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Poisson–Boltzmann equation in R3

by A. Krzywicki and T. Nadzieja (Wroc law)

Abstract. The electric potential u in a solute of electrolyte satisfies the equation

∆u(x) = f(u(x)) , x ∈ Ω ⊂ R3 , u|∂Ω = 0 .

One studies the existence of a solution of the problem and its properties.

I. It is known that some sorts of polymeric chains, called polyelectrolytes,
when put into a container with a suitable electrolyte, dissociate into a poly-
meric core and mobile ions. The latter together with the ions and counter-
ions of the solute produce an electric field whose potential u satisfies the
Poisson equation ∆u = −4πρ. Assuming that the charge density ρ varies in
accordance with the Boltzmann law ρ = Ceαu, where C is a normalization
parameter and α characterizes the charge of ion, we are led to the following
problem:

(1) ∆u = f(u), u : Ω ⊂ R3 → R ,
where

f(u) = σµ0e
αu +N(µ+e

βu − µ−e−βu) .
Here α, β, σ, N are positive parameters, σ, N denote the total charges of
ions dissociated from the polyelectrolyte and ions of the solute (−N being
the charge of the corresponding counterions) and

(2) µ0 =
( ∫
Ω

eαu
)−1

, µ± =
( ∫
Ω

e±βu
)−1

.

Moreover, if the polyelectrolyte is removed from the container the only
boundary condition will be

(3) u|∂Ω = 0 .

For physical background see [5].
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Using the Leray–Schauder theorem and some idea suggested by [2] we
will show that the problem (1), (3) has a unique solution. Moreover, the
form of the estimates obtained permits us to control the behaviour of the
solutions as N → 0 and as N →∞ and when Ω expands to the whole space.
Though similar to the case considered in [2], [3], the problem discussed in
the present paper differs in some important details.

All solutions under consideration are classical, Ω is a bounded domain
in R3 with C2 boundary.

II. We start with two lemmas.

Lemma 1. If u is a solution of (1), (3) then u ≤ 0 and f(u) ≥ 0 in Ω.

P r o o f. Integrating (1) over Ω we obtain
∫
Ω
f(u) = σ > 0, therefore the

set Ω̃ = {x ∈ Ω : f(u(x)) < 0} cannot be equal to Ω. We shall show that Ω̃
is empty. If not, let ω be its connected component. We have f(u) = 0 on the
boundary ∂ω and ∆u = f(u) < 0 in ω, hence u restricted to ω attains its
minimal value u0 on ∂ω, f(u0) = 0 and u(x) > u0 for x ∈ ω. However, f(u)
with fixed µ0, µ± is a strictly increasing function of u, so the last inequality
would give us f(u(x)) > 0 in ω, which contradicts the definition of Ω̃.

Some auxiliary facts will be needed. Let u, v be arbitrary functions
continuous on Ω. For any positive real λ define

(4) Iλ(u, v) =
∫
Ω

(µueλu − µveλv)(u− v)

where

µ−1
u =

∫
Ω

eλu, µ−1
v =

∫
Ω

eλv .

Then

(5) Iλ(u, v) ≥ 0 .

A short and elegant proof is given in [2], for completeness of exposition we
repeat it here. Since the function u→ eu is increasing we have for any pair
of functions u, v and reals l, m

(6)
∫
Ω

(eλ(u+l) − eλ(v+m)) ((u+ l)− (v +m)) ≥ 0 .

If we now choose l, m so that λl = logµu, λm = logµv, we may rewrite the
last inequality in the form Iλ(u, v) +D(u, v) ≥ 0 where

D(u, v) =
∫
Ω

(µueλu − µveλv)(l −m)
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is obviously zero, and this completes the proof of (5). Moreover, equality
holds in (5) if and only if u− v = const and this will be used in the proof of
the unicity of solution of (1), (3).

Lemma 2. Let u be a solution of the problem (1), (3) with µ0, µ± defined
by (2). Then

(7)
∫
Ω

|∇u|2 ≤ 4σ2K2|Ω|−1 ,

(8) |Ω|−1 ≤ µ0, µ+ ≤ |Ω|−1 exp(2σγK2|Ω|−1) ,

(9) |Ω|−1 exp(−2δγK2|Ω|−1) ≤ µ− < |Ω|−1 ,

(10)
1
δ

log
N

N + σ
− 2σγK2

δ|Ω|
≤ u ≤ 0 ,

where γ = max(α, β), δ = min(α, β), K is the constant appearing in the
Poincaré inequality (15) below , and |Ω| is the volume of Ω.

P r o o f. Let u be a solution of (1), (3). We define

H(t) =
1
2
t2
∫
Ω

|∇u|2 +
σ

α
log
∫
Ω

etαu +
N

β
log
( ∫
Ω

etβu
∫
Ω

e−tβu
)

for t ∈ [0, 1]. Then

H ′(t) = t
∫
Ω

|∇u|2 + σ
∫
Ω

uetαu
( ∫
Ω

etαu
)−1

+N
( ∫
Ω

uetβu
( ∫
Ω

etβu
)−1

−
∫
Ω

ue−tβu
( ∫
Ω

e−tβu
)−1)

.

We also have

(11) H ′(1) =
∫
Ω

|∇u|2 +
∫
Ω

uf(u) = 0 ;

the last equality is obtained by multiplying (1) by u and integrating over Ω.
Consider now the difference

H ′(1)−H ′(t) = (1− t)
∫
Ω

|∇u|2 +
σ

1− t
Iα(u, tu)

+
N

1− t
Iβ(u, tu) +

N

1− t
Iβ(−u,−tu) .

The right hand side of the formula results by a simple manipulation with
members of H ′(t); Iα and Iβ are defined by (4).
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By the properties of Iλ, H ′(1)−H ′(t) ≥ 0 for t ∈ [0, 1] and this implies,
by (11), H(1) ≤ H(0). The explicit form of the last inequality is

1
2

∫
Ω

|∇u|2 +
σ

α
log
∫
Ω

eαu +
N

β
log
( ∫
Ω

eβu
∫
Ω

e−βu
)

≤
(
σ

α
+

2N
β

)
log |Ω| ,

from which we get
1
2

∫
Ω

|∇u|2 +
σ

α
log
∫
Ω

eαu ≤ σ

α
log |Ω|

since |Ω|2 ≤
∫
Ω
eβu

∫
Ω
e−βu. Jensen’s inequality applied to eαu gives us

(12)
α

|Ω|
∫
Ω

u ≤ log
∫
Ω

eαu + log
1
|Ω|

,

hence

(13)
∫
Ω

|∇u|2 ≤ − 2σ
|Ω|
∫
Ω

u .

Using now Cauchy’s inequality we have

(14)
( ∫
Ω

u
)2

≤ |Ω|
∫
Ω

u2 ≤ K2|Ω|
∫
Ω

|∇u|2 ,

the last inequality resulting from the Poincaré inequality

(15)
∫
Ω

u2 < K2
∫
Ω

|∇u|2 .

Combining (13) with (14) we get (7), which applied to (14) gives us

(16) −
∫
Ω

u < 2σK2 .

Finally, from (12) and (16) we get

log
∫
Ω

eαu ≥ log |Ω| − 2σαK2|Ω|−1 ,

from which the estimate (8) from above for µ0 follows. The estimate from
below is a simple consequence of u ≤ 0. In a similar way one finds the
estimates for µ+ and µ−.

To prove (10) we make use of Lemma 1, which gives f(−m) ≥ 0, where
−m = minu < 0, or written explicitly,

(17) Nµ−e
βm ≤ σµ0e

−αm +Nµ+e
−βm .
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By the obvious inequality e−βm|Ω|−1 ≤ µ− and the estimates of Lemma 2,
this yields

N

|Ω|
≤ e−δm|Ω|−1(σ +N) exp(2K2δγ|Ω|−1)

and consequently

m ≤ δ−1 log((σ +N)N−1) + (δ|Ω|)−12K2σγ ,

which implies (10).

III. Consider the family of problems

(18) ∆uλ = λf(uλ), uλ|∂Ω = 0 ,

with 0 ≤ λ ≤ 1. To get the estimates for uλ similar to those of Lemma 2, it
suffices to replace in f the parameter σ and N by λσ and λN respectively,
which does not affect the estimates ; therefore they remain valid without
any change for the whole family uλ, 0 ≤ λ ≤ 1.

The assumed C2 regularity of ∂Ω guarantees the existence of the Green
function G(x, y) for the Laplace operator considered in Ω with Dirichlet zero
data, satisfying the estimates

(19) G(x, y) ≤ C|x− y|−1, |∇xG(x, y)| ≤ C|x− y|−2

uniformly for x, y ∈ Ω, x 6= y, with some constant C [4]. By using G we
replace (18) by the equivalent integral equation

uλ = Tλuλ, 0 ≤ λ ≤ 1 ,

where

(Tλv)(x) = λ
∫
Ω

G(x, y)f(v(y)) dy .

The Tλ considered as operators defined on the space C(Ω) of functions
continuous on Ω with sup-norm are continuous uniformly with respect to
λ, 0 ≤ λ ≤ 1, and compact; this easily follows from the fact that f(v) and
∇Tλv are uniformly bounded on any bounded set K ⊂ C(Ω) by (19), which
implies the equicontinuity of the family Tλv, v ∈ K, and the possibility of
applying Arzelà’s theorem. This together with the a priori estimates (10)
valid for the family {uλ} allows us to apply the Leray–Schauder theorem
which yields the existence of solution of the problem (1), (3). The unicity
may be proved exactly as in [2] by using the equality∫

Ω

|∇w|2 +
∫
Ω

(f(u)− f(v))w = 0
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where u, v are two solutions of (1), (3) and w = u− v. As is easily seen the
last equality may be transformed to the form∫

Ω

|∇w|2 + σIα(u, v) +NIβ(u, v) +NIβ(−u,−v) = 0

where Iα, Iβ are defined by (4). From the properties of Iα, Iβ formulated
above it follows that u− v = const and because u− v = 0 on ∂Ω we obtain
u = v.

Thus we have proved

Theorem 1. The problem (1), (3) has exactly one solution.

In the case N = 0 the estimate (10) is useless. To get a proper estimate
we may proceed as follows.

From the equation (1), which in the case under consideration has the
form

(20) ∆u = σµ0e
αu, u|∂Ω = 0 ,

we deduce the relation∫
Ω

|∆u|2 = σµ0

∫
Ω

eαu∆u = −ασµ0

∫
Ω

eαu|∇u|2 + σ2µ0

and therefore

(21)
∫
Ω

|∆u|2 ≤ σ2µ0 ≤ σ2 exp(2σαK2|Ω|−1)|Ω|−1

by the estimate (8) for µ0, also valid in our case N = 0. Making now use of
the following representation of u:

u(x) = σµ0

∫
Ω

G(x, y)eαu(y) dy ,

we get, applying Cauchy’s inequality, (21) and (19),

(22) |u| ≤ CD1/2|Ω|−1/2 exp(σαK2|Ω|−1)

with D denoting the diameter of Ω. The last inequality results by majorizing
sup{(

∫
Ω
|x− y|−2 dy)1/2 : x ∈ Ω} in the obvious way.

Now, proceeding as before, we can prove

Theorem 2. There exists a unique solution of the problem (20).

IV. Let uN be the solution of (1), (3).

Theorem 3. The sequence uN tends to u0 uniformly on Ω as N → 0.
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P r o o f. uN satisfies the integral equation

uN (x) =
∫
Ω

G(x, y)f(uN (y)) dy .

Hence (8), (10) and (19) yield that uN is a family of uniformly continuous
functions. Using Arzelà’s theorem we can choose a uniformly convergent
subsequence of {uN}; its limit is the unique solution of (20). From this we
conclude that uN → u0.

Theorem 4. When N → ∞, with all other parameters fixed , then the
solutions u = uN of (1), (3) tend to zero uniformly on Ω.

P r o o f. Let −m = −mN = inf uN as before. We have

µ+e
−βm − µ−eβm = µ+µ−

∫
Ω

(e−β(m+u) − eβ(m+u))

= −2µ+µ−
∫
Ω

shβ(m+ u) ≤ 0

since 0 ≤ m+ u. Therefore the inequality f(−m) ≥ 0 gives us

2µ+µ−
∫
Ω

sh β(m+ u) ≤ σµ0N
−1e−αm .

In the sequel we consider only N > 1. Applying (8) and (9) we get from the
last inequality

(23) 0 <
∫
Ω

(m+ u) ≤ CN−1

with C independent of u.
Now we have∫

Ω

f4(u) =
∫
Ω

f3(u)∆u = −3
∫
Ω

f2(u)f ′(u)|∇u|2 + f3(0)σ .

Dividing the last equality by N4 and using Lemma 2 we get

(24)
∫
Ω

(µ+e
βu − µ−e−βu)4 ≤ CN−1 .

The application of Hölder’s inequality to

∇u(x) =
∫
Ω

∇xG(x, y)f(u(y)) dy
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gives us

|∇u(x)|4 ≤
( ∫
Ω

|∇xG(x, y)|4/3
)3 ∫

Ω

f4(u) ,

which with the help of (24) and the estimates of G given by (19) leads to

(25) |∇u(x)|4 ≤ CN3 .

Here and in the sequel the same letter C will denote different constants
independent of u.

Consider now the set

Ω0 = {x ∈ Ω : u(x) ≥ −m/2}

In Ω0, m + u ≥ m/2, thus the inequality (23) allows us to estimate the
measure of Ω0:

(26) |Ω0| ≤
C

mN
.

Let x ∈ ∂Ω0 \ ∂Ω and let dx denote the distance from x to ∂Ω. From (25)
one gets m/2 = |u(x)| ≤ CdxN3/4, hence

dx ≥ CmN−3/4 = ξ

uniformly for x ∈ ∂Ω0 \ ∂Ω, and this implies that the boundary strip

S = {x ∈ Ω : dist(x, ∂Ω) ≤ ξ}

is contained in Ω0, consequently

(27) |S| < |Ω0| .

From the assumed C2 regularity of ∂Ω and from the fact that ξ tends to
zero as N →∞, we conclude that for sufficiently large N

(28) |S| > ξ|∂Ω|(1− ξ sup{K(x) : x ∈ ∂Ω}) > ξ

2
|∂Ω|

where K(x) denotes the Gaussian curvature of ∂Ω at x and |∂Ω| is the
two-dimensional volume of ∂Ω. Now from (26)–(28) we get

mN−3/4 <
C

mN
,

that is, m < CN−1/8, which completes the proof.

Consider now the case when Ω grows to the whole R3. However, some
restrictions on the way of this expansion will be needed. We assume that
R−2|Ω| → ∞ where R is the radius of the smallest ball containing Ω. As
is well known, the constant K in the Poincaré inequality is less than R;
therefore the last assumption implies also K2|Ω|−1 → 0.
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Theorem 5. If Ω expands to R3 so that the above assumption holds,
then the corresponding solutions u of (1), (3) tend to zero uniformly on each
ball.

P r o o f. Consider first the case N = const. Then from the relation [1]

u =
∫
Ω

Gf <
∫
KR

GRf ,

where GR is the Green function for the ball KR of radius R containing Ω, we
conclude, in view of (8) and the estimate |GR(x, y)| ≤ |x− y|−1, x, y ∈ KR,
that

|u(x)| ≤ CR2|Ω|−1 ,

from which our statement follows.
If now N →∞ the desired result follows directly from the estimate (10).

V. In radially symmetric case: Ω an open ball of radius R, Ω = KR,
our problem has the form

(29) (r2u′)′ = r2f(u)

where

f(u) = σµ0e
αu +N(µ+e

βu − µ−e−βu) ,

µ0 =
(

4π
R∫

0

r2eαu dr
)−1

, µ± =
(

4π
R∫

0

r2e±βu dr
)−1

,

(30) u′(0) = 0, u(R) = 0 .

The existence of a solution of (29), (30) which is a radially symmetric solu-
tion of (1), (3) results from the following argument. If T is any rotation of
Ω then

f(u(Tx)) = f(u)(Tx) = ∆u(Tx) = (∆u)(Tx) .
Hence if Ω is invariant under any rotation then the solution of (1), (3), the
existence and uniqueness of which has been proved, is radially symmetric.
Integrating (29) over [0, r] we get

(31) u′(r) = r−2
r∫

0

s2f(u(s)) ds .

Hence u′(r) ≥ 0 by Lemma 1. We shall prove that u′′ ≥ 0. Suppose that
u′′(r) < 0 for some r > 0. Using (29), (31) and the monotonicity of u and
f we get

f(u(r)) <
2
3
f(u(r)) ,
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a contradiction.
The positivity of u′ and u′′ leads to the estimates

0 ≤ u′(r) ≤ σR−2, −σR−1 ≤ u(r) ≤ 0 .

Let Ω ⊂ KR(0) and let u be a solution of (1), (3). We consider the following
problem:

(r2v′)′ = r2f(v), r ∈ KR(0) ,(32)
f(v) = σµ0e

αv +N(µ+e
βv − µ−e−βv)

where µ0, µ± are defined by (2),

(33) v′(0) = 0, v(R) = 0 .

The problem (32), (33) has exactly one solution [1]. By the positivity of f ′

we can easily see, applying the maximum principle, that u ≥ v.
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