Corrigendum to the paper
 "On the distribution of s-dimensional Kronecker sequences"

Acta Arith. 51 (1988), 335-347

by
Gerhard Larcher (Salzburg)

In the paper "On the distribution of s-dimensional Kronecker sequences" (Acta Arith. 51 (1988), 335-347) there are some inaccuracies in the proofs and also in the statement of some results. In the following I will give a correction of these errors. I want to thank very much G. Turnwald in Tübingen who has pointed out these inaccuracies in Math. Reviews 90f:11065.

First of all, on page 336, p_{j} and θ_{j} should be defined in the form

$$
\alpha_{j}=\frac{p_{j}}{q}+\frac{\theta_{j}}{q \cdot q_{i+1}^{1 / s}} \quad \text { for } j=1, \ldots, s \text { with }\left|\theta_{j}\right| \leq 1,
$$

and on page 337, Γ_{i} should be defined as the lattice spanned by $\left(\frac{p_{1}}{q}, \ldots, \frac{p_{s}}{q}\right)$ and by \boldsymbol{Z}^{s}.

In the proof of Lemma 2 the assumption $\left(p_{1}, q\right)=1$ actually is a restriction of generality, so that I give another proof.

Proof of Lemma 2. We have $\operatorname{det}\left(\Gamma_{i}\right)=1 / q$. Let \mathcal{F} be a covering of \boldsymbol{R}^{s} by fundamental regions F of Γ_{i}. Let B be a convex set in I^{s}. The area of the set of all $F \in \mathcal{F}$ for which the intersection with the boundary of B is not empty, is at most $c(s) \lambda_{s}$, with an absolute constant $c(s)$. Because to every F in the interior of B we can attach exactly one point \bar{w}_{q} on the boundary of F, and since $\lambda(F)=1 / q$, we have $\bar{J}_{q} \leq c_{3}(s) \lambda_{s}$.

As a lower bound for \bar{J}_{q} we get quite analogously to the method in [2], Beispiel c, applied to the lattice Γ_{i} :

$$
\frac{c_{4}(s)}{q \lambda_{1} \lambda_{2} \ldots \lambda_{s-1}} \leq \bar{J}_{q} .
$$

By the Theorem of Minkowski on successive minima and because of $\bar{M}_{q^{\prime}} \leq$ $\lambda_{1} \leq s^{1 / 2} \bar{M}_{q^{\prime}}$ the result follows.

Since Davenport and Mahler [1] actually have shown that for every pair $\left(\alpha_{1}, \alpha_{2}\right)$ of reals, for every $\varepsilon>0$, there are infinitely many $q, p_{1}, p_{2} \in \boldsymbol{Z}$ with

$$
\alpha_{i}=\frac{p_{i}}{q}+\frac{\theta_{i}}{q^{3 / 2}}, \quad i=1,2, \quad \text { and } \quad \theta_{1}^{2}+\theta_{2}^{2} \leq \frac{2}{23^{1 / 2}}+\varepsilon
$$

Lemma 8 in [3] has to be stated in the following form:
Lemma 8. For all $\left(\alpha_{1}, \alpha_{2}\right) \in \boldsymbol{R}^{2}$ we have

$$
\limsup _{N \rightarrow \infty} N^{1 / 2} J_{N} \geq \frac{1}{2}\left(1-\frac{2}{23^{1 / 4}}\right)=0.0433 \ldots
$$

For the "only if" part of Theorem 1 we need a Lemma 7a instead of Lemma 7.

Lemma 7a. Let $i \in \boldsymbol{N}$ and $q:=q_{i}$ be such that

$$
4 s^{1 / 2} q M_{q} \lambda_{1} \ldots \lambda_{s-1} \leq 1
$$

Then with an absolute constant $c(s)$ we have for $N=B q$ with $B:=$ $\left[1 /\left(4 s^{1 / 2} q M_{q} \lambda_{1} \ldots \lambda_{s-1}\right)\right]:$

$$
N J_{N} \geq \frac{c(s)}{q M_{q}\left(\lambda_{1} \ldots \lambda_{s-1}\right)^{2}}
$$

Proof follows directly from the proof of Lemma 7 in [3].
Proof of the "only if" part of Theorem 1. If L is not extremal, then for every $\varepsilon>0$ there is a q with $q^{1 / s} M_{q}<\varepsilon$.

By Minkowski's Theorem on successive minima we have

$$
\lambda_{1} \ldots \lambda_{s-1} q^{1-1 / s}<c_{1} \quad \text { for every } q \quad\left(c_{1}:=c_{1}(s)>0\right)
$$

Let $\varepsilon<\left(4 s^{1 / 2} c_{1}\right)^{-1}$. Then for q as above we have $4 s^{1 / 2} q M_{q} \lambda_{1} \ldots \lambda_{s-1} \leq 1$. Therefore Lemma 7 a holds and with $N=B q$ we have

$$
N^{1 / s} J_{N} \geq \frac{1}{(B q)^{1-1 / s}} \cdot \frac{c(s)}{q M_{q}\left(\lambda_{1} \ldots \lambda_{s-1}\right)^{2}} \geq \frac{c_{2}(s)}{\varepsilon^{1 / s}}
$$

and the result follows.
A corrected form of Theorem 2(a) is the following (Theorem 2(b) is not true in the stated form):

TheOrem 2a. If for a $c_{1}>0$ and a $\sigma \geq 1 / 2$ we have $q_{i+1}^{\sigma} M_{q_{i}} \geq c_{1}$ for all i, then for all N we have

$$
N^{1-\sigma(s-1)} J_{N} \leq c_{2}\left(\max _{i \leq i(N)} a_{i}\right)^{1-\sigma(s-1)} .
$$

(Here $i(N)$ is such that $q_{i(N)} \leq N<q_{i(N)+1}$.)

Proof. By Lemma 6 we have, with $\tau:=\sigma(s-1)$,

$$
\begin{aligned}
N^{1-\tau} J_{N} & \leq c_{8} \sum_{i=1}^{r} \frac{b_{i}}{b_{r}^{\tau}} \cdot \frac{q_{i}^{\tau}}{q_{r}^{\tau}\left(q_{i}^{\sigma} M_{q_{i-1}}\right)^{s-1}} \\
& \leq c_{9}\left(b_{r}^{1-\tau}+b_{r-1}^{1-\tau}+b_{r-2}^{1-\tau}\left(\frac{q_{r-1}}{q_{r}}\right)^{\tau}+\ldots\right) \\
& \leq c_{9}\left(\max _{i \leq i(N)} a_{i}\right)^{1-\tau}
\end{aligned}
$$

Finally, from the new form of Theorem 2a we now have
Theorem 3. For $s \geq 2$ and for almost all $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ in \boldsymbol{R}^{s} in the sense of Lebesgue measure, we have for every $\varepsilon>0$

$$
J_{N}=O\left(N^{-1 / s}(\log N)^{(1 / s)+\varepsilon}\right)
$$

References

[1] H. Davenport and K. Mahler, Simultaneous Diophantine approximation, Duke Math. J. 13 (1946), 105-111.
[2] G. Larcher, Über die isotrope Diskrepanz von Folgen, Arch. Math. (Basel) 46 (1986), 240-249.
[3] -, On the distribution of s-dimensional Kronecker sequences, Acta Arith. 51 (1988), 335-347.

INSTITUT FÜR MATHEMATIK
UNIVERSITÄT SALZBURG hellbrunnerstrabe 34
A-5020 SALZBURG, AUSTRIA

