On p-class groups of cyclic extensions of prime degree p of number fields

by

FRANK GERTH III (Austin, Tex.)

1. Introduction. Let Q denote the field of rational numbers, and let F be a finite extension field of Q. Let p be an odd prime number which does not divide the class number of F and for which $\zeta_p \notin F$, where ζ_p is a primitive pth root of unity. (Of course all but finitely many primes p satisfy these conditions for a given field F.) If I is a nonzero ideal in the ring of integers \mathcal{O}_F , let N(I) denote the absolute norm of I. Equivalently, $N(I) = [\mathcal{O}_F : I]$. Let K be a cyclic extension of F of degree p, and let σ be a generator of $\operatorname{Gal}(K/F)$. Let C_K denote the p-class group of K (i.e., the Sylow p-subgroup of the ideal class group of K), and let $C_K^{(1-\sigma)^i} = \{a^{(1-\sigma)^i} : a \in C_K\}$ for $i = 1, 2, \ldots$ Since we have assumed p does not divide the class number of F, then it is easy to see that $C_K/C_K^{1-\sigma}$ is an elementary abelian p-group (which we may view as a vector space over the finite field F_p), and

(1.1)
$$\dim_{\mathcal{F}_p}(C_K/C_K^{1-\sigma}) = t - 1 - \beta$$

where t is the number of primes that ramify in K/F, and

(1.2)
$$p^{\beta} = [E_F : (E_F \cap N_{K/F}K^*)]$$

(cf. [3]). Here E_F is the group of units of F, and $N_{K/F}$ is the norm map from K^* to F^* .

Since the structure of $C_K/C_K^{1-\sigma}$ is known, we focus our attention on $C_K^{1-\sigma}$. We let

(1.3)
$$r_K = \dim_{\mathcal{F}_p} (C_K^{1-\sigma} / C_K^{(1-\sigma)^2}).$$

Equivalently r_K is the minimal number of generators of $C_K^{1-\sigma}$ as a module over $\operatorname{Gal}(K/F)$. We let $D_{K/F}$ denote the relative discriminant of K/F. For each positive integer t, each nonnegative integer i, and each positive real

number x, we define

(1.4) $A_t = \{ \text{cyclic extensions } K \text{ of } F \text{ of degree } p \text{ with} \\ \text{exactly } t \text{ primes of } F \text{ ramified in } K/F \},$

(1.5)
$$A_{t;x} = \{ K \in A_t : N(D_{K/F}) \le x^{p-1} \},\$$

(1.6)
$$A_{t,i;x} = \{ K \in A_{t;x} : r_K = i \},$$

(1.7)
$$d_{t,i} = \lim_{x \to \infty} \frac{|A_{t,i;x}|}{|A_{t\cdot x}|},$$

(1.8)
$$d_{\infty,i} = \lim_{t \to \infty} d_{t,i}.$$

Here |S| denotes the cardinality of a set S. Our goal is to prove the following theorem.

THEOREM 1. Let F be a finite extension of \mathbf{Q} . Let p be an odd prime number which does not divide the class number of F and for which $\zeta_p \notin F$, where ζ_p is a primitive p-th root of unity. For each cyclic extension Kof F of degree p, let $N(D_{K/F})$ denote the absolute norm of the relative discriminant of K/F. Let C_K denote the p-class group of K; let σ be a generator of $\operatorname{Gal}(K/F)$; and let r_K denote the minimal number of generators of $C_K^{1-\sigma}$ as a module over $\operatorname{Gal}(K/F)$. Let u denote the rank of the group of units of F. Finally let $d_{\infty,i}$ be the density defined by equation (1.8). (Also see equations (1.4) through (1.7).) Then

$$d_{\infty,i} = \frac{p^{-i(i+u+1)} \prod_{k=1}^{\infty} (1-p^{-k})}{[\prod_{k=1}^{i} (1-p^{-k})] [\prod_{k=1}^{i+u+1} (1-p^{-k})]} \quad \text{for } i = 0, 1, 2, \dots$$

Remark. Certain special cases of Theorem 1 have been proved in other papers; namely, the case where $F = \mathbf{Q}$ (see [5]) and the case where F is a quadratic extension of \mathbf{Q} (see [7]). For some partial results when $\zeta_p \in F$, see [6] and [8].

Remark. As $p \to \infty$, $d_{\infty,0} \to 1$ and $d_{\infty,i} \to 0$ for $i \ge 1$. So $C_K^{1-\sigma}$ is very likely to be trivial for large p. Also $C_K^{1-\sigma}$ is very likely to be trivial if u is large. For numerical values of $d_{\infty,i}$ when u = 0 or 1, p = 3, 5, 7, or 11, and i = 0, 1, 2, 3, or 4, see the appendix of [7].

2. Proof of Theorem 1. We let notation be the same as in the previous section. Since Theorem 1 has already been proved when $F = \mathbf{Q}$ and when F is a quadratic extension of \mathbf{Q} , we may assume $[F : \mathbf{Q}] \geq 3$, and hence the group of units E_F of F is an infinite group. We let $\varepsilon_1, \ldots, \varepsilon_u$ be a system of fundamental units of F. Our method of proof is a generalization of the method used when F is a real quadratic extension of \mathbf{Q} (see [7], Section 3). For a cyclic extension K of F of degree p, we let t denote the number of primes of F that ramify in K. Then $N(D_{K/F}) = p^a N(\mathfrak{p}_1 \ldots \mathfrak{p}_s)^{p-1}$, where

 $a \geq 0$; $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ are distinct primes of F with $N(\mathfrak{p}_i) \equiv 1 \pmod{p}$ for $1 \leq i \leq s$; and $s \leq t$. Furthermore s = t precisely when a = 0. When calculating $d_{t,i}$ in equation (1.7), we may omit the fields where a > 0 since when s < t,

$$|\{p^a N(\mathfrak{p}_1 \dots \mathfrak{p}_s)^{p-1} \le x^{p-1}\}| = o(|\{N(\mathfrak{p}_1 \dots \mathfrak{p}_t)^{p-1} \le x^{p-1}\}|) \quad \text{as } x \to \infty.$$

So we may assume

$$N(D_{K/F}) = N(\mathfrak{p}_1 \dots \mathfrak{p}_t)^{p-1} \quad \text{with } N(\mathfrak{p}_i) \equiv 1 \pmod{p} \quad \text{for } 1 \le i \le t.$$

Now we let q_1, \ldots, q_u be primes of F satisfying the following conditions:

- (i) $N(\mathbf{q}_i) \equiv 1 \pmod{p}$ for $1 \leq i \leq u$;
- (ii) ε_i is a *p*th power residue (mod \mathbf{q}_i) for all $j \neq i$;
- (iii) ε_i is a *p*th power nonresidue (mod \mathbf{q}_i) for $1 \leq i \leq u$.

(Remark. To find such a prime q_i , we can proceed as follows. Let

$$F_i = F(\zeta_p, \sqrt[p]{\varepsilon_1}, \dots, \sqrt[p]{\varepsilon_{i-1}}, \sqrt[p]{\varepsilon_{i+1}}, \dots, \sqrt[p]{\varepsilon_u})$$

Then \mathbf{q}_i is a prime of F which splits completely in F_i/F but for which a prime in F_i above \mathbf{q}_i is inert in $F_i(\sqrt[n]{\varepsilon_i})/F_i$.) The primes $\mathbf{q}_1, \ldots, \mathbf{q}_u$ shall be fixed throughout this paper, and since

$$|\{N(\mathfrak{q}_1\dots\mathfrak{q}_u)^{p-1}N(\mathfrak{p}_1\dots\mathfrak{p}_s)^{p-1} \le x^{p-1}\}| = o(|\{N(\mathfrak{p}_1\dots\mathfrak{p}_t)^{p-1} \le x^{p-1}\}|) \text{ as } x \to \infty$$

if s < t, we may assume $\mathfrak{p}_i \neq \mathfrak{q}_j$ for all i and j.

Next we define groups G_i for $1 \le i \le t$ by

(2.1)
$$G_i = (\mathcal{O}_F/\mathfrak{p}_i\mathfrak{q}_1\ldots\mathfrak{q}_u)^{\times}/(E_F/E'_F)$$

where \mathcal{O}_F is the ring of integers of F, and $E'_F = \{\varepsilon \in E_F : \varepsilon \equiv 1 \pmod{\mathfrak{p}_i \mathfrak{q}_1 \dots \mathfrak{q}_u}\}$. Because of the way we have chosen $\mathfrak{q}_1, \dots, \mathfrak{q}_u$, there is a unique cyclic extension K_i of F of degree p whose Galois group is isomorphic to a quotient group of G_i such that \mathfrak{p}_i ramifies in K_i/F , but no other primes ramify in K_i/F except perhaps $\mathfrak{q}_1, \dots, \mathfrak{q}_u$. (Remark. \mathfrak{p}_i will be the only prime ramifying in K_i/F when ε_j is a *p*th power residue (mod \mathfrak{p}_i) for $1 \leq j \leq u$.) We let $F' = F(\zeta_p)$ and $L_i = K_i \cdot F'$ for $1 \leq i \leq t$. Since L_i/F' is a Kummer extension, there exists $\mu_i \in F'$ such that $L_i = F'(\sqrt[e]{\mu_i})$. Let \mathfrak{P}_i be a prime of F' above \mathfrak{p}_i . By replacing μ_i by a suitable power of μ_i , we may assume that the power of \mathfrak{P}_i dividing μ_i is $\mathfrak{P}_i^{b_i}$ with $b_i \equiv 1 \pmod{p}$. Now let $L = K \cdot F'$. Then $L = F'(\sqrt[e]{\mu_i})$ with

(2.2)
$$\mu = \mu_1^{a_1} \dots \mu_t^{a_t}$$

for some integers a_i with $1 \le a_i \le p-1$ for $1 \le i \le t$.

Next we let h denote the class number of F. Since p - h by assumption, there exists a positive integer h' such that $hh' \equiv 1 \pmod{p}$. We let $\pi'_i \in \mathcal{O}_F$

satisfy

(2.3)
$$\mathfrak{p}_j^{hh'} = \pi_j' \mathcal{O}_I$$

for $1 \leq j \leq t$. Now recall that ε_i is a *p*th power nonresidue (mod \mathfrak{q}_i). So there exists an integer c_{ij} with $0 \leq c_{ij} \leq p-1$ such that $\varepsilon_i^{c_{ij}} \pi'_j$ is a *p*th power residue (mod \mathfrak{q}_i). Let

(2.4)
$$\pi_j = \varepsilon_1^{c_{1j}} \dots \varepsilon_u^{c_{uj}} \pi'_j$$

for $1 \leq j \leq t$. Since ε_k is a *p*th power residue (mod \mathfrak{q}_i) for $k \neq i$, then π_j is a *p*th power residue (mod \mathfrak{q}_i) for $1 \leq i \leq u$ and $1 \leq j \leq t$. Also π_j is a generator of the ideal $\mathfrak{p}_j^{hh'}$ for $1 \leq j \leq t$.

Now we let M_K be the $t \times (u+t)$ matrix over F_p defined as follows:

(2.5)
$$M_{K} = [m_{ij}], \quad m_{ij} \in \mathbf{F}_{p}, \quad 1 \le i \le t, \ 1 \le j \le u+t,$$

(2.6)
$$\zeta_{p}^{m_{ij}} = \begin{cases} \left(\frac{\varepsilon_{j}, \mu}{\mathfrak{P}_{i}}\right) & \text{for } 1 \le i \le t \text{ and } 1 \le j \le u, \\ \left(\frac{\pi_{j-u}, \mu}{\mathfrak{P}_{i}}\right) & \text{for } 1 \le i \le t \text{ and } u+1 \le j \le u+t. \end{cases}$$

The Hilbert symbol $\left(\frac{\alpha,\mu}{\mathfrak{B}_i}\right) \in \langle \zeta_p \rangle$ is defined by

$$\left(\frac{\alpha, L/F'}{\mathfrak{P}_i}\right)\sqrt[p]{\mu} = \left(\frac{\alpha, \mu}{\mathfrak{P}_i}\right)\sqrt[p]{\mu}$$

where α is a nonzero element of F', and $\left(\frac{\alpha, L/F'}{\mathfrak{P}_i}\right)$ is the norm residue symbol. We note that the product formula for Hilbert symbols implies that the sum of the entries in each column of M_K is zero. Our matrix M_K is a generalization of the matrix M_K on p. 96 in [7] that was used in the case where F is a real quadratic fields. As in [7], the matrix M_K provides information about $\dim_{\mathcal{F}_p}(C_K/C_K^{1-\sigma})$ and $\dim_{\mathcal{F}_p}(C_K^{1-\sigma}/C_K^{(1-\sigma)^2})$. More precisely

(2.7)
$$\dim_{\mathcal{F}_p}(C_K/C_K^{1-\sigma}) = t - 1 - \operatorname{rank} M_0$$

where M_0 is the $t \times u$ matrix consisting of the first u columns of M_K , and

(2.8)
$$r_K = \dim_{\mathcal{F}_p} (C_K^{1-\sigma}/C_K^{(1-\sigma)^2}) = t - 1 - \operatorname{rank} M_K - \omega$$

where $0 \le \omega \le u$. Also $\omega = 0$ when rank $M_0 = u$. As $t \to \infty$, the probability approaches 1 that rank $M_0 = u$. So the error introduced by disregarding ω disappears when we calculate the limit in equation (1.8).

Now from properties of Hilbert symbols (cf. [1, Chapter 12] or [2, pp. 348–354]),

(2.9)
$$\left(\frac{\varepsilon_j,\mu}{\mathfrak{P}_i}\right) = \left(\frac{\varepsilon_j,\mu_i^{a_i}}{\mathfrak{P}_i}\right) = \left(\frac{\mu_i,\varepsilon_j}{\mathfrak{P}_i}\right)^{-a_i} = \left(\frac{\varepsilon_j}{\mathfrak{P}_i}\right)^{-a_i}$$

for $1 \leq i \leq t$ and $1 \leq j \leq u$. Here $\left(\frac{\varepsilon_j}{\mathfrak{P}_i}\right) \in \langle \zeta_p \rangle$ is the *p*th power residue symbol defined by

$$\left(\frac{F'(\sqrt[p]{\varepsilon_j})/F'}{\mathfrak{P}_i}\right)\sqrt[p]{\varepsilon_j} = \left(\frac{\varepsilon_j}{\mathfrak{P}_i}\right)\sqrt[p]{\varepsilon_j}, \quad \text{and} \quad \left(\frac{F'(\sqrt[p]{\varepsilon_j})/F'}{\mathfrak{P}_i}\right)$$

is the Artin symbol. Similarly

(2.10)
$$\left(\frac{\pi_{j-u},\mu}{\mathfrak{P}_i}\right) = \left(\frac{\pi_{j-u},\mu_i^{a_i}}{\mathfrak{P}_i}\right) = \left(\frac{\mu_i,\pi_{j-u}}{\mathfrak{P}_i}\right)^{-a_i} = \left(\frac{\pi_{j-u}}{\mathfrak{P}_i}\right)^{-a_i}$$

for $1 \le i \le t$, $u+1 \le j \le u+t$, and $i \ne j-u$. Alternatively for $i \ne j-u$ we can start with

(2.11)
$$\left(\frac{\pi_{j-u},\mu}{\mathfrak{P}_i}\right) = \left(\frac{\pi_{j-u},\mu_i^{a_i}}{\mathfrak{P}_i}\right) = \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_i}\right)^{a_i}$$

We note that the product formula $\prod_{\mathfrak{P}} \left(\frac{\pi_{j-u}, \mu_i}{\mathfrak{P}} \right) = 1$ over all primes \mathfrak{P} of F' reduces to

(2.12)
$$\left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_i}\right)^d \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_{j-u}}\right)^d \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{Q}_1}\right)^d \dots \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{Q}_u}\right)^d = 1$$

where \mathfrak{Q}_k is a prime of F' above \mathfrak{q}_k for $1 \leq k \leq u$, and d = [F': F]. However we recall that π_{j-u} was defined in equation (2.4) so that π_{j-u} is a *p*th power residue (mod \mathfrak{q}_k) for $u+1 \leq j \leq u+t$ and $1 \leq k \leq u$. Hence $\left(\frac{\pi_{j-u},\mu_i}{\mathfrak{Q}_k}\right) = 1$ for $u+1 \leq j \leq u+t$ and $1 \leq k \leq u$. So from equation (2.12), we get

(2.13)
$$\left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_i}\right)\left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_{j-u}}\right) = 1$$

Then from equations (2.11) and (2.13), we get

(2.14)
$$\left(\frac{\pi_{j-u},\mu}{\mathfrak{P}_i}\right) = \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_i}\right)^{a_i} = \left(\frac{\pi_{j-u},\mu_i}{\mathfrak{P}_{j-u}}\right)^{-a_i} = \left(\frac{\mu_i}{\mathfrak{P}_{j-u}}\right)^{-a_i}$$

for $1 \le i \le t$, $u+1 \le j \le u+t$, and $i \ne j-u$.

We now define characters λ_i and ν_j as follows

(2.15)
$$\lambda_i(I) = \left(\frac{\mu_i}{I}\right)^{-1}, \quad 1 \le i \le t$$

for ideals I of F' relatively prime to $\mathfrak{p}_i\mathfrak{q}_1\ldots\mathfrak{q}_u\mathcal{O}_{F'}$;

(2.16)
$$\nu_j(I) = \left(\frac{\varepsilon_j}{I}\right)^{-1}, \quad 1 \le j \le u$$

for ideals I of F' relatively prime to $p\mathcal{O}_{F'}$; and

(2.17)
$$\nu_j(I) = \left(\frac{\pi_{j-u}}{I}\right)^{-1}, \quad u+1 \le j \le u+t$$

for ideals I of F' relatively prime to $p\mathfrak{p}_{j-u}\mathcal{O}_{F'}$. Then from equations (2.6), (2.9), (2.10), and (2.14) through (2.17), we get

$$\zeta_p^{m_{ij}} = \begin{cases} (\nu_j(\mathfrak{P}_i))^{a_i} & \text{for } 1 \le i \le t \text{ and } 1 \le j \le u, \\ (\nu_j(\mathfrak{P}_i))^{a_i} & \text{for } j - u < i \le t \text{ and } u + 1 \le j \le u + t - 1, \\ (\lambda_i(\mathfrak{P}_{j-u}))^{a_i} & \text{for } 1 \le i \le t - 1 \text{ and } u + i < j \le u + t. \end{cases}$$

Also

(2.19)
$$m_{(j-u)j} = -\sum_{\substack{k=1\\k \neq j-u}}^{t} m_{kj} \text{ for } u+1 \le j \le u+t$$

since the sum of the entries in each column of M_K is zero. We let a'_i be the integer with $1 \le a'_i \le p - 1$ such that

(2.20)
$$a_i a'_i \equiv 1 \pmod{p} \quad \text{for } 1 \le i \le t.$$

By multiplying the *i*th row of M_K by a'_i for each *i*, we get a new matrix M'_K defined as follows.

(2.21)
$$M'_{K} = [m'_{ij}], \quad m'_{ij} \in \mathbf{F}_{p}, \quad 1 \le i \le t, \quad 1 \le j \le u+t,$$
 with

(2.22) $\zeta_p^{m'_{ij}} = \begin{cases} \nu_j(\mathfrak{P}_i) & \text{for } 1 \le i \le t \text{ and } 1 \le j \le u, \\ \nu_j(\mathfrak{P}_i) & \text{for } j - u < i \le t \text{ and } u + 1 \le j \le u + t - 1, \\ \lambda_i(\mathfrak{P}_{j-u}) & \text{for } 1 \le i \le t - 1 \text{ and } u + i < j \le u + t \end{cases}$

and

$$m'_{(j-u)j} = -a'_{j-u} \sum_{\substack{k=1\\k \neq j-u}}^{t} a_k m'_{kj} \quad \text{for } u+1 \le j \le u+t.$$

Furthermore

(2.23)
$$\operatorname{rank} M'_K = \operatorname{rank} M_K.$$

We observe that $m'_{(j-u)j}$ is known if we know a_1, \ldots, a_t and the values of m'_{kj} for $1 \le k \le t$ and $k \ne j - u$. Also m'_{tj} is known if we know a_1, \ldots, a_t and the values m'_{kj} for $1 \le k \le t - 1$; that is:

(2.24)
$$m'_{tj} = -a'_t \sum_{k=1}^{t-1} a_k m'_{kj} \quad \text{for } 1 \le j \le u+t.$$

Equations (2.21) through (2.24) are the analogs of equations (3.15) through (3.18) in [7]. (Remark. Because of the way we defined π_i in equation (2.4), $\theta_i(\mathfrak{P}_i)$ can be omitted from equation (3.16) in [7].)

The procedure now is very similar to the procedure used on pp. 99–101 in [7]. Hence we refer the reader to pp. 99–101 in [7] for the details. However we shall mention a few modifications. The matrix Γ will now be a $t \times (u+t)$ matrix with entries in \mathbf{F}_p whose first t-1 rows are arbitrary and whose last row has entries determined by an equation analogous to equation (2.24). The quantities $\delta_0(\mathfrak{P}_i)$ and $\delta(\mathfrak{P}_i, \mathfrak{P}_i)$ will be replaced by

$$\begin{split} \delta_{j}(\mathfrak{P}_{i}) &= \begin{cases} 1 & \text{if } \nu_{j}(\mathfrak{P}_{i}) = \zeta_{p}^{\gamma_{ij}}, \\ 0 & \text{otherwise,} \end{cases} & \text{for } 1 \leq i \leq t, \ 1 \leq j \leq u; \\ \delta(\mathfrak{P}_{i},\mathfrak{P}_{j}) &= \begin{cases} 1 & \text{if } \nu_{j}(\mathfrak{P}_{i}) = \zeta_{p}^{\gamma_{ij}}, \\ 0 & \text{otherwise,} \end{cases} & \text{for } j - u < i \leq t, \\ u + 1 \leq j \leq u + t - 1; \end{cases} \\ \delta(\mathfrak{P}_{i},\mathfrak{P}_{j}) &= \begin{cases} 1 & \text{if } \lambda_{i}(\mathfrak{P}_{j-u}) = \zeta_{p}^{\gamma_{ij}}, \\ 0 & \text{otherwise,} \end{cases} & \text{for } 1 \leq i \leq t - 1, \ u + i < j \leq u + t. \end{cases} \end{split}$$

The analog of equation (3.33) in [7] is then

$$(2.25) d_{\infty,i} = \lim_{t \to \infty} w_{t-1,u+t,i}$$

where $w_{t-1,u+t,i}$ is the probability that a randomly chosen $(t-1) \times (u+t)$ matrix over \mathbf{F}_p has rank equal to t-1-i. The formula for $d_{\infty,i}$ in Theorem 1 then follows from equation (2.25) and from Theorem 1.4 in [4].

Remark. The formula for $d_{\infty,i}$ in Theorem 1 is not valid for certain fields F that contain a primitive pth root of unity ζ_p (cf. [6] and [8]). One difference between the case where $\zeta_p \notin F$ and the case where $\zeta_p \in F$ concerns the relationship between μ_i and π_i . (For definitions of μ_i and π_i , see discussion preceding equation (2.2) and equations (2.3) and (2.4).) If we let $F' = F(\zeta_p)$ when $\zeta_p \notin F$, then $F'(\sqrt[p]{\mu_i})$ and $F'(\sqrt[p]{\pi_i})$ are disjoint extensions of F' since $F'(\sqrt[p]{\mu_i})$ is an abelian extension of F, but $F'(\sqrt[p]{\pi_i})$ is not an abelian extension of F. However if $\zeta_p \in F$, then it could happen that $\mu_i = \pi_i$. For example, if p = 3 and $F = \mathbf{Q}(\zeta_3)$, then μ_i and π_i can be chosen so that $\mu_i = \pi_i$ if (π_i) is a prime ideal with $N((\pi_i)) \equiv 1 \pmod{9}$.

References

- [1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York 1967.
- [2] J. Cassels and A. Fröhlich, Algebraic Number Theory, Thompson, Washington, D.C., 1967.
- Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281-285.
- F. Gerth, Limit probabilities for coranks of matrices over GF(q), Linear and Multilinear Algebra 19 (1986), 79–93.
- [5] —, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), 1–8.
- [6] —, Densities for 3-class ranks in certain cubic extensions, J. Reine Angew. Math. 381 (1987), 161–180.

F. Gerth

- F. Gerth, On p-class groups of cyclic extensions of prime degree p of quadratic fields, Mathematika 36 (1989), 89–102.
- [8] —, On p-class groups of cyclic extension of prime degree p of certain cyclotomic fields, Manuscripta Math. 70 (1990), 39–50.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TEXAS 78712 U.S.A.

Received on 26.11.1990

(2100)