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1. Introduction. Let Q denote the field of rational numbers, and let
F be a finite extension field of Q. Let p be an odd prime number which
does not divide the class number of F' and for which (, ¢ F', where (, is
a primitive pth root of unity. (Of course all but finitely many primes p
satisfy these conditions for a given field F.) If I is a nonzero ideal in the
ring of integers Op, let N(I) denote the absolute norm of I. Equivalently,
N(I) = [Op : I]. Let K be a cyclic extension of F' of degree p, and let o
be a generator of Gal(K/F). Let Ck denote the p-class group of K (i.e.,

the Sylow p-subgroup of the ideal class group of K), and let CS_UY =

{a(1=9)" . q € Ck} for i = 1,2,... Since we have assumed p does not divide
the class number of F, then it is easy to see that Crc/Cy 7 is an elementary
abelian p-group (which we may view as a vector space over the finite field
F,), and

(1.1) dimg (Cx/Cx ) =t—1-3
where ¢ is the number of primes that ramify in K/F, and
(1.2) p’ = [Ep: (Ep N Ng,pK*)]

(cf. [3]). Here Ep is the group of units of F', and Ng,p is the norm map
from K* to F™.

Since the structure of Ck/ Cll(_" is known, we focus our attention on
O 7. We let

BT l1—0o (1_0')2
(1.3) rg = dimg, (Ck 7/C ).

Equivalently rg is the minimal number of generators of C’Il{" as a module
over Gal(K/F). We let Dg/r denote the relative discriminant of K /F. For
each positive integer ¢, each nonnegative integer i, and each positive real
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number x, we define
(1.4) A; = {cyclic extensions K of F of degree p with
exactly ¢ primes of F' ramified in K/F},

(1.5) Ape ={K € Ay : N(Dgyp) < 2?71},
(16) At,i;:c = {K S At;m TR = Z},
. |At i'm|
1.7 dy; = lim o
( ) t —00 ’At;aj|

t—o00
Here |S| denotes the cardinality of a set S. Our goal is to prove the following
theorem.

THEOREM 1. Let F' be a finite extension of Q. Let p be an odd prime
number which does not divide the class number of F' and for which ¢, & F,
where Cp s a primitive p-th root of unity. For each cyclic extension K
of I of degree p, let N(Dg/p) denote the absolute norm of the relative
discriminant of K/F. Let Ck denote the p-class group of K; let o be a
generator of Gal(K/F); and let v denote the minimal number of generators
of C3~% as a module over Gal(K/F). Let u denote the rank of the group of
units of F'. Finally let do ; be the density defined by equation (1.8). (Also
see equations (1.4) through (1.7).) Then

—i(i+u+1) 7T —k
dooi = — L : )Hkﬂ(l;p ) fori=0,1,2,...
[ (L= ML (1 —p7)]

Remark. Certain special cases of Theorem 1 have been proved in other
papers; namely, the case where F' = Q (see [5]) and the case where F' is a
quadratic extension of Q (see [7]). For some partial results when (, € F,
see [6] and [8].

Remark. Asp — 00, dwo — 1 and d; — 0 for i > 1. So C;{U is
very likely to be trivial for large p. Also C’Il(_" is very likely to be trivial if
u is large. For numerical values of do ; when u =0or 1, p = 3,5,7, or 11,
and i = 0,1,2,3, or 4, see the appendix of [7].

2. Proof of Theorem 1. We let notation be the same as in the previous
section. Since Theorem 1 has already been proved when F' = Q and when
F is a quadratic extension of Q, we may assume [F' : Q] > 3, and hence the
group of units Er of F' is an infinite group. We let €1,...,e, be a system
of fundamental units of F'. Our method of proof is a generalization of the
method used when F' is a real quadratic extension of Q (see [7], Section 3).
For a cyclic extension K of F' of degree p, we let ¢t denote the number of
primes of F' that ramify in K. Then N(Dg/p) = p*N(p1 .. .ps)P~L, where
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a > 0; p1,...,ps are distinct primes of F' with N(p;) = 1 (mod p) for
1 <i < s; and s < t. Furthermore s = ¢ precisely when a = 0. When
calculating d;; in equation (1.7), we may omit the fields where a > 0 since
when s < t,

{p*N(p1 ... ps)? "t <aP}H = o([{N(pr...p)" "' <aP7}]) asz — oo
So we may assume
N(Dg/p)=N(p1...p)’""  with N(p;) =1 (mod p) for1<i<t.
Now we let q1, ..., q, be primes of F' satisfying the following conditions:
(i) N(q;) =1 (mod p) for 1 <i < u;
(ii) €; is a pth power residue (mod q;) for all j #
(iii) &; is a pth power nonresidue (mod gq;) for 1 < i < .

(Remark. To find such a prime q;, we can proceed as follows. Let

Fi = F(va Va, ey {’/si_l, €/€i+1, PN {/€u) .

Then q; is a prime of F' which splits completely in F;/F but for which a
prime in F; above q; is inert in F;(¢/€;)/F;.) The primes q1,...,q, shall be
fixed throughout this paper, and since

|{N(q1 cee qu)p_lN(pl .. -ps)p_l < xp—1}|

=o({N(p1...p)P ' <2P71Y|) asz — oo

if s < t, we may assume p; # q; for all ¢ and j.

Next we define groups G; for 1 <i <t by

(2.1) Gi = (Or/pidr...9u)" /(EF/EF)
where Op is the ring of integers of F, and E, = {¢ € Ep : ¢ = 1
(mod p;q; ...q.)}. Because of the way we have chosen q1,...,q,, there is a

unique cyclic extension K; of F' of degree p whose Galois group is isomor-
phic to a quotient group of G; such that p; ramifies in K;/F, but no other
primes ramify in K;/F except perhaps q1,...,q,. (Remark. p; will be the
only prime ramifying in K;/F when ¢; is a pth power residue (mod p;) for
1<j<u) Welet F/ = F((,) and L; = K, - F' for 1 < i <. Since L;/F’
is a Kummer extension, there exists y; € F' such that L; = F'(¢/p;). Let
B; be a prime of F’ above p;. By replacing u; by a suitable power of p;, we
may assume that the power of B; dividing p; is ‘,]32“ with b; =1 (mod p).
Now let L = K - F'. Then L = F'(¢/j) with

(2.2) p=pgt. gt
for some integers a; with 1 < a; <p—1for1 <7<t

Next we let h denote the class number of F'. Since p-h by assumption,
there exists a positive integer h’ such that hh/ =1 (mod p). Welet 7 € Or
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satisfy
(2.3) pih' =1l 0p

for 1 < j <t. Now recall that ¢; is a pth power nonresidue (mod q;). So
there exists an integer ¢;; with 0 < ¢;; < p — 1 such that 6?”%‘ is a pth

J
power residue (mod ¢;). Let
(2.4) T =€yt .. egim

for 1 < j <t. Since ¢, is a pth power residue (mod q;) for k # i, then 7;
is a pth power residue (mod ¢;) for 1 <i <wand 1 <j <t Alson;isa
generator of the ideal p?h/ for1 <j<t.

Now we let Mg be the t x (u + t) matrix over F), defined as follows:

(25) MK:[mij], mijEFp, 1< <t 1 <3< u+t,
<€j’#> forl1<i<tand1l<j<u,
26) =y F
Tj—us

forl<i<tandu+1<j<u-+t.

The Hilbert symbol (5) € ((p) is defined by

() = (50)

where « is a nonzero element of F’, and (%/F/
We note that the product formula for Hilbert symbols implies that the sum of
the entries in each column of M is zero. Our matrix Mg is a generalization
of the matrix Mg on p. 96 in [7] that was used in the case where F' is a
real quadratic fields. As in [7], the matrix Mk provides information about

dimz, (Cx/Ci ) and dimfp(C}{_"/Cﬁ(l*U)Q). More precisely

> is the norm residue symbol.

(2.7) dimz, (Cx/Ci ) =t — 1 —rank M
where M is the t X u matrix consisting of the first v columns of My, and
(2.8) rg = dimg, (C’}{U/Cé{lfo)z) =t—1—rank Mg —w

where 0 < w < u. Also w = 0 when rank My = u. Ast — oo, the probability
approaches 1 that rank My = u. So the error introduced by disregarding w
disappears when we calculate the limit in equation (1.8).

Now from properties of Hilbert symbols (cf. [1, Chapter 12] or [2, pp. 348
354]),

ek _ (bt _ (ras (g5
(29) (‘432‘ > _< B ) ( Bi > (‘Bz)
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for 1 <i<tand 1< j < u Here (%) € ((p) is the pth power residue
symbol defined by
P : F(42,)/F'
TWEE Y vz = (S5 ¢, and j
( Bi ’ Bi ! Bi
is the Artin symbol. Similarly

Ti—us M) _ Tj—us K _ ( HisT—u _ai: Tj—u o
(2.10) (%) ( P, > <mi ) (%—)

for 1 <i<t,u+1<j<u+t, and i# j— u. Alternatively for i # j —u
we can start with

Tj—uy b\ Wj—uaﬂ?i _ [ Tt “
e ()= () = ()

We note that the product formula Hq:: (%) = 1 over all primes ¢ of

F’ reduces to

219 J—u> z) ( Jj—u» 7,) < Jj—u» 1> o ( Jj—u» ’L> -1

( ) < mz ‘Bj—u Ql Qu

where 9y, is a prime of F’ above qj, for 1 < k < wu, and d = [F’ : F]. However
we recall that 7;_,, was defined in equation (2.4) so that 7;_, is a pth power

residue (mod q) for u+1<j <wu+tand 1 <k < u. Hence (%) =1
foru+1<j<u+tand 1<k <u. Sofrom equation (2.12), we get

Tj—ay Mg Tj—us i\
e () ()

Then from equations (2.11) and (2.13), we get

T 1\ _ (T ba (T T
(214) < Bi > < Bi ) (‘BJ—u) (%—)

for1<i<t,u4+1<j<u+t andi#j—u.
We now define characters A\; and v; as follows

(2.15) A(I) = (%)71 1<i<t

for ideals I of F’ relatively prime to p;q1 ... quOF;
€j

(2.16) vi(l) = (5

for ideals I of F’ relatively prime to pOpg/; and

-1
) , 1<j<u

. —1
(2.17) uj(f)z(”JI‘“) . utl<j<u+tt
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for ideals I of F” relatively prime to pp;_,Op/. Then from equations (2.6),
(2.9), (2.10), and (2.14) through (2.17), we get

(2.18)
(v;(Pi)»  for1<i<tand1<j<u,
o= (v(Ba))™ forj-u<i<tandu+1<j<u+t—1,
(Ai(mj—u))ai forl<i<t—landu+i<j<u-+t.
Also

t
(2.19) Mj—u)j = — Z mg; foru+1<j<u+t
K
since the sum of the entries in each column of My is zero. We let a) be the
integer with 1 < a), < p — 1 such that
(2.20) a;a; =1 (mod p) for1l<i<t.

By multiplying the ith row of Mg by a) for each i, we get a new matrix
M7, defined as follows.
(2.21) My =[mi;], mi; €Fp, 1<i<t, 1<j<u+t,
with
, v;(Bi) for1<i<tand1l<j<u,
(2.22) G =< vi(Ps) forj—u<i<tandu+1<j<u+t—1,
ANi(Bjw) for1<i<t—Tlandu+i<j<u-+t

and
t
m'(j_u)j = —a;,u Z akmﬁﬁj foru+1<j<u-+t.
K
Furthermore
(2.23) rank My = rank M.
We observe that m/(j_u)j is known if we know ay,...,a; and the values of
my; for 1 <k <tandk # j —u. Also mj; is known if we know ay,...,a

and the values m;j for 1 <k <t—1; that is:
t—1

(2.24) my; = —ay Zakmzj for 1 <j<wu-+t.
k=1

Equations (2.21) through (2.24) are the analogs of equations (3.15) through
(3.18) in [7]. (Remark. Because of the way we defined 7; in equation
(2.4), 6;(B;) can be omitted from equation (3.16) in [7].)

The procedure now is very similar to the procedure used on pp. 99-101
in [7]. Hence we refer the reader to pp. 99-101 in [7] for the details. However
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we shall mention a few modifications. The matrix I" will now be a t x (u+t)
matrix with entries in F), whose first ¢ — 1 rows are arbitrary and whose last
row has entries determined by an equation analogous to equation (2.24).
The quantities do(P;) and §(P;, P;) will be replaced by

1if v (B) =Y . .
0; i) = JNT L for1<:<t 1<j<u
i) { 0 otherwise, Or-=t=h 2224
1if v (Ps) = Y for j —u < <t,
) . ) — J 7 P > ]
(%, %;) {0 otherwise, ut+l1<jg<u+t-1;

LAt M(Bj_w) = GV . : .
i i) — . ’ 1 S é - 1a S t.
(B, B,) {O otherwise, or i<t uti<j<u+

The analog of equation (3.33) in [7] is then

(225) doo,i = lim wt—l,u—i—t,i
t—o0

where w;_1 44, is the probability that a randomly chosen (t — 1) x (u+1t)
matrix over F), has rank equal to ¢—1—1. The formula for d ; in Theorem 1
then follows from equation (2.25) and from Theorem 1.4 in [4].

Remark. The formula for do; in Theorem 1 is not valid for certain
fields F' that contain a primitive pth root of unity (, (cf. [6] and [8]). One
difference between the case where (, ¢ F' and the case where ¢, € F' con-
cerns the relationship between u; and ;. (For definitions of p; and m;, see
discussion preceding equation (2.2) and equations (2.3) and (2.4).) If we let
F' = F((p) when ¢, ¢ F, then F'(¢/p;) and F'(¢/7;) are disjoint exten-
sions of F’ since F'(¢/j1;) is an abelian extension of F', but F'( ¢/x;) is not
an abelian extension of F. However if ¢, € F, then it could happen that
w; = m;. For example, if p = 3 and F = Q((3), then y; and 7; can be chosen
so that u; = m; if (m;) is a prime ideal with N((m;)) =1 (mod 9).
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