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Introduction. Let p be an odd prime. Q. will denote the Z,-extension
of Q. For any number field F', the compositum F,, = FQ is called the
basic Zy-extension of F'. Let F' be a totally real number field, and let
be an odd character associated to an abelian extension E/F. Also let ¥ =
Zylimages of €]. Let N denote the absolute norm. Let u, denote the group
of pth roots of unity. Then by the work of P. Deligne and K. Ribet [Ri],
there exists a p-adic L-function L,(ew, s) so that for all n > 0,

Ly(ew,1 —n) = L(sw' ™™, 1 —n) H[l —ew!'™"(q)Ng" ]

where ¢ runs over the primes of F' which lie over p, and w is the Teichmiiller
character for F(u,)/F. The action of I' = Gal(Fuoo/F) = Gal(F(ttp)oo/
F(jp)) on p-power roots of unity is given by a homomorphism « : I" — Z.
Let 79 be a topological generator of I'. Let ko = k(7p). Then we have an
element f.,,(T) in the quotient field of A = ¥[[T]] such that

few(kg —1) = Ly(ew,s) for all sin Z, — {1}.

Let F),, denote the nth layer of Fi,/F. Let e, denote the exponent of
the exact power of p dividing the class number of F},. One of the principal
results of Iwasawa theory states that there exist fixed integers u > 0, A > 0,
and v such that e, = up™ + An + v for all n sufficiently large. Iwasawa
conjectured that p = 0 for any basic Zy-extension. The conjecture is known
to be true when F' is abelian over Q. The general case still remains to
be shown. In particular, suppose F' is a CM-field. Consider the basic Z,-
extension of F'*. Then the invariants decompose into plus and minus parts
togive u=p" +puT, A=A"+ AT, and v =v~ +vT [Wal.

Let k be a finite extension of Q,. Let m be a prime element of k, ¢
the ring of integral elements of k, and f the residue degree of k/Q,. Let
A =9[[T]]. We call a polynomial ag + a1T + ... + a,T™ € A distinguished
ifa, =1and a; € 7} for all 0 <i <n — 1.
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THEOREM 1. There exists a unique homomorphism M : A* — A* such
that:

(1) M(U)(L+T)P=1) =[[UQA+T)—1) for all U in A* where the
product is over the p’-th roots of unity.

(2) M is continuous in (p,T)-adic topology.

(3) For any U in A*, M (U) =lim M™(U) exists.

(4) Let Uy and Uy be in A*. Assume that Uy = Us mod . Then

M>®U; = MU, .
We call M Coleman’s norm operator.
Proof. See [Han], or [Wa] where this is proved for f = 1.

Let us recall the natural decomposition 9* = W x (1 + 79*) where W
is the set of all roots of unity in ¥ whose order is prime to p. We know that
|W| = pf — 1. Hence for any element o of 9% C AX, M*>(a) = w(a). Let
T — 3 be a distinguished polynomial of A*. Then

M(T-a)((1+T)P-1)=]JCO+T)-1-a)=1Q+T)” - (1+a).
So
MT—-a)=T+1-(1+a), M(T-a)=T.
So for any distinguished polynomial D(T') of degree A\, we can show that
M®>D = T* by considering the Coleman operator over the splitting field of

D(T). We extend M from A* to A, then to A(,) by multiplicativity.
Let g(T) = ag+ a1 T+ axT? + ... be a non-zero element of A. We define

p(g) = min{ord, a;}, A(g) = min{j : u(g) = ordya;}.
Clearly we have (fg) = 1(f)+1(g), A(fg) = A(f)+A(g), if f, g are non-zero
elements of A; we may use these relations to define u- and A-invariants of
the non-zero elements of the quotient field of A. Finally, by the Weierstrass

preparation theorem, any element f(7') in the quotient field of A is uniquely
factorized as follows:

f(I) =n*"—=U(T), a = an integer,

where P(T), Q(T) are relatively prime distinguished polynomials and U (T")
is a unit of A. We define f*° to be M>U(0). If f(T') is in A, then a = p(f),
Q(T) = 1, degree of P(T) = A(f). We easily see that if u(f) = 0, then
M f = TAF) 4 (higher degree terms).

Kida’s formula. In [Ki], Kida proved an analogue of the classical
Riemann—-Hurwitz genus formula, by describing the behaviour of the A™-
invariants in p-extensions of CM-fields under the assumption = = 0 for the
fields involved. A special case of Kida’s result is the following (for the most
general formulation, see [Ki] or [Si]):
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Let E/K be a CM-field which is a finite p-extension (i.e. if E’ denotes the
Galois closure of FE for K, then Gal(E’/K) is a finite p-group). Suppose
that K contains p,. Finally, suppose that ji;, = 0. Then p, = 0 and

2Ny — 2= [Buo : Foo(2Ag —2) + > _(e(w) — 1)

where w runs over finite primes on F,, which do not lie above p and are
split for the extension E/E™, and e(w) denotes the ramification index
of win Es /Koo

Let e and € denote the odd characters of E/ET and K/K™ respectively.
Note that A(f:,w) = Az — dg where g = 1 if p, is contained in E and
0 otherwise [Si]. So Kida’s formula can be viewed as a relation between
M fepw) and A(few)-

Our aim is to generalize Kida’s formula to arbitrary odd characters as-
sociated with an abelian extension, of degree prime to p, of a totally real
number field under the assumption that the p-invariant of our character is
zero. Let E, F be totally real number fields, [F : F| < oo, and let F be a
p-extension of F'. Let € be an odd character of ' whose order is prime to
p. We will compare the M-invariants of f., and f.,., where g is defined
by ep = & - Normpg,p. Note that this definition of e agrees with the nota-
tion in the above remarks about Kida’s formula. For each intermediate field
F C L C F, ¢ induces an odd character ¢, = € - Normy,,r. For any finite
prime w in L, er,(w) = e(v)/*/?) where v = w|p and f(w/v) is the residue
degree of w over v. Fix a topological generator vy of Gal(F /F'). Define kg
as in the introduction. We define a map

a = ap, : {finite primes of L which do not divide p} — Z,

where ay (w) is defined by (Nw) = Kg(w). Define [a(w)] to be a(w)|a(w)],
i.e. [a(w)] is the unit part of a(w). Note that [ar(w)] = [ar(w|r)]. So we
will denote [a(w)] by [a(w)] from now on. Finally, let k = Q,(u,, images
of ).

THEOREM 2. If pu(few) =0, then p(fepw) =0 and
(1) Mfepw) = [Boo : FoAM(fow) + ) (e(w) = 1)
e(q)=1
where the summation is over all finite primes w of Es which do not divide
p, e(w) = ramification indezx of w in Ex/Fs and ¢ = w|p. Moreover,
(2)  foe =P I (=@ @Dt T fag))
e(q)#1 e(g)=1

where the product is taken over all finite primes w in Es as in (1). (For any
won E, eg(w) =1 or eg(w) # 1 according as e(w|p) =1 or e(w|p) # 1;
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and £(w)!*@ denotes the unique |a(w)|~'-th root of e(w) in the image

of €.)

Proof. We will first prove the theorem when E/F is a cyclic extension of
degree p. Notice that without loss of generality we may assume F .o NE = F.
Otherwise the theorem holds trivially. So we may assume that yg = vp.
We have a factorization of the complex L-function L(eg, s) into

L(eg,s HL (e, s)

where ¢ runs through all characters of E/F. So we have the corresponding
factorization for p-adic L-functions as follows:

»(EBW, S) HL (ewa, s)

S0 fepw(T) =[] fews(T). Let S = {qfp : ¢ is a finite prime of F which
ramifies in F/F} and let f.,, s(T') be the power series corresponding to

Lys(ew,s) = Ly(ew, s) [ J(1 ~ e(a)(Ng) ™)

where the product is over ¢ in S. So few,5(T) = few(T) [ E4(T) where
E, T) = 1—¢(q)(1 +T)~*@. On the other hand, foog(T) = feu.s(T)
mod Ay for ¢ # 1 (see proof of Proposition 2.1 in [Si]. Roughly speaking,
fews(T) is the integral of ew¢ on some Galois group. But since Im ¢ = pp,
¢ =1 mod(¢, —1) and f.e(T') is congruent to the integral of ew, which is
few(T), up to some Euler factors). Hence for ¢ # 1 we have

faucb fsw HE mod 7T/1(7r) .

So we have
fEEW( few ;DH 1_5 ‘|‘T) a(q))pil mOdﬂ'/l(ﬂ.).

Obviously the p-invariant of E,(T') is zero. So pu(fzpw) = 0. Now, the de-
composition group D, of ¢ has index p/1*@Dlin Gal(F, /F). By comparing
the Weierstrass degrees of the above congruence equation, we get equation
(1).

Let us apply the limit M of Coleman’s norm operator to £,(T). Since

Mf((1+T)? =[[r¢T+1) -1
and

1—e(g)(1+ T)—a(q) =(1- 5(q)\a(q)|(1 + T)—[a(q)])l/la(q)l mod 7/,
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we have
M E,(T) = M*(1 — e(g)(1 + 7))
= M>(1 - g(q)la(q)\(l + T)*[@(Q)})l/m(@\

- fa- e(q)1 DN (1 4 T)~ )]y 1/ ]e)] if e(q) # 1,
[a(q)]M/ @I/ 4 (higher degree terms) if e(q) = 1.

By comparing the unit parts we have equation (2).

The induction is carried out as follows: We have just proved the case
when E/F is a cyclic extension of degree p. Assume that the theorem is
true for any Galois extension with degree less than p™. Let E/F be a Galois
extension with degree p™. Since Gal(E/F) is a finite p-group, there is a
proper normal subgroup and thereby a proper subfield L. which is normal
over F. The theorem holds for the two Galois extensions E/L and L/F by
the induction hypothesis. Combining the two formulas we get the formula for
E/F. When E/F is not Galois one proves the theorem as follows: Compare
the formulas for E'/F and E'/F where E’ is the Galois closure of E over F.
The only crucial point in this induction process is that (w)!**)| and [o/(w)]
depend only on w|p for any prime w appearing in the counting. However,
note that the numbers in (2) will depend on the choice of the topological
generator 7g.

LEMMA 3. Let o be in Cp and ord,(ow — 1) > 0. Then

1—ao"
lim a

n— oo pn

=—loga.

Proof. Let « =1+ . So ord,(8) > 0. Then for n > 0,

1—ar"
— +loga
_ L (p™\ ok (=D
- Z pn<k>’8 +Z k B
1<k<p 1<k
:_Z(p”—1)(p”—2)---(p”—k+1)5k
k!
1<k

1 k—1
+ Z (;6’“ mod (high p-power)
1<k

1)kl Nk
_ Z(( 1) k'(k D ;) >ﬁk:0 rmod (high p-power).
1<k :

So the lemma is proved.
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Let K be a CM-field, U the unit group of K, U* the unit group of K,
W = W(K) the group of roots of unity in K, and wx=cardinality of W.
Then Qx = [E: WET]is 1 or 2.

Let h~(K) denote the relative class number of K/K ™.

THEOREM 4. Let K be a CM-field. Let K, be the n-th layer of K,
f(T') the (quotient of) power series associated to L,(ew,s) where € is the
odd character of K/K™. Let v~ be one of the Iwasawa invariants of K/K™.
If no prime above p splits in K/K™, then

v~ =ord, H log 3

where B runs over all roots of f(T) counting multiplicity. (FEven in case
when p, are in K and Leopoldt’s conjecture is false for K and p, we still
assume that f(T) has a pole at s = 1. In other words, we assume that kg —1
is a root of f(T).) Moreover,

Tim B () /P = 270w (2) " g |Qi £25 [ [ (— Tog )

where [wi| and Qk denotes the stabilized values of [wg, | and Qk, , b(K) =
number of primes above p in KT which are inert in Koo/KL. The above
limit will be denoted by h% .

Proof. Let &, be the odd character for K,,/K;". We know that
L(en,0) = [ L(9,0)

where ¢ runs over all characters of K, /K™. Let d,, = [K," : Q], w, = wg,,
Qn = Qk, . Since no prime above p splits,

h™(K,) =2 %"w,Q,L(c,,0)

_ L,(eqw,0)
=2 dn nldn ~
O (= 2@)
— 2—dnann HLP(SW(;S?O)

Hq\p in K(]‘ - €(Q)) .
So for n > 0,
h™(Kn) =27 w,Qn2 ") T Ly (6, 0)
= 27w, Q2 MO T £(C— 1)

where the product is over p™th roots of unity. So
h™ (Kn) = 27w, Q.27 ) (M™ £)(0).
Since ord, wx = ord,(1 — dx7Y0),

ordy, w, =n+ordy(1 — dx~yy) = ord, M" (T + 1 — dx70)(0) .
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So
lin b= () [ 7 = 27000(2) D | Qi 25 T[ (~ o )
B8

by Lemma 3. And

v~ = ord, limh™(K,)/p" P " = ord,, [ [ log 5.

B
Assume that E/K is a p-extension of CM-fields. If up = px = Az
K = =

Az = 0 and the primes above p do not split in K/K™*, then v
Then by Theorems 2 and 4

9—b(E) 00 9—b(K) 00 [Foo: Kool ) .
[wE]QEE - < [wK]QIf) H (1 — g(g)le@hyetw)—1
e(q)#1
— 0o [Foo: Koo]
= <2b(1{)h1() 22(6('“])—1)
(wr|@xk

where the summation is the same as in Theorem 2. (For n > 0, since p
is odd, Sylow 2-subgroup of W (E,,) = Sylow 2-subgroup of W(K,,). This
implies Qx = Qg in this case.)

By looking at the orders of Ks-groups of Z,-extensions [Col], one can get
a genus formula and a limit formula similar to those of this paper. Assum-
ing some conjectures of algebraic K-theory, one may get similar formulas
for higher K-groups. Also Theorem 3 of [Iw] gives Kida’s formula immedi-
ately. Furthermore, in some cases Kida’s formula is the relation between the
number of generators of a free pro-p-group and a subgroup of finite index.
So it could be interpreted as a weak form of Schreier’s theorem for finitely
generated free pro-p-groups.

Acknowledgement. I sincerely thank the referee for pointing out many
mistakes in this paper.
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