}, \quad 1 \leq j \leq u \tag{2.16}
\end{equation*}
$$

for ideals I of F^{\prime} relatively prime to $p \mathcal{O}_{F^{\prime}}$; and

$$
\begin{equation*}
\nu_{j}(I)=\left(\frac{\pi_{j-u}}{I}\right)^{-1}, \quad u+1 \leq j \leq u+t \tag{2.17}
\end{equation*}
$$

for ideals I of F^{\prime} relatively prime to $p \mathfrak{p}_{j-u} \mathcal{O}_{F^{\prime}}$. Then from equations (2.6), (2.9), (2.10), and (2.14) through (2.17), we get

$$
\zeta_{p}^{m_{i j}}= \begin{cases}\left(\nu_{j}\left(\mathfrak{P}_{i}\right)\right)^{a_{i}} & \text { for } 1 \leq i \leq t \text { and } 1 \leq j \leq u, \tag{2.18}\\ \left.\left(\nu_{j} \mathfrak{P}_{i}\right)\right)^{a_{i}} & \text { for } j-u<i \leq t \text { and } u+1 \leq j \leq u+t-1, \\ \left(\lambda_{i}\left(\mathfrak{P}_{j-u}\right)\right)^{a_{i}} & \text { for } 1 \leq i \leq t-1 \text { and } u+i<j \leq u+t .\end{cases}
$$

Also

$$
\begin{equation*}
m_{(j-u) j}=-\sum_{\substack{k=1 \\ k \neq j-u}}^{t} m_{k j} \quad \text { for } u+1 \leq j \leq u+t \tag{2.19}
\end{equation*}
$$

since the sum of the entries in each column of M_{K} is zero. We let a_{i}^{\prime} be the integer with $1 \leq a_{i}^{\prime} \leq p-1$ such that

$$
a_{i} a_{i}^{\prime} \equiv 1(\bmod p) \quad \text { for } 1 \leq i \leq t .
$$

By multiplying the i th row of M_{K} by a_{i}^{\prime} for each i, we get a new matrix M_{K}^{\prime} defined as follows.

$$
\begin{equation*}
M_{K}^{\prime}=\left[m_{i j}^{\prime}\right], \quad m_{i j}^{\prime} \in \boldsymbol{F}_{p}, \quad 1 \leq i \leq t, \quad 1 \leq j \leq u+t \tag{2.21}
\end{equation*}
$$

with

$$
\zeta_{p}^{m_{m j}^{\prime}}= \begin{cases}\nu_{j}\left(\mathfrak{P}_{i}\right) & \text { for } 1 \leq i \leq t \text { and } 1 \leq j \leq u, \tag{2.22}\\ \nu_{j}\left(\mathfrak{P}_{i}\right) & \text { for } j-u<i \leq t \text { and } u+1 \leq j \leq u+t-1, \\ \lambda_{i}\left(\mathfrak{P}_{j-u}\right) & \text { for } 1 \leq i \leq t-1 \text { and } u+i<j \leq u+t\end{cases}
$$

and

$$
m_{(j-u) j}^{\prime}=-a_{j-u}^{\prime} \sum_{\substack{k=1 \\ k \neq j-u}}^{t} a_{k} m_{k j}^{\prime} \quad \text { for } u+1 \leq j \leq u+t .
$$

Furthermore

$$
\begin{equation*}
\operatorname{rank} M_{K}^{\prime}=\operatorname{rank} M_{K} . \tag{2.23}
\end{equation*}
$$

We observe that $m_{(j-u) j}^{\prime}$ is known if we know a_{1}, \ldots, a_{t} and the values of $m_{k j}^{\prime}$ for $1 \leq k \leq t$ and $k \neq j-u$. Also $m_{t j}^{\prime}$ is known if we know a_{1}, \ldots, a_{t} and the values $m_{k j}^{\prime}$ for $1 \leq k \leq t-1$; that is:

$$
\begin{equation*}
m_{t j}^{\prime}=-a_{t}^{\prime} \sum_{k=1}^{t-1} a_{k} m_{k j}^{\prime} \quad \text { for } 1 \leq j \leq u+t \tag{2.24}
\end{equation*}
$$

Equations (2.21) through (2.24) are the analogs of equations (3.15) through (3.18) in [7]. (Remark. Because of the way we defined π_{j} in equation (2.4), $\theta_{i}\left(\mathfrak{P}_{j}\right)$ can be omitted from equation (3.16) in [7].)

The procedure now is very similar to the procedure used on pp. 99-101 in [7]. Hence we refer the reader to pp. 99-101 in [7] for the details. However
we shall mention a few modifications. The matrix Γ will now be a $t \times(u+t)$ matrix with entries in \boldsymbol{F}_{p} whose first $t-1$ rows are arbitrary and whose last row has entries determined by an equation analogous to equation (2.24). The quantities $\delta_{0}\left(\mathfrak{P}_{i}\right)$ and $\delta\left(\mathfrak{P}_{i}, \mathfrak{P}_{j}\right)$ will be replaced by

$$
\begin{aligned}
& \delta_{j}\left(\mathfrak{P}_{i}\right)=\left\{\begin{array}{lll}
1 & \text { if } \nu_{j}\left(\mathfrak{P}_{i}\right)=\zeta_{p}^{\gamma_{i j}}, & \text { for } 1 \leq i \leq t, 1 \leq j \leq u ; \\
0 & \text { otherwise },
\end{array}\right. \\
& \delta\left(\mathfrak{P}_{i}, \mathfrak{P}_{j}\right)= \begin{cases}1 & \text { if } \nu_{j}\left(\mathfrak{P}_{i}\right)=\zeta_{p}^{\gamma_{i j}},\end{cases} \\
& 0 \text { otherwise }, \\
& \delta\left(\mathfrak{P}_{i}, \mathfrak{P}_{j}\right)= \begin{cases}1 & \text { if } \lambda_{i}\left(\mathfrak{P}_{j-u}\right)=\zeta_{p}^{\gamma_{i j}}, \\
0 & \text { otherwise },\end{cases} \\
& \text { for } 1 \leq i \leq t \leq t, 1 \leq u+u+t-1 ;
\end{aligned},
$$

The analog of equation (3.33) in [7] is then

$$
\begin{equation*}
d_{\infty, i}=\lim _{t \rightarrow \infty} w_{t-1, u+t, i} \tag{2.25}
\end{equation*}
$$

where $w_{t-1, u+t, i}$ is the probability that a randomly chosen $(t-1) \times(u+t)$ matrix over \boldsymbol{F}_{p} has rank equal to $t-1-i$. The formula for $d_{\infty, i}$ in Theorem 1 then follows from equation (2.25) and from Theorem 1.4 in [4].

Remark. The formula for $d_{\infty, i}$ in Theorem 1 is not valid for certain fields F that contain a primitive p th root of unity ζ_{p} (cf. [6] and [8]). One difference between the case where $\zeta_{p} \notin F$ and the case where $\zeta_{p} \in F$ concerns the relationship between μ_{i} and π_{i}. (For definitions of μ_{i} and π_{i}, see discussion preceding equation (2.2) and equations (2.3) and (2.4).) If we let $F^{\prime}=F\left(\zeta_{p}\right)$ when $\zeta_{p} \notin F$, then $F^{\prime}\left(\sqrt[p]{\mu_{i}}\right)$ and $F^{\prime}\left(\sqrt[p]{\pi_{i}}\right)$ are disjoint extensions of F^{\prime} since $F^{\prime}\left(\sqrt[p]{\mu_{i}}\right)$ is an abelian extension of F, but $F^{\prime}\left(\sqrt[p]{\pi_{i}}\right)$ is not an abelian extension of F. However if $\zeta_{p} \in F$, then it could happen that $\mu_{i}=\pi_{i}$. For example, if $p=3$ and $F=\boldsymbol{Q}\left(\zeta_{3}\right)$, then μ_{i} and π_{i} can be chosen so that $\mu_{i}=\pi_{i}$ if $\left(\pi_{i}\right)$ is a prime ideal with $N\left(\left(\pi_{i}\right)\right) \equiv 1(\bmod 9)$.

References

[1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York 1967.
[2] J. Cassels and A. Fröhlich, Algebraic Number Theory, Thompson, Washington, D.C., 1967.
[3] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281-285.
[4] F. Gerth, Limit probabilities for coranks of matrices over $\mathrm{GF}(q)$, Linear and Multilinear Algebra 19 (1986), 79-93.
[5] -, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), 1-8.
[6] -, Densities for 3-class ranks in certain cubic extensions, J. Reine Angew. Math. 381 (1987), 161-180.
[7] F. Gerth, On p-class groups of cyclic extensions of prime degree p of quadratic fields, Mathematika 36 (1989), 89-102.
[8] -, On p-class groups of cyclic extension of prime degree p of certain cyclotomic fields, Manuscripta Math. 70 (1990), 39-50.

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712
U.S.A.

