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1. Introduction. A sequence (xn)n∈N of real numbers xn ∈ [0, 1) is
called uniformly distributed mod[0, 1) if and only if every interval [a, b) ⊆
[0, 1) contains x1, . . . , xN with an asymptotic frequency corresponding to its
length, that means,

(1.1) lim
N→∞

1
N
|{n ≤ N | xn ∈ [a, b)}| = b− a

for all 0 ≤ a ≤ b ≤ 1, or equivalently

(1.2) lim
N→∞

1
N

N∑
n=1

f(xn) =
1∫

0

f(x) dλ(x)

(λ denoting the Lebesgue measure) for every f of the form f = χ[a,b),
0 ≤ a ≤ b ≤ 1. (The characteristic function χA of a set A is defined by
χA(x) = 1 if x ∈ A and χA(x) = 0 if x 6∈ A.) It is well known (cf. [KN],
[Hl]) that the following statements are equivalent:

(i) (xn)n∈N is uniformly distributed mod[0, 1), i.e. (1.2) holds for every
f = χ[a,b), 0 ≤ a ≤ b ≤ 1.

(ii) (1.2) holds for every continuous f , i.e. f ∈ C([0, 1)).
(iii) (1.2) holds for every Riemann-integrable f .
(iv) (1.2) holds for every f of the form f(x) = e(kx) with e(y) = e2πiy

and k ∈ Z (Weyl criterion).

This leads to a more general definition: A sequence (xn)n∈N in a compact
space X is called uniformly distributed with respect to the normalized Borel
measure µ if and only if (1.2) holds for every f ∈ C(X) (with µ instead of
λ). A more special property is well distribution: With the same notation as
above a sequence is called well distributed if and only if

(1.3) lim
N→∞

1
N

N∑
n=1

f(xn+s) =
∫

X

f(x) dµ(x)
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uniformly in s = 0, 1, 2, . . . for every f ∈ C(X). A further way of general-
ization is that of using limitation methods.

The infinite matrix A = (an,k)n,k∈N with real entries an,k is called a
positive regular limitation method if

(i) an,k ≥ 0,
(ii) limn→∞ an,k = 0 for every k ∈ N,
(iii)

∑∞
k=1 an,k <∞ for every n ∈ N,

(iv) limn→∞
∑∞

k=1 an,k = 1.

The sequence (xn)n∈N in X is called (A,µ)-uniformly distributed if and
only if

(1.4) lim
n→∞

∞∑
k=1

an,kf(xk) =
∫

X

f(x) dµ(x)

for every f ∈ C(X). If we consider the case an,k = 1/n for k ≤ n and
an,k = 0 for k > n we obtain the standard concept of uniform distribution
with respect to µ. If an,k = pk/P (n) with pk ≥ 0 and P (n) =

∑n
k=1 pk →∞,

then the an,k are called weighted means.
In [PSS], [Bo] the authors have investigated uniform distribution preserv-

ing mappings (for short: u.d.p. mappings) f , i.e. maps generating uniformly
distributed sequences (f(xn))n∈N for every uniformly distributed sequence
(xn)n∈N. They established some general results in case of uniform distribu-
tion mod[0, 1) and some special results for piecewise differentiable or piece-
wise linear f . In Section 2 we give generalizations of their results. We
are concerned with compact spaces with regular Borel measures, limitation
methods and well distribution. Section 3 contains some results demonstrat-
ing for instance that the restriction in [PSS] to piecewise differentiable func-
tions is very restrictive in one sense, but in another sense even restriction to
piecewise linear functions does not change very much: The set of continuous
piecewise linear u.d.p. mappings is dense in the set of all continuous u.d.p.
mappings on [0, 1] with respect to the topology of uniform convergence.

2. General results. In this section we establish some general criteria
on u.d.p. transformations on compact metric spaces (X, d). For technical
reasons we will assume two further conditions, one on the measure µ and
the other one on the limitation method A:

(M) µ(B) = µ(B)

for every (open) ball B of positive radius, and

(L) lim
n→∞

∞∑
k=1

|an,k − an+1,k| = 0 .
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Condition (L) is due to Lorentz [Lo]; it is sufficient for the existence of
an (A,µ)-uniformly distributed sequence (cf. [De]). Furthermore we recall
the definition of a Jordan-measurable function g : X → R: g is called
(µ-)Jordan-measurable if it is continuous µ-almost everywhere.

Theorem 2.1. Let X be a compact metric space, µ a regular normalized
Borel measure on X and A a positive regular limitation method such that
the additional properties (M) and (L) are satisfied. Then a transformation
f : X → X is µ-u.d.p. if and only if for every Jordan-measurable function
g : X → R the composition g ◦ f also is Jordan-measurable and

(2.1)
∫

X

g(x) dµ(x) =
∫

X

g(f(x)) dµ(x) .

P r o o f. Let f be (A,µ)-u.d.p. and let (xn) be an (A,µ)-uniformly dis-
tributed sequence on X. Then (f(xn)) is also (A,µ)-uniformly distributed
and for an arbitrary Jordan-measurable function g : X → R we have

lim
n→∞

∞∑
k=1

an,kg(xk) =
∫

X

g(x) dµ(x) = lim
n→∞

∞∑
k=1

an,kg(f(xk)) .

By [Bi] g ◦ f is Jordan-measurable. Thus we obtain

lim
n→∞

∞∑
k=1

an,kg(f(xk)) =
∫

X

g(f(x)) dµ(x) ,

and property (2.1) is proved.
Now assume that f is not u.d.p. Then there exists an (A,µ)-uniformly

distributed sequence (xn) such that (f(xn)) is not (A,µ)-uniformly dis-
tributed. This means that there exists a Jordan-measurable function g :
X → R such that

(2.2)
∞∑

k=1

an,kg(f(xk))

does not converge to
∫

X
g(x) dµ(x) (for n → ∞). Since we may suppose

that g ◦ f is Jordan-measurable (2.2) necessarily converges to∫
X

g(f(x)) dµ(x)

which contradicts (2.1) and the theorem is proved.

R e m a r k. The composition of two Jordan-measurable functions is not
automatically Jordan-measurable. In [Ma] it has been shown that every
bounded function on [0, 1] is the composition of two Riemann-integrable,
i.e. Jordan-measurable functions. In the following we will give a slightly
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different proof of this remarkable fact for functions on the s-dimensional
unit cube U = [0, 1)s.

Let e1, . . . , e2s be the vertex points of U and let Q1, . . . , Q2s be the cubes
Qj = [a1, a1 + 1/2)× . . .× [as, as + 1/2) with aj = 0 or 1/2 such that ej is
a vertex point of Qj . Then the cubes Qj form a partition of U . We define
a transformation τ1 : U → U by τ1(x) = 1

2 (x + ej) for x ∈ Qj . The image
Im τ consists of 2s cubes Vj of side length 1/4. In a second step we consider
a fixed cube Vj (instead of U) and define a transformation τ2,j : Vj → Vj in
the same way as the transformation τ1 above. Doing so for all cubes Vj we
get an image consisting of 22s cubes. After n steps we have a transformation
τn : U → U such that the image Im τn consists of 2ns cubes of side length
1/4n. Now we set τ(x) = limn→∞ τn(x). By construction, τ is injective.
Furthermore, λ(Im τn) = 2−ns, thus λ(Im τ) = 0. Clearly, the closure of
Im τ is a null-set, too. For a given bounded function f on U we define
ψ(y) = f(x) if y = τ(x) ∈ Im τ and ψ(y) = 0 if y 6∈ Im τ . Obviously, f(x) =
ψ(τ(x)). Thus f is the composition of two Jordan-measurable functions τ
and ψ. Using coverings with open sets and coordinate mappings the above
construction can be easily generalized to functions on manifolds.

In the following we extend Theorem 2.1 to mappings that preserve well
distribution. One basic tool in the proof was Binder’s generalization of
De Bruijn and Post’s [BP] classical result. We need an extension of this
result to µ-well distributed (for short: µ-w.d.) sequences.

Lemma 1. In every compact metric space X there exists a µ-w.d. se-
quence (an).

This is a well-known result of Baayen and Hedrlin [BH].

Lemma 2. Let (an) be µ-w.d. in (X, d) and let (xn) be a sequence such
that limn→∞ d(an, xn) = 0. Then (xn) is also µ-w.d.

P r o o f. Let f ∈ C(X) with
∫

X
f dµ = 0; f is bounded: |f | ≤ M and

uniformly continuous on the compact space X. Thus for a given ε > 0 there
exists n0 such that |f(xn)− f(an)| < ε for all n ≥ n0. Then∣∣∣∣∣ 1

N

s+N∑
n=s+1

f(xn)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
N

s+N∑
n=s+1

f(an)

∣∣∣∣∣ +
2Mn0

N
+ ε .

Choosing N sufficiently large yields the desired result.

The following lemma is proved in [Bi], Hilfssatz 2.

Lemma 3. Let (xn) and (yn) be two sequences of reals such that

lim
N→∞

1
N

N∑
n=1

xn = a and lim
N→∞

1
N

N∑
n=1

yn = b
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with a 6= b. Then there exists a sequence (zn) with zn = xn or zn = yn such
that

lim
N→∞

1
N

N∑
n=1

zn

does not exist.

Proposition 2.2. Let g : X → R be a function that is not Jordan-
measurable. Then there exists a µ-w.d. sequence (zn) on X such that

lim
N→∞

1
N

N∑
n=1

g(zn)

does not exist.

S k e t c h o f p r o o f . We suppose that the lower integral µ(g) is different
from the upper integral µ(g). By similar arguments to [Bi], Hilfssatz 5 (using
the fixed µ-w.d. sequence (an) of Lemma 1) there exist two sequences (xn)
and (yn) in X such that:

lim
N→∞

1
N

N∑
n=1

g(xn) = µ(g) , lim
N→∞

1
N

N∑
n=1

g(yn) = µ(g) ,

lim
n→∞

d(xn, an) = lim
n→∞

d(yn, an) = 0 .

Thus, by Lemma 2, (xn) and (yn) are µ-w.d. Applying Lemma 3 we obtain
a µ-w.d. sequence (zn) such that the above limit does not exist.

An immediate consequence of the proof of Theorem 2.1 and Proposi-
tion 2.2 is the following

Theorem 2.3. Let X be a compact metric space, and µ a regular nor-
malized Borel measure on X with property (M). Then a transformation
f : X → X preserves µ-well distribution if and only if for every Jordan-
measurable function g : X → R the composition g ◦ f is also Jordan-
measurable and ∫

X

g(x) dµ(x) =
∫

X

g(f(x)) dµ(x) .

R e m a r k. Clearly the class of u.d.p. mappings coincides with the class
of well distribution preserving mappings.

R e m a r k. An analogue to Theorems 2.1 and 2.3 for completely uniform
distribution (cf. [KN]) can be given by similar arguments.

Further generalizations of the results given in [PSS] can be given. As an
example we state
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Proposition 2.4. A mapping f : X → X is (A,µ)-u.d.p. if and only if

(i) f is Jordan-measurable and
(ii) µ(f−1(M)) = µ(M) for every µ-continuity set M ⊆ X.

3. Further results on uniform distribution mod[0, 1). In this sec-
tion we restrict our investigations to the classical case of uniform distribution
on the unit interval. In [PSS] a classification of piecewise differentiable u.d.p.
mappings f : [0, 1] → [0, 1] is given. An answer to the question whether there
are continuous u.d.p. mappings that are not piecewise differentiable is given
by

Theorem 3.1. There exist continuous functions f on [0, 1] that are
nowhere differentiable and u.d.p.

P r o o f. We introduce the following abbreviation:

A =
{ n⋃

k=1

[ak, bk]
∣∣∣∣ n ∈ N, Ik = [ak, bk] ⊆ [0, 1]

}
.

For an arbitrary subset A of a topological space (in our case the unit interval
[0, 1]) let A be the topological closure, A◦ the interior. Furthermore let λ
denote the Lebesgue measure and let

D = {k/2n | n ∈ N, k ∈ {0, 1, . . . , 2n}} .

Without giving a formal proof we now note an obvious fact.

C l a i m 1. Let A1, A2 ∈ A, A1 ⊆ A◦2, λ(A1) < α < λ(A2) and ε > 0.
Then there exists an A ∈ A such that A1 ⊂ A◦, A ⊂ A◦2, λ(A) = α and for
all x ∈ A2 \A1 there are y with |y − x| < ε contained in A as well as in the
complement.

C o n s t r u c t i o n o f a n f : Starting with M0 = {0, 1} and M1 = [0, 1]
we define inductively Mα for every α ∈ D. Let α = k/2n with k odd. Then
set Mα = A such that (with A1 = Mα−1/2n , A2 = Mα+1/2n and ε = 2−2n)
the assertion of Claim 1 holds. Now we define

f(x) = inf{α ∈ D | x ∈Mα} = sup{α ∈ D | x 6∈Mα} .

Note that Mα = {x | f(x) ≤ α} and f is continuous because

{x | f(x) < α0} = {x | inf{α ∈ D | x ∈Mα} < α0}

= {x | ∃α ∈ D : α < α0, x ∈Mα}

=
⋃
{Mα | α < α0, α ∈ D} =

⋃
{M◦

α | α < α0, α ∈ D}

is an open set for all α0 ∈ [0, 1].
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f i s n o w h e r e d i f f e r e n t i a b l e: Take x ∈ [0, 1] and K ∈ R arbi-
trarily. It suffices to find a y 6= x such that

(3.1)
∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > K.

To do this we take an n with 2n−1 > K and define α1 and α2 by

α1 = k/2n < f(x) ≤ (k + 1)/2n = α2, k ∈ {0, . . . , 2n − 1} .
(For f(x) = 0 we argue similarly to Case 1 below.) Suppose w.l.o.g. f(x) ≤
α = α1 + l/2n+1 ∈ (α1, α2). (The other case is treated quite similarly.)
With β = α1 +m/2n+1 we have to distinguish two cases.

C a s e 1: α1 < f(x) ≤ β < α < α2. Since x ∈ Mα2 \Mα1 there is a
y 6∈Mα with |y−x| < 2−2n−2. Therefore f(y)− f(x) > α−β = 2−n−2 and
|y − x| < ε = 2−2n−2, which implies (3.1).

C a s e 2: α1 < β < f(x) ≤ α < α2. Since x ∈ Mα \Mα1 ⊆ Mα2 \Mα1

there exist y1 ∈ Mβ , y2 6∈ Mα with |yi − x| < 2−2(n+1), i = 1, 2. Therefore
f(y1) ≤ β and f(y2) > α. With an easy geometric consideration we conclude

sup
{∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ∣∣∣∣ y 6= x

}
≥

∣∣∣∣f(y2)− f(y1)
2−2n−1

∣∣∣∣ > 22n+1(α−β) > 2n−1 ≥ K.

f p r e s e r v e s u n i f o r m d i s t r i b u t i o n: For every interval I of the
form I = [0, α], α ∈ D, and every uniformly distributed sequence (xn) we
have

lim
N→∞

1
N
{n ≤ N | f(xn) ∈ I}| = lim

N→∞

1
N
|{n ≤ N | xn ∈Mα}|

= λ(Mα) = α = λ(I)

(note Mα ∈ A). Since D is dense in [0, 1] this statement must hold for
arbitrary I = [a, b] ⊆ [0, 1].

Thus the proof of Theorem 3.1 is complete.

Although Theorem 3.1 guarantees an abundance of continuous but
nowhere differentiable u.d.p. mappings, in a topological sense the set of
these mappings is not much larger than even the set of continuous piecewise
linear u.d.p. mappings, described in a very satisfactory manner in [PSS].

Theorem 3.2. The set of all continuous u.d.p. mappings is the topologi-
cal closure (with respect to uniform convergence) of the set of all continuous
piecewise linear u.d.p. mappings.

P r o o f. By [PSS], Proposition 2, the uniform limit of uniform distri-
bution preserving mappings still has this property. This shows one set-
theoretical inclusion.

For the other inclusion let f be continuous on [0,1] and u.d.p., ε > 0 an
arbitrary positive real. We have to construct a mapping l of [0,1] onto itself
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which is continuous, piecewise linear, u.d.p. and satisfying |l(x)− f(x)| < ε
for all x ∈ [0, 1].

Since [0, 1] is compact f is uniformly continuous, hence for a fixed n >
2/ε, i.e. 1/n < ε/2, there is a δ > 0 such that |x − y| < δ implies |f(x) −
f(y)| < 1/n for all x, y ∈ [0, 1]. With D = {α = k/n | k ∈ {0, . . . , n}} the
fact that every open set of reals is a countable union of open intervals gives
a representation of the form

f−1([0, 1] \D) = [0, y0) ∪
⋃
n∈N

In ∪ (x0, 1]

with In = (an, bn), an, bn ∈ [0, 1]. Write Ki = (xi, yi) for those In for which
f(xi) 6= f(yi), thus |f(xi)−f(yi)| = 1/n. Therefore we have yi−xi > δ and
the number of the Ki is bounded by 1/δ, hence it is finite. Now we consider
the following partition of [0, 1]:

R1 = [0, y0) < A1 = [y0, x1] < K1 = (x1, y1) < . . .

. . . < Am = [ym−1, xm] < R2 = (xm, 1] .

The following facts are obvious:

(i) f(yi−1) = f(xi) for i = 1, . . . ,m,
(ii) f(Ai) ⊆ (f(xi)− 1/n, f(xi) + 1/n), i = 1, . . . ,m,
(iii) f(Ki) = (f(xi), f(yi)) resp. (f(yi), f(xi)) for i = 1, . . . ,m− 1,
(iv) f(R1) ⊆ (f(y0)− 1/n, f(y0)] resp. [f(y0), f(y0) + 1/n),
(v) f(R2) ⊆ (f(x0)− 1/n, f(x0)] resp. [f(x0), f(x0) + 1/n).

C o n s t r u c t i o n o f l. On Ki: Linear connection of the points (xi,
f(xi)) and (yi, f(yi)), i = 1, . . . ,m− 1.

On Ai: Linear connection of the points (yi−1, f(yi−1)), (yi−1 + ε
(i)
1 ,

f(yi−1) + 1/n), (yi−1 + ε(i), f(yi−1)), (yi−1 + ε
(i)
2 , f(yi−1) − 1/n) and

(xi, f(xi)) under the (possible) restrictions

0 < ε
(i)
1 < ε(i) < ε

(i)
2 < xi − yi−1 = δ(i)

and
λ(f−1((f(yi−1), f(yi−1) + 1/n)) ∩Ai) = ε(i)λ(Ai) ,

i = 1, . . . ,m.
On R1: Linear connection of the points

(0, f(y0)), (y0/2, f(y0) + 1/n) and (y0, f(y0))

in case f(R1) ≥ f(y0), and of the points

(0, f(y0)), (y0/2, f(y0)− 1/n) and (y0, f(y0))

in case f(R1) ≤ f(y0).
On R2: As on R1 mutatis mutandis.
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P r o o f o f t h e p r o p e r t i e s o f l :
l is linear on each interval Ri, Ki and Ai and continuous at the points xi

and yi, therefore it is continuous and piecewise linear on the unit interval.
l preserves uniform distribution: Let Jj = ((j − 1)/n, j/n), j = 1, . . . , n.

Then the inverse image of such an interval has the representation l−1(Jj) =⋃nj

i=1 Ij,i with pairwise disjoint open intervals Ij,i of the form Ij,i = l−1(Jj)∩
I(j,i), where I(j,i) is one of the Ri, Ai or Ki. By Proposition 7 in [PSS] we
have to show

λ(Jj) =
nj∑
i=1

λ(Ij,i) for j = 1, . . . , n .

Indeed, we have—using that f preserves uniform distribution and applying
Theorem 4 in [PSS]—

λ(f−1(Jj)) = λ(Jj) .

Furthermore, by construction

λ(f−1(Jj) ∩ I) = λ(l−1(Jj) ∩ I)

for every j = 1, . . . , n and I = Ri, Ai or Ki. Hence

λ(Jj) = λ(f−1(Jj)) = λ
(⋃

I

(f−1(Jj) ∩ I)
)

=
∑

I

λ(f−1(Jj) ∩ I) =
∑

I

λ(l−1(Jj) ∩ I) =
nj∑
i=1

λ(Ij,i) .

Thus |l(x) − f(x)| < ε for all x ∈ [0, 1] by the construction of l and by
observations (i)–(v) and the proof of Theorem 3.2 is complete.

Theorem 3.3. There are u.d.p. mappings which cannot be represented as
a uniform limit of piecewise linear (not necessarily continuous) mappings.

P r o o f. C l a i m 1: The uniform limit f of piecewise continuous maps
ln, n ∈ N, is continuous with the exception of not more than countably
many points.

P r o o f o f c l a i m 1. With

Uf = {x | f is not continuous in x} and Un = {x | ln is not continuous in x}

by uniform convergence we have

Uf ⊆
⋃
n∈N

Un ,

which proves claim 1 because every Un is even finite.

C l a i m 2: Let N be an arbitrary closed set of Lebesgue measure 0.
Then the mapping f : [0, 1] → [0, 1] with f(x) = 0 for x ∈ N and f(x) = x
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otherwise preserves uniform distribution and satisfies Uf = N (or Uf =
N \ {0}).

P r o o f o f c l a i m 2. By [PSS], Theorem 2a, the relation
1∫

0

g(f(x)) dx =
∫

N

g(f(x)) dx+
∫

[0,1]\N

g(f(x)) dx

= 0 +
∫

[0,1]\N

g(x) dx =
1∫

0

g(x) dx

for every continuous g : [0, 1] → R proves claim 2 since the assertion on Uf

is obvious.
It is well known that there exist closed sets N with λ(N) = 0 that are

not countable. Hence claims 1 and 2 together give Theorem 3.3.

A very natural question is whether also pointwise convergence gives simi-
lar results in our context. The following two theorems show that pointwise
convergence (even “convergence almost everywhere”) preserves the property
of measure preservation but not that of uniform distribution preservation, a
further hint that uniform distribution is strongly connected with continuity
and topology, and not only with measure theory. The following result is well
known; we present a proof for completeness.

Proposition 3.4. Let the mappings fn : [0, 1] → [0, 1], n ∈ N, be measure
preserving , i.e. λ(f−1

n (M)) = λ(M) for every measurable M , and let fn

converge to f almost everywhere. Then f is also measure preserving.

P r o o f. By a standard measure-theoretical argument it suffices to show
λ(f−1(a, b)) = b − a for arbitrary 0 ≤ a ≤ b ≤ 1. Let K = {x | fn(x) →
f(x)} denote the set of convergence. By assumption we have λ(K) = 1. For
x ∈ K the statements “x ∈ f−1(a, b)”, “f(x) ∈ (a, b)” and therefore “there
exists an N ∈ N such that for all n ≥ N a < fn(x) < b” are equivalent.
Hence

λ(f−1(a, b)) ≤ λ
( ⋃

N∈N

⋂
n≥N

f−1
N ((a, b))

)
= lim

N→∞
λ
( ⋂

n≥N

f−1
n ((a, b))

)
≤ lim

N→∞
λ(f−1

N ((a, b))) = b− a .

For closed intervals this implies

λ(f−1([a, b])) ≤ λ(f−1((a− ε, b+ ε))) ≤ b− a+ 2ε

for every ε > 0, hence
λ(f−1([a, b])) ≤ b− a
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for all closed intervals. From these estimates the desired equality follows
because

λ(f−1([0, a])) + λ(f−1((a, b))) + λ(f−1([b, 1])) = λ(f−1([0, 1]))
= λ([0, 1]) = 1.

Theorem 3.5. The pointwise limit of a sequence of u.d.p. mappings does
not necessarily preserve uniform distribution.

P r o o f. Let Q = {qn | n ∈ N} be an enumeration of the rationals.
The sequence (fn)n∈N defined by fn(x) = 0 for x ∈ {q1, . . . , qn}, fn(x) = x
otherwise, converges pointwise to f(x) = 0 for x ∈ Q, f(x) = x otherwise.
Quite similarly to the proof of Theorem 3.3 one can show that every fn

preserves uniform distribution. But f does not because it is not Riemann-
integrable (cf. Theorem 2.3 or [PSS], Theorem 1).

If one asks, on the other hand, whether there is a small class of u.d.p.
mappings which produces all such mappings by taking limits almost every-
where one gets an affirmative answer.

Theorem 3.6. Let f be a u.d.p. mapping. Then there exists a sequence
(fn)n∈N of u.d.p. mappings which are piecewise linear and bijective on the
unit interval [0, 1] onto itself such that fn converges to f almost everywhere.

P r o o f. We construct fn in such a way that there exists a set An with
λ(An) ≤ 1/2n and |f(x) − fn(x)| < 1/2n for all x 6∈ An. For the set N of
points x where fn(x) does not converge to f(x) we get

0 ≤ λ(N) ≤ λ
( ⋂

k∈N

⋃
n≥k

An

)
≤ lim

k→∞

∑
n≥k

λ(An) ≤ lim
k→∞

2−k+1 = 0 .

By [PSS], Theorem 1, f is Riemann-integrable, which means: For every
ε > 0 there is a δε > 0 such that for every

P = {0 = x0 ≤ x1 ≤ . . . ≤ xn = 1}
satisfying ‖P‖ = maxi=1,...,n(xi−xi−1) ≤ δε the difference between Riemann
upper and lower sum fulfils Uf (P )− Lf (P ) < ε. In our case we take

ε = 1
32−2n and P = {xk = k/m | k = 0, . . . ,m}

with
1/m < min{δε, d} and d = 1

32−n .

We obtain

ε > Uf (P )− Lf (P ) =
m∑

i=1

1
m

( sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x))

≥ d

m
|{i | sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) ≥ d}| ,
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which implies for

An =
⋃
{[xi−1, xi] | sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) ≥ d}

the desired upper bound

λ(An) ≤ ε/d = 2−n .

We consider the following binary relation on the set M = {1, . . . ,m}:
R = {(i, j) ∈M2 | f(x) = y for some x ∈ [xi−1, xi], y ∈ [xj−1, xj ]} .

Since f preserves Lebesgue measure we conclude

λ(f−1([xi1 − xi1−1] ∪ . . . ∪ [xik
− xik−1]))

= λ([xi1 − xi1−1] ∪ . . . ∪ [xik
− xik−1]) = k/m .

Hence for every set T = {i1, . . . , ik} ⊆M of indices we have |R−1(T )| ≥ |T |.
Thus (marriage problem) there exists a bijection φ : M →M such that for
every i ∈ M there are x ∈ [(i − 1)/m, i/m] and y ∈ [(φ(i) − 1)/m, φ(i)/m]
with f(x) = y.

C o n s t r u c t i o n o f fn: On every interval ((i − 1)/m, i/m) we de-
fine fn to be the linear connection of the points ((i − 1)/m, (φ(i) − 1)/m)
and (i/m, φ(i)/m). Of course it is possible to define the remaining values
fn(i/m), i = 0, . . . ,m, in such a way that fn is bijective. By [PSS], Propo-
sition 7, it is clear that fn preserves uniform distribution. It remains to
prove

|f(x)− fn(x)| < 2−n

for x 6∈ An. By the definition of An, for xi−1 ≤ x ≤ xi we have

sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) < d = 1
32−n .

Furthermore, there is an x′ ∈ [xi−1, xi] such that

y′ = f(x′) ∈ [xφ(i)−1, xφ(i)] .

Completing the proof of Theorem 3.6 we derive

|f(x)− fn(x)| ≤ |f(x)− f(x′)|+ |f(x′)− fn(x′)|+ |fn(x′)− fn(x)|
≤ d+ 1/m+ 1/m < 2−n .

R e m a r k. In the recent article [Ko] invariant measures for piecewise
linear transformations were studied in detail.
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