On p-adic L-functions and the Riemann–Hurwitz genus formula

by

SANG G. HAN (Taejon)

$$L_p(\varepsilon\omega, 1-n) = L(\varepsilon\omega^{1-n}, 1-n) \prod [1 - \varepsilon\omega^{1-n}(q)Nq^{n-1}]$$

where q runs over the primes of F which lie over p, and ω is the Teichmüller character for $F(\mu_p)/F$. The action of $\Gamma = \operatorname{Gal}(F_{\infty}/F) \cong \operatorname{Gal}(F(\mu_p)_{\infty}/F(\mu_p))$ on p-power roots of unity is given by a homomorphism $\kappa : \Gamma \to \mathbb{Z}_p^{\times}$. Let γ_0 be a topological generator of Γ . Let $\kappa_0 = \kappa(\gamma_0)$. Then we have an element $f_{\varepsilon\omega}(T)$ in the quotient field of $\Lambda = \vartheta[T]$ such that

$$f_{\varepsilon\omega}(\kappa_0^s - 1) = L_p(\varepsilon\omega, s)$$
 for all s in $\mathbb{Z}_p - \{1\}$.

Let F_n denote the nth layer of F_{∞}/F . Let e_n denote the exponent of the exact power of p dividing the class number of F_n . One of the principal results of Iwasawa theory states that there exist fixed integers $\mu \geq 0, \lambda \geq 0$, and ν such that $e_n = \mu p^n + \lambda n + \nu$ for all n sufficiently large. Iwasawa conjectured that $\mu = 0$ for any basic \mathbb{Z}_p -extension. The conjecture is known to be true when F is abelian over \mathbb{Q} . The general case still remains to be shown. In particular, suppose F is a CM-field. Consider the basic \mathbb{Z}_p -extension of F^+ . Then the invariants decompose into plus and minus parts to give $\mu = \mu^- + \mu^+, \lambda = \lambda^- + \lambda^+, \text{ and } \nu = \nu^- + \nu^+$ [Wa].

Let k be a finite extension of \mathbb{Q}_p . Let π be a prime element of k, ϑ the ring of integral elements of k, and f the residue degree of k/\mathbb{Q}_p . Let $\Lambda = \vartheta[[T]]$. We call a polynomial $a_0 + a_1T + \ldots + a_nT^n \in \Lambda$ distinguished if $a_n = 1$ and $a_i \in \pi\vartheta$ for all $0 \le i \le n-1$.

Theorem 1. There exists a unique homomorphism $M: \Lambda^{\times} \to \Lambda^{\times}$ such that:

- (1) $M(U)((1+T)^p-1)=\prod U(\zeta(1+T)-1)$ for all U in Λ^{\times} where the product is over the p^f -th roots of unity.
 - (2) M is continuous in (p,T)-adic topology.
 - (3) For any U in Λ^{\times} , $M^{\infty}(U) = \lim M^n(U)$ exists.
 - (4) Let U_1 and U_2 be in Λ^{\times} . Assume that $U_1 = U_2 \mod \pi$. Then

$$M^{\infty}U_1 = M^{\infty}U_2$$
.

We call M Coleman's norm operator.

Proof. See [Han], or [Wa] where this is proved for f = 1.

Let us recall the natural decomposition $\vartheta^{\times} = W \times (1 + \pi \vartheta^{\times})$ where W is the set of all roots of unity in ϑ whose order is prime to p. We know that $|W| = p^f - 1$. Hence for any element α of $\vartheta^{\times} \subseteq \Lambda^{\times}$, $M^{\infty}(\alpha) = \omega(\alpha)$. Let $T - \beta$ be a distinguished polynomial of Λ^{\times} . Then

$$M(T-\alpha)((1+T)^p-1) = \prod (\zeta(1+T)-1-\alpha) = (1+T)^p - (1+\alpha)^p.$$

So

$$M(T-\alpha) = T + 1 - (1+\alpha)^p$$
, $M^{\infty}(T-\alpha) = T$.

So for any distinguished polynomial D(T) of degree λ , we can show that $M^{\infty}D = T^{\lambda}$ by considering the Coleman operator over the splitting field of D(T). We extend M from Λ^{\times} to Λ , then to $\Lambda_{(\pi)}$ by multiplicativity.

Let $g(T) = a_0 + a_1 T + a_2 T^2 + \dots$ be a non-zero element of Λ . We define

$$\mu(g) = \min\{\operatorname{ord}_p a_i\}, \quad \lambda(g) = \min\{j : \mu(g) = \operatorname{ord}_p a_j\}.$$

Clearly we have $\mu(fg) = \mu(f) + \mu(g)$, $\lambda(fg) = \lambda(f) + \lambda(g)$, if f, g are non-zero elements of Λ ; we may use these relations to define μ - and λ -invariants of the non-zero elements of the quotient field of Λ . Finally, by the Weierstrass preparation theorem, any element f(T) in the quotient field of Λ is uniquely factorized as follows:

$$f(T) = \pi^a \frac{P(T)}{Q(T)} U(T) \,, \quad \ a = \text{an integer} \,, \label{eq:force}$$

where P(T), Q(T) are relatively prime distinguished polynomials and U(T) is a unit of Λ . We define f^{∞} to be $M^{\infty}U(0)$. If f(T) is in Λ , then $a=\mu(f)$, Q(T)=1, degree of $P(T)=\lambda(f)$. We easily see that if $\mu(f)=0$, then $M^{\infty}f=T^{\lambda(F)}f^{\infty}+$ (higher degree terms).

Kida's formula. In [Ki], Kida proved an analogue of the classical Riemann–Hurwitz genus formula, by describing the behaviour of the λ^- -invariants in p-extensions of CM-fields under the assumption $\mu^- = 0$ for the fields involved. A special case of Kida's result is the following (for the most general formulation, see [Ki] or [Si]):

Let E/K be a CM-field which is a finite p-extension (i.e. if E' denotes the Galois closure of E for K, then $\operatorname{Gal}(E'/K)$ is a finite p-group). Suppose that K contains μ_p . Finally, suppose that $\mu_K = 0$. Then $\mu_E = 0$ and

$$2\lambda_E^- - 2 = [E_\infty : F_\infty](2\lambda_K^- - 2) + \sum_w (e(w) - 1)$$

where w runs over finite primes on E_{∞} which do not lie above p and are split for the extension E/E^+ , and e(w) denotes the ramification index of w in E_{∞}/K_{∞} .

Let ε_E and ε denote the odd characters of E/E^+ and K/K^+ respectively. Note that $\lambda(f_{\varepsilon_E\omega}) = \lambda_E^- - \delta_E$ where $\delta_E = 1$ if μ_p is contained in E and 0 otherwise [Si]. So Kida's formula can be viewed as a relation between $\lambda(f_{\varepsilon_E\omega})$ and $\lambda(f_{\varepsilon\omega})$.

Our aim is to generalize Kida's formula to arbitrary odd characters associated with an abelian extension, of degree prime to p, of a totally real number field under the assumption that the p-invariant of our character is zero. Let E, F be totally real number fields, $[E:F]<\infty$, and let E be a p-extension of F. Let ε be an odd character of F whose order is prime to p. We will compare the λ -invariants of $f_{\varepsilon\omega}$ and $f_{\varepsilon_E\omega}$, where ε_E is defined by $\varepsilon_E = \varepsilon \cdot \operatorname{Norm}_{E/F}$. Note that this definition of ε_E agrees with the notation in the above remarks about Kida's formula. For each intermediate field $F \subseteq L \subseteq E$, ε induces an odd character $\varepsilon_L = \varepsilon \cdot \operatorname{Norm}_{L/F}$. For any finite prime w in L, $\varepsilon_L(w) = \varepsilon(v)^{f(w/v)}$ where $v = w|_F$ and f(w/v) is the residue degree of w over v. Fix a topological generator γ_0 of $\operatorname{Gal}(F_\infty/F)$. Define κ_0 as in the introduction. We define a map

$$\alpha = \alpha_L : \{ \text{finite primes of } L \text{ which do not divide } p \} \to \mathbb{Z}_p$$

where $\alpha_L(w)$ is defined by $\langle Nw \rangle = \kappa_0^{\alpha(w)}$. Define $[\alpha(w)]$ to be $\alpha(w)|\alpha(w)|$, i.e. $[\alpha(w)]$ is the unit part of $\alpha(w)$. Note that $[\alpha_L(w)] = [\alpha_F(w|_F)]$. So we will denote $[\alpha_L(w)]$ by $[\alpha(w)]$ from now on. Finally, let $k = \mathbb{Q}_p(\mu_p)$, images of ε).

Theorem 2. If $\mu(f_{\varepsilon\omega}) = 0$, then $\mu(f_{\varepsilon_E\omega}) = 0$ and

(1)
$$\lambda(f_{\varepsilon_E \omega}) = [E_{\infty} : F_{\infty}] \lambda(f_{\varepsilon \omega}) + \sum_{\varepsilon(q)=1} (e(w) - 1)$$

where the summation is over all finite primes w of E_{∞} which do not divide p, e(w) = ramification index of <math>w in E_{∞}/F_{∞} and $q = w|_F$. Moreover,

$$(2) \qquad f^{\infty}_{\varepsilon_{E}\omega}=f^{\infty[E_{\infty}:F_{\infty}]}_{\varepsilon\omega}\prod_{\varepsilon(q)\neq 1}(1-\varepsilon(q)^{|\alpha(q)|})^{e(w)-1}\prod_{\varepsilon(q)=1}[\alpha(q)]^{e(w)-1}$$

where the product is taken over all finite primes w in E_{∞} as in (1). (For any w on E, $\varepsilon_E(w) = 1$ or $\varepsilon_E(w) \neq 1$ according as $\varepsilon(w|_F) = 1$ or $\varepsilon(w|_F) \neq 1$;

and $\varepsilon(w)^{|\alpha(w)|}$ denotes the unique $|\alpha(w)|^{-1}$ -th root of $\varepsilon(w)$ in the image of ε .)

Proof. We will first prove the theorem when E/F is a cyclic extension of degree p. Notice that without loss of generality we may assume $F_{\infty} \cap E = F$. Otherwise the theorem holds trivially. So we may assume that $\gamma_E = \gamma_F$. We have a factorization of the complex L-function $L(\varepsilon_E, s)$ into

$$L(\varepsilon_E, s) = \prod L(\varepsilon \phi, s)$$

where ϕ runs through all characters of E/F. So we have the corresponding factorization for p-adic L-functions as follows:

$$L_p(\varepsilon_E\omega, s) = \prod L_p(\varepsilon\omega\phi, s).$$

So $f_{\varepsilon_E\omega}(T) = \prod f_{\varepsilon\omega\phi}(T)$. Let $S = \{q \nmid p : q \text{ is a finite prime of } F \text{ which ramifies in } E/F\}$ and let $f_{\varepsilon\omega,S}(T)$ be the power series corresponding to

$$L_{p,S}(\varepsilon\omega,s) = L_p(\varepsilon\omega,s) \prod (1 - \varepsilon(q)\langle Nq \rangle^{-s})$$

where the product is over q in S. So $f_{\varepsilon\omega,S}(T)=f_{\varepsilon\omega}(T)\prod E_q(T)$ where $E_q(T)=1-\varepsilon(q)(1+T)^{-\alpha(q)}$. On the other hand, $f_{\varepsilon\omega\phi}(T)=f_{\varepsilon\omega,S}(T)\mod\pi\Lambda_{(\pi)}$ for $\phi\neq 1$ (see proof of Proposition 2.1 in [Si]. Roughly speaking, $f_{\varepsilon\omega\phi}(T)$ is the integral of $\varepsilon\omega\phi$ on some Galois group. But since $\mathrm{Im}\,\phi=\mu_p$, $\phi=1\mod(\zeta_p-1)$ and $f_{\varepsilon\omega\phi}(T)$ is congruent to the integral of $\varepsilon\omega$, which is $f_{\varepsilon\omega}(T)$, up to some Euler factors). Hence for $\phi\neq 1$ we have

$$f_{\varepsilon\omega\phi}(T) = f_{\varepsilon\omega}(T) \prod E_q(T) \mod \pi \Lambda_{(\pi)}$$
.

So we have

$$f_{\varepsilon_E\omega}(T) = f_{\varepsilon\omega}(T)^p \prod (1-\varepsilon(q)(1+T)^{-\alpha(q)})^{p-1} \mod \pi \Lambda_{(\pi)} \,.$$

Obviously the μ -invariant of $E_q(T)$ is zero. So $\mu(f_{\varepsilon_E\omega}) = 0$. Now, the decomposition group D_q of q has index $p^{1/|\alpha(q)|}$ in $\operatorname{Gal}(F_{\infty}/F)$. By comparing the Weierstrass degrees of the above congruence equation, we get equation (1).

Let us apply the limit M^{∞} of Coleman's norm operator to $E_q(T)$. Since

$$Mf((1+T)^p - 1) = \prod f(\zeta(T+1) - 1)$$

and

$$1 - \varepsilon(q)(1+T)^{-\alpha(q)} = (1 - \varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]})^{1/|\alpha(q)|} \mod \pi \Lambda,$$

we have

$$\begin{split} M^{\infty}E_q(T) &= M^{\infty}(1 - \varepsilon(q)(1+T)^{-\alpha(q)}) \\ &= M^{\infty}(1 - \varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]})^{1/|\alpha(q)|} \\ &= \begin{cases} (1 - \varepsilon(q)^{|\alpha(q)|}(1+T)^{-[\alpha(q)]})^{1/|\alpha(q)|} & \text{if } \varepsilon(q) \neq 1, \\ [\alpha(q)]^{1/|\alpha(q)|}T^{1/|\alpha(q)|} + (\text{higher degree terms}) & \text{if } \varepsilon(q) = 1. \end{cases} \end{split}$$

By comparing the unit parts we have equation (2).

The induction is carried out as follows: We have just proved the case when E/F is a cyclic extension of degree p. Assume that the theorem is true for any Galois extension with degree less than p^n . Let E/F be a Galois extension with degree p^n . Since $\operatorname{Gal}(E/F)$ is a finite p-group, there is a proper normal subgroup and thereby a proper subfield L which is normal over F. The theorem holds for the two Galois extensions E/L and L/F by the induction hypothesis. Combining the two formulas we get the formula for E/F. When E/F is not Galois one proves the theorem as follows: Compare the formulas for E'/E and E'/F where E' is the Galois closure of E over E. The only crucial point in this induction process is that $\varepsilon(w)^{|\alpha(w)|}$ and $\varepsilon(w)^{|\alpha(w)|}$ depend only on $\varepsilon(w)$ for any prime $\varepsilon(w)$ appearing in the counting. However, note that the numbers in (2) will depend on the choice of the topological generator $\varepsilon(w)$.

LEMMA 3. Let
$$\alpha$$
 be in C_p and $\operatorname{ord}_p(\alpha-1) > 0$. Then

$$\lim_{n \to \infty} \frac{1 - \alpha^{p^n}}{p^n} = -\log \alpha.$$

Proof. Let $\alpha = 1 + \beta$. So $\operatorname{ord}_{p}(\beta) > 0$. Then for $n \gg 0$,

$$\frac{1 - \alpha^{p^n}}{p^n} + \log \alpha
= -\sum_{1 \le k \le p} \frac{1}{p^n} {p^n \choose k} \beta^k + \sum_{1 \le k} \frac{(-1)^{k-1}}{k} \beta^k
= -\sum_{1 \le k} \frac{(p^n - 1)(p^n - 2) \dots (p^n - k + 1)}{k!} \beta^k
+ \sum_{1 \le k} \frac{(-1)^{k-1}}{k} \beta^k \mod(\text{high } p\text{-power})
= \sum_{1 \le k} \left(\frac{(-1)^{k-1}(k-1)!}{k!} + \frac{(-1)^k}{k} \right) \beta^k = 0 \mod(\text{high } p\text{-power}).$$

So the lemma is proved.

Let K be a CM-field, U the unit group of K, U^+ the unit group of K^+ , W = W(K) the group of roots of unity in K, and w_K =cardinality of W. Then $Q_K = [E : WE^+]$ is 1 or 2.

Let $h^-(K)$ denote the relative class number of K/K^+ .

THEOREM 4. Let K be a CM-field. Let K_n be the n-th layer of K_{∞} , f(T) the (quotient of) power series associated to $L_p(\varepsilon \omega, s)$ where ε is the odd character of K/K^+ . Let ν^- be one of the Iwasawa invariants of K/K^+ . If no prime above p splits in K/K^+ , then

$$\nu^- = \operatorname{ord}_p \prod \log \beta$$

where β runs over all roots of f(T) counting multiplicity. (Even in case when μ_p are in K and Leopoldt's conjecture is false for K and p, we still assume that f(T) has a pole at s = 1. In other words, we assume that $\kappa_0 - 1$ is a root of f(T).) Moreover,

$$\lim_{n \to \infty} h^{-}(K_n)/p^{\mu^{-}p^n + \lambda^{-}n} = 2^{-b(K)}\omega(2)^{-[K:\mathbb{Q}]}[w_K]Q_K f_{\varepsilon\omega}^{\infty} \prod (-\log \beta)$$

where $[w_K]$ and Q_K denotes the stabilized values of $[w_{K_n}]$ and Q_{K_n} , b(K) = number of primes above p in K_{∞}^+ which are inert in K_{∞}/K_{∞}^+ . The above limit will be denoted by h_K^{∞} .

Proof. Let ε_n be the odd character for K_n/K_n^+ . We know that

$$L(\varepsilon_n, 0) = \prod L(\varepsilon \phi, 0)$$

where ϕ runs over all characters of K_n^+/K^+ . Let $d_n = [K_n^+ : \mathbb{Q}]$, $w_n = w_{K_n}$, $Q_n = Q_{K_n}$. Since no prime above p splits,

$$\begin{split} h^-(K_n) &= 2^{-d_n} w_n Q_n L(\varepsilon_n, 0) \\ &= 2^{-d_n} w_n Q_n \frac{L_p(\varepsilon_n \omega, 0)}{\prod_{q|p \text{ in } K} (1 - \varepsilon(q))} \\ &= 2^{-d_n} w_n Q_n \frac{\prod_{q|p \text{ in } K} L_p(\varepsilon \omega \phi, 0)}{\prod_{q|p \text{ in } K} (1 - \varepsilon(q))} \,. \end{split}$$

So for $n \gg 0$,

$$h^{-}(K_n) = 2^{-d_n} w_n Q_n 2^{-b(K)} \prod_{n} L_p(\varepsilon \phi, 0)$$

= $2^{-d_n} w_n Q_n 2^{-b(K)} \prod_{n} f(\zeta - 1)$

where the product is over p^n th roots of unity. So

$$h^{-}(K_n) = 2^{-d_n} w_n Q_n 2^{-b(K)} (M^n f)(0).$$

Since $\operatorname{ord}_p w_K = \operatorname{ord}_p (1 - \delta_K \gamma_0),$

$$\operatorname{ord}_p w_n = n + \operatorname{ord}_p(1 - \delta_K \gamma_0) = \operatorname{ord}_p M^n(T + 1 - \delta_K \gamma_0)(0).$$

So

$$\lim h^{-}(K_n)/p^{\mu^{-}p^n+\lambda^{-}n} = 2^{-b(K)}\omega(2)^{-[K:\mathbb{Q}]}[w_K]Q_K f_{\varepsilon\omega}^{\infty} \prod_{\beta} (-\log\beta)$$

by Lemma 3. And

$$\nu^- = \operatorname{ord}_p \lim h^-(K_n)/p^{\mu^- p^n + \lambda^- n} = \operatorname{ord}_p \prod_{\beta} \log \beta.$$

Assume that E/K is a p-extension of CM-fields. If $\mu_E^-=\mu_K^-=\lambda_E^-=\lambda_F^-=0$ and the primes above p do not split in K/K^+ , then $\nu_K^-=\nu_E^-=0$. Then by Theorems 2 and 4

$$\frac{2^{-b(E)}h_E^{\infty}}{[w_E]Q_E} = \left(\frac{2^{-b(K)}h_K^{\infty}}{[w_K]Q_K}\right)^{[E_{\infty}:K_{\infty}]} \prod_{\varepsilon(q)\neq 1} (1 - \varepsilon(q)^{|\alpha(q)|})^{e(w)-1}$$

$$= \left(\frac{2^{-b(K)}h_K^{\infty}}{[w_K]Q_K}\right)^{[E_{\infty}:K_{\infty}]} 2^{\Sigma(e(w)-1)}$$

where the summation is the same as in Theorem 2. (For $n \gg 0$, since p is odd, Sylow 2-subgroup of $W(E_n) = \text{Sylow 2-subgroup of } W(K_n)$. This implies $Q_K = Q_E$ in this case.)

By looking at the orders of K_2 -groups of \mathbb{Z}_p -extensions [Co1], one can get a genus formula and a limit formula similar to those of this paper. Assuming some conjectures of algebraic K-theory, one may get similar formulas for higher K-groups. Also Theorem 3 of [Iw] gives Kida's formula immediately. Furthermore, in some cases Kida's formula is the relation between the number of generators of a free pro-p-group and a subgroup of finite index. So it could be interpreted as a weak form of Schreier's theorem for finitely generated free pro-p-groups.

Acknowledgement. I sincerely thank the referee for pointing out many mistakes in this paper.

References

- [Ca] P. Cassou-Nogues, p-adic L-functions for totally real number fields, in: Proceedings of the Conference on p-adic Analysis, Report 7806, Katholieke Univ., Nijmegen, 1978, 24–37.
- [Co1] J. Coates, On K₂ and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99–116.
- [Co2] —, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York 1977, 269–353.
- [D-R] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227–286.

- [G-M]R. Gold and M. Madan, Iwasawa invariants, Comm. Algebra 13 (7) (1985), 1559 - 1578.
- [Han] S. Han, Two applications of p-adic L-functions, Thesis, Ohio State University, 1987.
 - K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for [Iw]number fields, Tôhoku Math. J. (2) 33 (2) (1981), 263-288.
 - Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519–528.
 - [Ri] K. Ribet, Report on p-adic L-functions over totally real fields, Astérisque 61 (1979), 177-192.
 - [Se] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d'un corps de nombres, C. R. Acad. Sci. Paris 287 (1978), 183–188.
 - W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, [Si] Compositio Math. 53 (1984), 3–17.
- [Wa] L. Washington, Introduction to Cyclotomic Fields, Springer, New York 1982.

DEPARTMENT OF MATHEMATICS KAIST

YUSUNG-GU, TAEJON 305-701

SOUTH KOREA

E-MAIL: SGHAN@KIT.KAIST.AC.KR

 $Received\ on\ 9.1.1986$ and in revised form on 18.2.1991 (1585)