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1. Introduction, preliminaries. Let £ € N. An arithmetical function
f N — C is called even modk if f((n,k)) = f(n) for all n € N. Define
D:={f|f:N—=C}, D" := {f € D, f bounded}, By := {f € D |
feven modk}, B := [J,ey Br. Then B is the C-algebra (with pointwise
addition and multiplication) of even functions, and D® with the “uniform
norm” || f|l, := sup, ey |f(n)| is a complex Banach algebra. The limit (if it
exists)

M(f) = lim 2= Y ()
1<j<z
is called the mean value of f.
If f:N— R, then
M(f):=lmsupz™" > f(j), M(f):=lminfa™" Y f(j)
To0 1<j<z e 1<j<z
are called the upper and the lower mean values of f, respectively.

From now on throughout this paper we suppose that 1 < ¢ < co. Then
the upper mean value gives rise to a seminorm || f||, := {M(]£|?)}*/9 on the
linear space {f € D | ||f|l; < oo}. We denote by B? the closure of B in
{f € D||fllqg < oo} relative to the topology defined by || - ||;. Functions
in B? are called B? almost even arithmetical functions. Denote by B" the
closure of B in D’ relative to the topology defined by | - ||,. Every f € B*
is called a uniform almost even arithmetical function.

Let m := (mg, my,...) denote a sequence of positive integers not less
than 2. Denote by Z,,, := {0,1,...,m; — 1} the additive group of integers
modulo m; (j € Np). Define the group G, as the cartesian product of the
discrete cyclic groups Zp,,,

Gm = X Zm;-
j=0
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The elements of G, can be represented by sequences z := (zg,1,...) (z; €
Zm.). It is easy to give a base for the neighborhoods of G,,:

j
Iy(x) := G,
In(x) = {y € Gm | Yo = ZTos---rYn—-1 = xn—l}

for z € G, n € N. Define I,, := I,,(0) for n € Ny. Then I, is a subgroup of

G (n € Ny). Moreover, G, is a compact zero-dimensional abelian group.
The direct product p of the measures

we({i}) =mit (j € Zm,, k € No)

is the Haar measure on G,, with u(G,,) = 1.

Define the generalized powers by My := 1, Myy1 = mpMy (k € Np).
Then every nonnegative integer n can be uniquely expressed as Z;‘;O n;M;,
where n; € Z,,; (j € No) and only a finite number of n;’s differ from zero.

Define on G, the generalized Rademacher functions in the following way:

ri(z) := exp(2mizy/mi)  (i:= (=12, z € G, k € Ny).

It is known that the functions
oo
MEES H r* (n € Np)
k=0

on G, are elements of the character group of G,,, and all the elements of
the character group are of this form. The system (¢, | n € Ny) is called
a Vilenkin system and G, a Vilenkin group. For more details on Vilenkin
analysis see e.g. [1, 14, 17, 18].

Let A, (n € Np) be the o-algebra generated by the cosets I,(z) (z €
Gpn). Let oz;l“ , an (k,j,n € N) be functions satisfying the following condi-
tions:

(i) of : Gy, — C is Aj-measurable (k, j € No),

(i) lo¥| = af = af) =1 (k,j € Ny),

(iii) o == [120 )™ (n € No, jj(n) = 330, i, My).

Let ¢y, := Ypay, (n € Npy). A function system {¢,, | n € Ny} of this type
is called a ©a system on the Vilenkin group G,,. We can identify G,, with
the unit interval [0,1) by associating with each (z¢,z1,...) = z € G, the
point Y22 g x; MY €[0,1).

If we disregard the countable set of m-rationals,

QmNn(0,1) (Qn:={reG,|3jeNy:Vk>j, keNy, zp=0}),

then this mapping is one-one and measure preserving. Every y € Q,,, N (0, 1)
has a duplicate in G,,, one of them has a finite and the other an infinite
representation of the form y =" y; M ﬁ_ll.



Almost even arithmetical functions 107

Now we introduce a special kind of ¢« systems on the Vilenkin group
G, (which is identified with [0,1) in the way described above).
If n € No, n = Y_7% (n;jMj, then let

n:= Zn]—ijrll €[0,1)
=0

(of course only a finite number of n;’s are not zero).
If x € Gy, A € Ny, then let o4z = Z]A:o x;M; € No. Suppose that
n < Muyq for some A € Ng. Then n = Z;l:o anj;ll. Then the function
No 3 k — exp(2minoayrz) (n, A € No,x € G, fixed) is constant, because
exp(2mino A4, x)

[ Mo n1 na
= 2 —_— — 4+ ...
exp{ m<M1+M2+ +MA+1>

X (xo+ax1Mi+...+2aMa+ x4 1 Mo+ ...+ $A+kMA+k)}

= exp (271’2'(]7\2014-...-}- ]JAA+1>($Q+$1M1+...+$AMA)>

= exp(2minosx).
Thus the definition
k() = klim exp(2minogz) (n € No,z € Gyp)
makes sense.
kn(x) can also be denoted as exp(2minox). The system {x, | n € Ny}

on G, is a Y« system.
Indeed, suppose that My <n < May1, z € Gy, 1 < A. Then

kn(x) = exp <2m' (no +...+ nA> x0>
mo mo...MAa
X exp <2m’ <n1 + ...+ n,4> x1> ...€exp (QWiMCL‘A>
mi mi... My ma
A-1 . n
=7y (x)... v (x exp<2m’<]+1+...+A>>.
0() A()H m;mg 41 mj...Mma
That is, in this case

a;(n) = exp <2m':cj1 <nj + ..+ nA)) (1<jeN).

m;_—1my; mi_1...MA

Of course if A = 0, then the product H;‘;Ol is equal to 1, and for n < My,
ie.n =0, ko(z) =1 = ¢o(x)ag(z). We have proved that {x, | n € Ng} is
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a Ya system on Gp,.
The Fourier coefficients of f € L'(G,,) with respect to the 1o system x
are defined by

~

Fk) = F2 k)= [ f@)Fu(a)du(x) (k€ No).
Gm
The Dirichlet kernels are given by
n—1
Dn(xvy) :Dﬁ(x,y) = Z’ij(‘r)ﬁj(y) (m,yEGm, HEN).
§=0

The nth partial sum of the Fourier series of f € L'(G,,) (with respect to
the Ya system k) is

Suf(e) = 85f(@) = S FG)ms() (2 € Gyn € N),
j=0

We give some examples of Vilenkin groups G,,.

If each m; (j € Np) equals 2, then G, is called the Walsh—Paley group.
The character system of this special Vilenkin group is the set of Walsh func-
tions. The Walsh functions have three most studied enumerations, namely
the original Walsh, the Walsh-Kaczmarz and the Walsh—Paley one. The
last one coincides with the ordering used in this paper. For more details on
Walsh functions see e.g. the recent book of F. Schipp, W. R. Wade, P. Simon
and J. P4l ([14]).

If the sequence m is bounded, then G,, is called a bounded Vilenkin
group. Most of the results on the Walsh—Paley group also hold for bounded
Vilenkin groups. But if the sequence m is not bounded, then the situation
changes. There are many theorems which hold on bounded Vilenkin groups
but fail to hold on unbounded ones. For more details on Vilenkin groups
see [1].

Define the dyadic addition of k,n € Ny as follows:

kE@®n:= Z((k:] +nj) modm;)M;.
§j=0
Since (ky) is a Yo system, Theorems 1, 2, 3 below are direct applications
of similar ones in [4].

THEOREM 1. The system {kp}n>0 is orthonormal on Gy, that is,

f ki (2)Rn(z) du(z) = 0k, (the Kronecker delta),
G’VVL

k,n € No, and complete in L*(G,,).
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THEOREM 2. If t € Ny and x,y € G, then

[0 ifx g L(y),
Dy, (x,y) = {Mt if v € It (y).

THEOREM 3. If f € LY(G,,) (¢ > 1) and n € Ny, then

(S 15 10) " < a,(f 170) " = A e
Gm Gm

where the constant A, does not depend on f.

Theorem 4 can be proved by a slight modification of F. Schipp’s
method [12].

THEOREM 4. If f € LI(G,,) (¢ > 1) and n € N, then
1SnfllLe < Agll £l La

for some A, depending only on q.

Next we deal with the relation between almost even arithmetical func-
tions and Vilenkin analysis. John Knopfmacher has also been concerned
with Fourier analysis of arithmetical functions; it is worthwhile to compare
his theory and the analytical methods on Vilenkin groups (see [9] and [10]).

2. Results on B? and B“. From now on throughout this paper the
following condition will hold for the sequence {m;}:

For all k € N there exists an n = n(k) € N such that k | M,,.

A Vilenkin group G,, generated by a sequence m of this kind is called
R (Ramanujan)—Vilenkin.

THEOREM 5. If f € BY, then there exists a unique continuous f* : G, —
C such that f*(n) = f(n) for alln € N and M(f) = me frdu.

THEOREM 6 (compare Knopfmacher [9]). If f € B? (¢ > 1), then there
exists an f* : G, — C such that

1 e = 1fllar fu 8 p o g Ll g

f* is unique (in the sense of equality p-almost everywhere).

THEOREM 7. If f,g € B? (¢ > 1) and |g| < ¢, then fg € B? and
(f9) = f"g" p-a.e.

THEOREM 8. If n € Ny and g(j) = exp(2ming) (j € N), then
9" (x) = exp(2minoz) = kp(z) (x € Gp).
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THEOREM 9. If f €Bl(g>1)andk € NO, then
MR = [ @R dule) = (7))

The Ramanujan sum c, is defined as

T

cr(n) == Z exp(2mi(a/r)n)  (r,n € N).
(@in=1

If | k, then ¢, € Bg. Cohen [2] and later Schwarz and Spilker [15] proved
that f € By implies
k

=> ey, =9 {(METLY fn)er(n),

r|k n=1

where the coefficients «,. are uniquely determined and ¢ is the Euler func-
tion. Define

LYGm) = {f € LUGm) |
there exists a g € BY such that ¢* = f p-a.e.} (¢ >1),
g (r) =2 (r f ge,  Kpgi=) ¢ ' (r)M(ge)c
r|k

(rrkeN, ge Bl ¢g>1).
It is not difficult to prove that on each R—Vilenkin group G,, the set of
m-rationals Q,, equals the set of “ordinary” rationals Q. This yields

ProrosITION 10.

C:i: Z K(a/r)V (1<T€N, CT:K())
a=1
(a,r)=1
on R—Vilenkin groups.
PROPOSITION 11. Let f* € LI(G,,) (¢ > 1). Then each member of the
set {f*(n) | n=a/r, (a,r)=1,a € {l,...,7}} equals fR(r)o=1/%(r).

Corollaries 12 and 13 below are obvious consequences of Theorems 1, 9
and Propositions 10, 11.

COROLLARY 12. {p~Y2(r)c, }r>1 is orthonormal and complete in B.

COROLLARY 13. If f € B? (¢ > 1) and M(f¢,) = 0 for every r € N,
then | flly = 0.

In 1976 Schwarz and Spilker [16] proved Corollary 13 in the case of ¢ = 2
and in the case of ¢ = 1 for bounded f. In 1988 Hildebrand, Schwarz and
Spilker [8] proved Theorem 16 in the case of ¢ = 2 and noticed that the
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theorem also holds for ¢ = 1 and f € B! bounded (unpublished). I have
been informed by K. H. Indlekofer that Theorem 16 is already known in the
general case, but it does not seem to be published yet.

LEMMA 14. If f € B9 (¢ > 1) and s € N, then
ZfR 1/2 C — SM,f*
r|s
on some R—-Vilenkin group, s = M;.
Let s : N — N be a sequence of natural numbers. Consider the condition
(1)  For each k € N there exists an n = n(k) such that k|s(n’) for all
n' >n.
THEOREM 15. If f € B* and the sequence s : N — N satisfies condi-
tion (1), then Ksf(n) converges to f(n), uniformly in n.

THEOREM 16. If f € B? (¢ > 1) and the sequence s : N — N satisfies
condition (1), then K f || - ||q-converges to f.

We now define the modulus of continuity of arithmetical functions. The
origin of the definition is in Vilenkin analysis.

DEFINITION 17. Let f € D. The | - |[y-modulus of continuity and
|| - ||g-modulus of continuity of f (¢ > 1) are defined by

wi (f) = sup 1f(-@pMu) = f()lg
wy(f) := supsup|f(j & pMy) — f(j)],
peN jeN

where n € Ny and G, is some fixed R—Vilenkin group.

We define the corresponding best approximation of f by trigonometric
polynomials as follows:

:= inf ’f E cre2™ ik ‘ for < 00,
o) k 1£1lq

:= inf ’ Ck e2mk ‘ for w < 00,
L = E [l

where ¢, € C, k,n € Ny.
The following theorems show that these definitions are not unnatural.
THEOREM 18. If f € BY (¢ > 1) (resp. f € B*), then

(2) WL(f) (resp. wn(f)) L 0 for all R-Vilenkin groups G,
3) [{M(fe7?™/") | (a,r) =1, a € {1,...,r}} = 1.
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THEOREM 19. Let f € D. If there exists an R—Vilenkin group G,, such
that wn(f) | 0, then f is a || - ||.-periodic arithmetical function (}). If (3)
holds, then f € B".

THEOREM 20. Let f € D. If there exists an R—Vilenkin group G,, such
that

() fnlly =0, where fu(3) = |f(5) = M(fG®-Mu))llG (¢ =1),

then f is a || - ||4-periodic arithmetical function. If (3) holds, then f € B9.
If f € BY, then || full1 | O on each R—Vilenkin G,,.

THEOREM 21. If f € BY (¢ > 1) (resp. f € B*), then

Ely, () < 1K, f = fllg < wi(f) < 2E%, (),
(resp. Ear, (f) < 1B, f = fllu € wn(f) < 2En, (1)),

where G, s any fired R—Vilenkin group.

COROLLARY 22. Letr € N, f € BY (¢ > 1) (resp. f € B*). Then for all
a,beB,,

©®) MBS = flla<2la=fllg  (resp. [[Krf = fllu < 2[b = fllu)-

In the case of ¢ = 2, Corollary 22 with constant 1 is proved in [8] by
Hildebrand, Schwarz and Spilker. Their method does not seem to work
in the general case. It is also possible that (5) does not hold without the
constant 2 for all q.

The following theorem for C(G,,) and LI(G,,) (¢ = 1,2) is proved by
Rubinshtein [11] and for arbitrary ¢ > 1 by Fridli [3].

THEOREM 23. Let G, be an R—Vilenkin group and let z, | 0, ¢ > 1.
There exists an f € B and also a g € B* for which wi(f) = wn(g) = 2, for
each n € Ny.

Denote by
Sw(f) = e 2(r)  (f€BY)
r=1

the nth partial sum of the Ramanujan series of f. Theorem 24 is proved
for limit periodic arithmetical functions in [5], and our version is a trivial
consequence.

(}) The Banach space of || - ||z-periodic (z = g or & = u) arithmetical functions is the
closure of B (B := UkeN By, By is the set of mod k periodic arithmetical functions) in
{f €D ||flla < oo} with respect to || - ||«
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THEOREM 24. Let f € B1,1<q¢<2, p~t4+q¢ ' =1, and let G,, be an
R-Vilenkin group. If

o
A= ZMgfl/pmk Inmywi(f) < oo,
k=0

then
cgA > [M(fem?m),

a€cQ

thus S® f uniformly converges to f (n — o).

In [5] Theorem 4 is proved for || - ||4 -limit periodic arithmetical functions
(¢ > 1), hence it also holds for f € BY (¢ > 1). An easy consequence is that
f € B (q>1)implies

ll-llq

Snf — f.

This fails to hold for ¢ = 1.

THEOREM 25. Let G,, be an R—Vilenkin group. There exists an f € B?
such that sup,,cy ||Sn fll1 = oo.

Simon [17] proved that for each Vilenkin group G,, there exists an
F € LYG,,) such that S, F diverges everywhere. Does this hold for B!
functions?

Most interesting is the case of a B? (¢ > 1) because Hildebrand [7]
proved the existence of a B? almost even arithmetical function whose Ra-
manujan expansion converges to plus infinity everywhere. But Gosselin [6]
and Schipp [13] proved on bounded Vilenkin groups (sup ms < 0o, of course
in this case G,, is not R—Vilenkin) the p-almost everywhere convergence of
SpF for F € LY(G,,) (¢ > 1). What can be said of the convergence of S,, f*
in the case of f € B? (¢ > 1)7

The theorem of Gosselin and Schipp is an open question for unbounded
G, groups (supms = oo, G,, not necessarily R—Vilenkin of course; the
origin of this topic is Luzin’s conjecture, and Carleson’s and Hunt’s results),
therefore it would be interesting to construct (if possible) a counterexample
by Hildebrand’s method.

Here we remark that the author proved the existence of a || - ||,, (uniform)
limit periodic arithmetical function such that

n—1
Snf*(j) _ Z M(fe—zmk>e—27rikj
k=0

diverges for each j € N (the proof will be published elsewhere).
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3. Proofs

Proof of Theorem 5. For every 0 < ¢ there exists an f. € By
such that || f — fe|lu < e. Since f. is even, it is easy to see that there exists
a unique continuous step function f* : G,, — C such that f.(n) = fX(n) for
alln € Nand M(f.) = [, [Xdp.

The limit f*(z) := lim._,o fX(x) exists for all z € G,,.

Indeed, let €1,e5 > 0. Set

k* :=min(n € N: k| M,).
neN
Take an x € Gp,. f x = 2, + 2’ = 2., + x”, where x’ € Iy, , and

(1)
z'" € Iy,. then for the step functions fZ , fZ we have

‘fal( ) - 82(x)| = ‘f61($€1) - f€2($62)"
Since © — x¢, € Ing. ., (i =1,2), supposing k*(e1) < k*(e2) we find that

(e2)?

My (e)) | Ty — Zey,
hence
Jer(e)) = fer (Ze,)-
This implies that
112, (Eey) = f2,(Ee,)| = | ey (Bey) — fea (22,
S = feullw + I = feallw <1+ €2

This shows the uniform convergence of the continuous step functions
f& to f* on the R—Vilenkin group G,,. Since G,, is compact, f* is also
continuous. Since {n | n € N} is dense in G,,, the unicity of f* is proved.
We have

J frdp=lim [ dp.
Gm
That is, M(f.) converges as ¢ — 0. We have
M(f2) —e < M(f2) = M(|f° = f2]) < M(f°) < M(f°)
< M| = f2) + M(f2) < e+ M(f2)

(9 =RegorImg, g = f, fo).
Thus me fZdp = M(f.) implies that [ f*du = M(f). If n € N, then

fr(n) = lim fX(n) = lim f.(n).
e—0 e—0
The proof of Theorem 5 is complete.

Proof of Theorem 6. For each € > 0, there exists an f. € By
such that [[f — f.|| < e. Thus fZ (0 < e; — 0) is a Cauchy sequence in
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L1(G,,). Hence there exists a unique f* € L9(G,,) such that
T 17 = 2 e = Jim 1~ Felly =0

(uniqueness in the sense of equality u-a.e.).
The proof of Theorem 6 is complete.

Theorem 7 can be proved by the method of W. Schwarz (Proposition 3.2
in [16]). The proof of Theorem 8 can be found in [5]. Theorem 9 is proved
for || - ||4-limit periodic arithmetical functions (¢ > 1) in [5] hence it also
holds for B? (¢ > 1) functions.

Proof of Proposition 10. If a/r = 1 and (a,r) = 1, then a =
r = 1. Since ¢f = ko = 1, we can suppose a/r < 1 < r. Let n be the
least natural number for which aM,, /r € N. If k is an integer in [0, M,,),
then k = k,_1M,_1 + ... + koMy. This gives k = M (kom,_1...my +
kimp_1...ma + ...+ k,_ 1) = M;7'K'. It is easy to see that k’ can be
any integer in [0, M,,), hence there exists a unique k € [0, M,,) such that
k' = aM,, /r, thus k = a/r. From Theorem 8 it follows that

T

cr = Z K(a/r) -

a=1
(a,r)=1

The proof of Proposition 10 is complete.

Proof of Proposition 11. Let € > 0. There exists an f. € B such
that

e>|f—fellg =" — fZllee  (Theorem 6).
Since f. € B; for some j € N, by Cohen’s theorem

fe= Z ﬁrcr@_l/Q(r)'
r|j

Hence

£r=3"Becio V2 (r),  where 5, = fR(r).
rlj
This obviously gives the proof for the function f.. Now,

() — @2 R < 1F(n) = F2 )|+ 1£2 () = FR ()2 ()]
+ o 2| R (r) = FR()
<2 [ | = f£ldu < 2| f* = f2 e < 2.
Gm

The proof of Proposition 11 is complete.

Proof of Lemma 14. First we give the construction of the desired
R~Vilenkin group. Let mg,mq,...,m;_1 be integers not less than 2 with
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momy ... my_1 = 8. The m;’s for ¢ > t are defined in such a way that G,
is an R—Vilenkin group. Then obviously

(6) {a/r|(a,r)=1,a€{l,...;r},r|s}={b/s|be{l,... s}}.
Let b/s belong to the right side of (6), b # s. We have b/s = b/M;, hence
((b/s)V) =b. Since the set of b’s is {1,...,s—1} ={1,..., M; — 1}, the set
of (b/M;)V = (b/s)Y is also {1,...,M; — 1}. We have ¢} = kg = 1. By the
application of Propositions 10, 11 the proof of Lemma 14 is complete.
Proof of Theorem 15. Use the result of Lemma 14 and apply
Theorem 2. Let € > 0 and f. € By such that || f — f:[|. <e. By (1) there
exists an n. such that k(e)|s(n) for n > n.. Lemma 14 and Theorems 2
and 5 give

Koy [0~ FG)] = Sat £7G) = 17
=My [ 1 @)~ )l dula).

It(n) (5)

Since f* is uniformly continuous on the compact set G,

sup_|f*(x) — f*(5)]

(EEIt(]V')
= sup |ff(z) - fO)l = sup |f(k) — ()]
€I (5)NQu, k=j (mod My (y,))
S2||f*f:5||u+ sup |f6(k)7f€(j)|:2Hf7f€HU<2€'
k=j (mod M)

Thus [Ksn) f(7) — f(J)] < 2e.
This completes the proof of Theorem 15.

Proof of Theorem 16. Since f € B? (¢ > 1), f* € LY(G,,). Fix
an ¢ > 0. There exists an f. € By for which ||f — fc|l; < e. (1) implies
the existence of an n. € N such that k(g)|s(n) for all n. <n € N. Fix such
an s = s(n) and consider the Vilenkin group given by Lemma 14. Cohen’s
theorem gives

f =S b (B =9 ) M(fe).
r|k
Since by Lemma 14, (Kyg)* = Sy, g* for all g € B!, Theorem 1, Proposi-
tions 10, 11 and Lemma 14 give (K f:)* = Sn, fZ = fZ. This and Theo-
rems 6 and 3 imply
1K f = fllg = 1S f* = F e < USa f* = fillLe + 11 = fellq
= 198, (f " = flLa + 1f = Fellq
< (Ag+DIf = fellg < (Ag + 1)e.
The proof of Theorem 16 is complete.
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Proof of Theorem 18. Theorems 6 and 5 give respectively

1/q
(7) wz<f>=5£{(;{ @4y = @) )}
(8) wn(f)zsé? sup (@ +y) = [ (2)].

The right side of (7) is the usual L4(G,,)-modulus of continuity of f*. The
right side of (8) is the C(G,,)-modulus of continuity of f*. Thus wi(f)
(resp. wy(f) | 0, directly from Vilenkin analysis [1]. (3) is easy to verify.
The proof is complete.

Proof of Theorem 19. Let € > 0 be fixed. For n > ng(e),
wn(f) = Supsuglf(j) — f(j @ pMy,)| <e,

peN je
that is,
lf(5) — f(G®pM,)| <e forall j,peN.
Define (with f(0) :=0)

M.—1
fo(k):= M"Y fla)re(@) and  g(j):= Y fe(k)Rr(j) (c€No).
a=0

Then g is periodic. Suppose that ¢ > n. Then
M.—1 M,—1
FG) = 90 = |1G) = MY f(@) D Fl@a()|
a=0 k=0
M.—1

HORS v DR

a=0
a=j (mod M,,)

(Theorem 2)

<t > -1 i ep)| < 2.
¢ p=0 i=0

That is, f is uniform limit periodic.
In [5] it is proved for uniform limit periodic arithmetical functions that

Su, [* Il f. The rest of the proof of Theorem 19 follows from Sy, f* =
DM, M(fe.)e,p~1(r) as (3) is satisfied for f. The proof is complete.

Proof of Theorem 20. Suppose that f € B2. Then

[ M [ 157Gt 0) — F @) du(h) dutz)}
Gm I,

—mil [ [Uf ) - P @l @)}

G'rn In
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/a
= Mé/q{ f f |f*(z+h)—f"(z)]? du(x) du(h)}1 (Fubini’s theorem)
I, Gm

[ [ e - rer)
I, Gn,

< {:g}) 1F* (@ +h) = f* (@) |33 = wi(f) L0

by Theorem 18. Since

Wl = [ M [ 1 @) = £ @) ) dp)}
I,

m

the last statement of Theorem 20 is proved. The other two statements being
trivial, the proof is complete.

Corollary 22 is a straightforward consequence of Theorem 21, which can
be proved by the application of the similar result for ¥« systems on Vilenkin
groups [4].

The proof of Theorem 24 can also be obtained with the help of the similar
result for 1o systems [4], which generalizes the result of Zhantlesov [19]
proved in the case of the original Vilenkin system (i.e. a = 1).

Proof of Theorem 23. The original idea, concerning Vilenkin (and
not necessarily R—Vilenkin) groups comes from Fridli [3] and Rubin-
shtein [11]. They prove the existence of LI(G,,) and C(G,,) functions whose
wl respectively w, modulus of continuity is z,. In [5] (Theorem 25) it is
proved that there exists a ||-||1-limit periodic arithmetical function f : N — N
such that wi(f) = z, for each n € Ny and f* = F p-almost everywhere on
G, where F' € LY(G,,) satisfies the following relation: ||F,, — F|jr« — 0
(n — 400), where

oo
F, = Z apicharp\g, .,
i=0
(n € Ny, charp denotes the characteristic function of the set B, a, ; is some
complex number, n,i € Ny).

Define arithmetical functions

oo
fn = Z O‘n,iﬁiv
=0

where
)0 otherwise (6:(0) :=0).
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It suffices to show that

(9) 0; is an even arithmetical function, and f, € BY,
(10) fo=F, p-ae on Gy

Indeed, by (9) and (10) Theorem 6 gives that the arithmetical function
f, whose || - [-modulus of continuity is z, is a || - ||;-almost even arithmetical
function, that is, the proof of Theorem 23 would be complete. Now,

M(ﬁk(_)e—%ri(a/n).)

Misin

- bginoo b_lzﬁk(j)e_%i(a/n)j = (Mgyan)™! — Br(j)e2mie/n)i
e M:+_1n

= (My41n)~ Z 2T (M )t Y e mila/ms
o Mool

=A; -4 (a,neN, (a,n)=1).
It is easy to see that

A = M it n| My, g MY if 7 [ My,
0 otherwise; 0 otherwise,

therefore A; — A, does not depend on a.
Hence, as (j is periodic modulo M1, B is even. Define

K K
= aniBi, FF:=) anchary,,, (fXeD, FX:Gpn—C).
=0 1=0
We have
K - q a K
1= 150 = { D2 lemal*/M: = 1/Misn) " = 1B = B 10— 0
i=K+1

as K — oo because F),, € LY(G,,).

Since fK is even, f, is almost even. We have | f,|l, = ||Fnllza, conse-
quently f,, € BY. Next, 8} = chary,\;,,, p-almost everywhere on G,,, thus
(fEYy* = FX p-a.e. on G, for each k € Ng. This implies that f* = F, u-a.e.
on G,,, that is, (9) and (10) are proved. Thus the proof of Theorem 23 for
the || - ||;-modulus of continuity is complete. To prove the existence of a
uniform almost even arithmetical function whose || - ||,,-modulus of continu-
ity is a given sequence, one can apply the idea of Rubinshtein [11] and the
methods used above.
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Proof of Theorem 25. Define arithmetical functions
Mn+1 - Mn if Mn+1 ’]7

an(j) =< —M, if My, |jand M,111j (an(0):=0,n € Ny),
0 if M, 1j.

Then

Mn+171
an(j) = D, (5,0) = D, (5,0) = > exp(2miky)

k=M,

is even. Let M,, <b< 2M,,. Thusb= M, +b,_1M,_1+ ...+ bgMy and

b—1
Dy(r,§) = Das, (r,§) + Y exp (2mik(r — 5)).
k=M,

Since k = My, +ky_1 M, _1+...+koMy =: M, +k~ therefore k = 1/M,, 1+
(k~)Y. This implies that

n

1 b—M,, —1
Difrd) = Dav, () +exp (2mir=0)) Y exp 2k ) (= ),

k==0
Now
Myy1—1 M, —1
Span(r) = M{ Z exp (2772'12:]'){ Z exp (2mik(r — 7))
k=M, k=0
b—
+ exp(2mik(r — j))}}
k=M,
b—1
= exp(2mikr) = exp <2m' 7') Dy_pr,, (1,0).
k=M,, n+1
Hence
2M,, M,
MY ISsanlls = Mt Y |IDk(-, 011 =: DY
b=M, +1 k=1

Next we give a lower bound for D9:

(1) Db = 23 {30 D050}

(The arithmetical functions s are defined in the proof of Theorem 23.)
The product | D (7,0)|3s(j) can be different from zero only in the case when
M |7 and Msi117. In this case it is equal to |Dy(7,0)|. Suppose that
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k=3_okiM; (t <n). We have

j> Dy, (7,0) + ...

1
Dk(]v 0) = DMt(j’ 0) + exp <27T,L
My

-1 k
+ exp <27T7'] >DMt(j70)+eXp <27”.7 . )DMt—l(j70)
t+1 M4
e (2(’“ +1>>D (5.0) +
X m — L,
P J My M, M1 \J
. kt_1—1>> ,
+ exp | 27 + Dy, (5,0
p< J(MM M M1 (5, 0)
o ke ke >>
+exp | 273 + Dy, 5(7,0) + ...
p< J<Mt+1 N M, (7, 0)
—i—exp<27rij< Moy k3+1>>DMS(j,O)+...
Mt+1 Ms+2
ki ko—1
+ exp ( 2mi L+ + ))D . (4,0).
P( j(Mt+1 M, M, Mo (5, 0)

Since M |j and Msy11j, assuming ks > 1 we get

i k k n
E M g exp<27ri'< LA >>
! J M4 Mo M

n=

’“5*1 k k
= M, exp | 2mij t —i—...+s+1)>.
Z p( ! <Mt+1 Mo

n=0

As a consequence,

ko—1 ko—1 .
. .JsT
Dy(7,0)| = M, exp | 2me = M, exp | 2w .
|Di(5,0)] nEO p( JMsH) nEZO p( mg)'
This gives

ms—1 ..

“~ |exp(2mijsks/ms) — 1|
Dy(3,0)[8:() } = > M, &

{Z’ F j |ﬂ Z s+1 ]2 eXp(27”'.78/ms) —1

1 %’i |Sln Tiks/ms)]|

sin(7j /ms)

3

S k=M, j=1
ks>

iy

1 Mn mzlmz | sin(mjks/ms)]|
m sin(7j /ms)

$ ko=1 j=1

\Y
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[m5/2} m ms—1
> cMym;? > == Y |sin(wiks/ms)]

=1 1 5=

[ms /2] m [ms/(25)] j [ms/2] 1
> cM,m>? =4 2> M, - > cM,, log mg
> ; ; 5 k; o ; 52 g

for some absolute constant ¢ > 0 (which may vary from line to line). Sub-
stituting this last inequality into (11) we get

n—1

DY > chogms =clogM, > cn

s=0
for some absolute constant ¢ > 0. This implies that there exists a b = b(a,,)
with M,, < b < 2M,, such that || Sya,|[1 > cn.

Define

f= i)\nayn, where )\, € C, i |An| < 0.
n=0

n=0

Then f5 := ZK Anay, is an even arithmetical function. We have

n=0
> 1
— K < Al(My, o1 — M, )———
[f=f"h<e _Z Al (M, 41 ")Mun+1
n=K+1

oo
<c Z An| =0 (K — 400).
n=K+1
Thus f € B! is almost even.
If j < n, then Sy(4,)a, = 0, hence in this case ||Sy(4,)an(1 < c. Finally,
we get

1ucan Fll = |[Socan (D2 Asaw, )||, = 1Sucaun i 1 12al =€ 3 P
j=0 k=0

oo
> cvp|Anl =D [l
k=0

Now, take v,, > n/|A,| (n € Ng) and A\, # 0 (n€Np). We get sup ||S, f|l1 =
oo, that is, the proof of Theorem 25 is complete.
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