ANNALES POLONICI MATHEMATICI LIV.2 (1991)

Poisson–Boltzmann equation in \mathbb{R}^3

by A. KRZYWICKI and T. NADZIEJA (Wrocław)

Abstract. The electric potential u in a solute of electrolyte satisfies the equation

$$\Delta u(x) = f(u(x)), \quad x \in \Omega \subset \mathbb{R}^3, \quad u|_{\partial \Omega} = 0.$$

One studies the existence of a solution of the problem and its properties.

I. It is known that some sorts of polymeric chains, called polyelectrolytes, when put into a container with a suitable electrolyte, dissociate into a polymeric core and mobile ions. The latter together with the ions and counterions of the solute produce an electric field whose potential u satisfies the Poisson equation $\Delta u = -4\pi\rho$. Assuming that the charge density ρ varies in accordance with the Boltzmann law $\rho = Ce^{\alpha u}$, where C is a normalization parameter and α characterizes the charge of ion, we are led to the following problem:

(1)
$$\Delta u = f(u), \quad u : \Omega \subset \mathbb{R}^3 \to \mathbb{R},$$

where

$$f(u) = \sigma \mu_0 e^{\alpha u} + N(\mu_+ e^{\beta u} - \mu_- e^{-\beta u}).$$

Here α , β , σ , N are positive parameters, σ , N denote the total charges of ions dissociated from the polyelectrolyte and ions of the solute (-N being the charge of the corresponding counterions) and

(2)
$$\mu_0 = \left(\int_{\Omega} e^{\alpha u}\right)^{-1}, \quad \mu_{\pm} = \left(\int_{\Omega} e^{\pm \beta u}\right)^{-1}$$

Moreover, if the polyelectrolyte is removed from the container the only boundary condition will be

(3)
$$u|_{\partial\Omega} = 0.$$

For physical background see [5].

¹⁹⁸⁵ Mathematics Subject Classification: Primary 35J60, 78A35.

 $Key\ words\ and\ phrases:$ Poisson–Boltzmann equation, existence of solution.

Using the Leray–Schauder theorem and some idea suggested by [2] we will show that the problem (1), (3) has a unique solution. Moreover, the form of the estimates obtained permits us to control the behaviour of the solutions as $N \to 0$ and as $N \to \infty$ and when Ω expands to the whole space. Though similar to the case considered in [2], [3], the problem discussed in the present paper differs in some important details.

All solutions under consideration are classical, Ω is a bounded domain in \mathbb{R}^3 with C^2 boundary.

II. We start with two lemmas.

LEMMA 1. If u is a solution of (1), (3) then $u \leq 0$ and $f(u) \geq 0$ in Ω .

Proof. Integrating (1) over Ω we obtain $\int_{\Omega} f(u) = \sigma > 0$, therefore the set $\widetilde{\Omega} = \{x \in \Omega : f(u(x)) < 0\}$ cannot be equal to Ω . We shall show that $\widetilde{\Omega}$ is empty. If not, let ω be its connected component. We have f(u) = 0 on the boundary $\partial \omega$ and $\Delta u = f(u) < 0$ in ω , hence u restricted to ω attains its minimal value u_0 on $\partial \omega$, $f(u_0) = 0$ and $u(x) > u_0$ for $x \in \omega$. However, f(u) with fixed μ_0, μ_{\pm} is a strictly increasing function of u, so the last inequality would give us f(u(x)) > 0 in ω , which contradicts the definition of $\widetilde{\Omega}$.

Some auxiliary facts will be needed. Let u, v be arbitrary functions continuous on $\overline{\Omega}$. For any positive real λ define

(4)
$$I_{\lambda}(u,v) = \int_{\Omega} (\mu_u e^{\lambda u} - \mu_v e^{\lambda v})(u-v)$$

where

$$\mu_u^{-1} = \int_{\Omega} e^{\lambda u}, \quad \mu_v^{-1} = \int_{\Omega} e^{\lambda v}$$

Then

(5)
$$I_{\lambda}(u,v) \ge 0.$$

A short and elegant proof is given in [2], for completeness of exposition we repeat it here. Since the function $u \to e^u$ is increasing we have for any pair of functions u, v and reals l, m

(6)
$$\int_{\Omega} \left(e^{\lambda(u+l)} - e^{\lambda(v+m)} \right) \left((u+l) - (v+m) \right) \ge 0.$$

If we now choose l, m so that $\lambda l = \log \mu_u, \lambda m = \log \mu_v$, we may rewrite the last inequality in the form $I_{\lambda}(u, v) + D(u, v) \ge 0$ where

$$D(u,v) = \int_{\Omega} (\mu_u e^{\lambda u} - \mu_v e^{\lambda v})(l-m)$$

is obviously zero, and this completes the proof of (5). Moreover, equality holds in (5) if and only if u - v = const and this will be used in the proof of the unicity of solution of (1), (3).

LEMMA 2. Let u be a solution of the problem (1), (3) with μ_0 , μ_{\pm} defined by (2). Then

(7)
$$\int_{\Omega} |\nabla u|^2 \le 4\sigma^2 K^2 |\Omega|^{-1},$$

(8)
$$|\Omega|^{-1} \le \mu_0, \, \mu_+ \le |\Omega|^{-1} \exp(2\sigma\gamma K^2 |\Omega|^{-1}),$$

(9)
$$|\Omega|^{-1} \exp(-2\delta\gamma K^2 |\Omega|^{-1}) \le \mu_- < |\Omega|^{-1},$$

(10)
$$\frac{1}{\delta} \log \frac{N}{N+\sigma} - \frac{2\sigma\gamma K^2}{\delta|\Omega|} \le u \le 0,$$

where $\gamma = \max(\alpha, \beta), \ \delta = \min(\alpha, \beta), \ K$ is the constant appearing in the Poincaré inequality (15) below, and $|\Omega|$ is the volume of Ω .

Proof. Let u be a solution of (1), (3). We define

$$H(t) = \frac{1}{2}t^2 \int_{\Omega} |\nabla u|^2 + \frac{\sigma}{\alpha} \log \int_{\Omega} e^{t\alpha u} + \frac{N}{\beta} \log\left(\int_{\Omega} e^{t\beta u} \int_{\Omega} e^{-t\beta u}\right)$$

for $t \in [0, 1]$. Then

$$H'(t) = t \int_{\Omega} |\nabla u|^2 + \sigma \int_{\Omega} u e^{t\alpha u} \left(\int_{\Omega} e^{t\alpha u}\right)^{-1} + N \left(\int_{\Omega} u e^{t\beta u} \left(\int_{\Omega} e^{t\beta u}\right)^{-1} - \int_{\Omega} u e^{-t\beta u} \left(\int_{\Omega} e^{-t\beta u}\right)^{-1}\right).$$

We also have

(11)
$$H'(1) = \int_{\Omega} |\nabla u|^2 + \int_{\Omega} uf(u) = 0;$$

the last equality is obtained by multiplying (1) by u and integrating over Ω . Consider now the difference

$$H'(1) - H'(t) = (1 - t) \int_{\Omega} |\nabla u|^2 + \frac{\sigma}{1 - t} I_{\alpha}(u, tu) + \frac{N}{1 - t} I_{\beta}(u, tu) + \frac{N}{1 - t} I_{\beta}(-u, -tu).$$

The right hand side of the formula results by a simple manipulation with members of H'(t); I_{α} and I_{β} are defined by (4).

By the properties of I_{λ} , $H'(1) - H'(t) \ge 0$ for $t \in [0, 1]$ and this implies, by (11), $H(1) \le H(0)$. The explicit form of the last inequality is

$$\begin{split} \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{\sigma}{\alpha} \log \int_{\Omega} e^{\alpha u} + \frac{N}{\beta} \log \Big(\int_{\Omega} e^{\beta u} \int_{\Omega} e^{-\beta u} \Big) \\ & \leq \left(\frac{\sigma}{\alpha} + \frac{2N}{\beta} \right) \log |\Omega| \,, \end{split}$$

from which we get

$$\frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{\sigma}{\alpha} \log \int_{\Omega} e^{\alpha u} \le \frac{\sigma}{\alpha} \log |\Omega|$$

since $|\Omega|^2 \leq \int_{\Omega} e^{\beta u} \int_{\Omega} e^{-\beta u}$. Jensen's inequality applied to $e^{\alpha u}$ gives us

(12)
$$\frac{\alpha}{|\Omega|} \int_{\Omega} u \le \log \int_{\Omega} e^{\alpha u} + \log \frac{1}{|\Omega|},$$

hence

(13)
$$\int_{\Omega} |\nabla u|^2 \le -\frac{2\sigma}{|\Omega|} \int_{\Omega} u.$$

Using now Cauchy's inequality we have

(14)
$$\left(\int_{\Omega} u\right)^{2} \leq |\Omega| \int_{\Omega} u^{2} \leq K^{2} |\Omega| \int_{\Omega} |\nabla u|^{2},$$

the last inequality resulting from the Poincaré inequality

(15)
$$\int_{\Omega} u^2 < K^2 \int_{\Omega} |\nabla u|^2.$$

Combining (13) with (14) we get (7), which applied to (14) gives us

(16)
$$-\int_{\Omega} u < 2\sigma K^2.$$

Finally, from (12) and (16) we get

$$\log \int_{\Omega} e^{\alpha u} \ge \log |\Omega| - 2\sigma \alpha K^2 |\Omega|^{-1},$$

from which the estimate (8) from above for μ_0 follows. The estimate from below is a simple consequence of $u \leq 0$. In a similar way one finds the estimates for μ_+ and μ_- .

To prove (10) we make use of Lemma 1, which gives $f(-m) \ge 0$, where $-m = \min u < 0$, or written explicitly,

•

(17)
$$N\mu_{-}e^{\beta m} \le \sigma\mu_{0}e^{-\alpha m} + N\mu_{+}e^{-\beta m}$$

By the obvious inequality $e^{-\beta m} |\Omega|^{-1} \leq \mu_{-}$ and the estimates of Lemma 2, this yields

$$\frac{N}{|\Omega|} \le e^{-\delta m} |\Omega|^{-1} (\sigma + N) \exp(2K^2 \delta \gamma |\Omega|^{-1})$$

and consequently

$$m \leq \delta^{-1} \log((\sigma + N)N^{-1}) + (\delta|\Omega|)^{-1} 2K^2 \sigma \gamma$$

which implies (10).

III. Consider the family of problems

(18)
$$\Delta u_{\lambda} = \lambda f(u_{\lambda}), \quad u_{\lambda}|_{\partial \Omega} = 0,$$

with $0 \leq \lambda \leq 1$. To get the estimates for u_{λ} similar to those of Lemma 2, it suffices to replace in f the parameter σ and N by $\lambda \sigma$ and λN respectively, which does not affect the estimates ; therefore they remain valid without any change for the whole family u_{λ} , $0 \leq \lambda \leq 1$.

The assumed C^2 regularity of $\partial \Omega$ guarantees the existence of the Green function G(x, y) for the Laplace operator considered in Ω with Dirichlet zero data, satisfying the estimates

(19)
$$G(x,y) \le C|x-y|^{-1}, \quad |\nabla_x G(x,y)| \le C|x-y|^{-2}$$

uniformly for $x, y \in \Omega, x \neq y$, with some constant C [4]. By using G we replace (18) by the equivalent integral equation

$$u_{\lambda} = T_{\lambda} u_{\lambda}, \quad 0 \le \lambda \le 1,$$

where

$$(T_{\lambda}v)(x) = \lambda \int_{\Omega} G(x,y)f(v(y)) \, dy$$
.

The T_{λ} considered as operators defined on the space $C(\overline{\Omega})$ of functions continuous on $\overline{\Omega}$ with sup-norm are continuous uniformly with respect to $\lambda, 0 \leq \lambda \leq 1$, and compact; this easily follows from the fact that f(v) and $\nabla T_{\lambda}v$ are uniformly bounded on any bounded set $K \subset C(\overline{\Omega})$ by (19), which implies the equicontinuity of the family $T_{\lambda}v, v \in K$, and the possibility of applying Arzelà's theorem. This together with the a priori estimates (10) valid for the family $\{u_{\lambda}\}$ allows us to apply the Leray–Schauder theorem which yields the existence of solution of the problem (1), (3). The unicity may be proved exactly as in [2] by using the equality

$$\int_{\Omega} |\nabla w|^2 + \int_{\Omega} (f(u) - f(v))w = 0$$

where u, v are two solutions of (1), (3) and w = u - v. As is easily seen the last equality may be transformed to the form

$$\int_{\Omega} |\nabla w|^2 + \sigma I_{\alpha}(u, v) + N I_{\beta}(u, v) + N I_{\beta}(-u, -v) = 0$$

where I_{α} , I_{β} are defined by (4). From the properties of I_{α} , I_{β} formulated above it follows that u - v = const and because u - v = 0 on $\partial \Omega$ we obtain u = v.

Thus we have proved

THEOREM 1. The problem (1), (3) has exactly one solution.

In the case N = 0 the estimate (10) is useless. To get a proper estimate we may proceed as follows.

From the equation (1), which in the case under consideration has the form

(20)
$$\Delta u = \sigma \mu_0 e^{\alpha u}, \quad u|_{\partial \Omega} = 0,$$

we deduce the relation

$$\int_{\Omega} |\Delta u|^2 = \sigma \mu_0 \int_{\Omega} e^{\alpha u} \Delta u = -\alpha \sigma \mu_0 \int_{\Omega} e^{\alpha u} |\nabla u|^2 + \sigma^2 \mu_0$$

and therefore

(21)
$$\int_{\Omega} |\Delta u|^2 \le \sigma^2 \mu_0 \le \sigma^2 \exp(2\sigma \alpha K^2 |\Omega|^{-1}) |\Omega|^{-1}$$

by the estimate (8) for μ_0 , also valid in our case N = 0. Making now use of the following representation of u:

$$u(x) = \sigma \mu_0 \int_{\Omega} G(x, y) e^{\alpha u(y)} dy$$

we get, applying Cauchy's inequality, (21) and (19),

(22)
$$|u| \le CD^{1/2} |\Omega|^{-1/2} \exp(\sigma \alpha K^2 |\Omega|^{-1})$$

with D denoting the diameter of Ω . The last inequality results by majorizing $\sup\{(\int_{\Omega} |x-y|^{-2} dy)^{1/2} : x \in \Omega\}$ in the obvious way.

Now, proceeding as before, we can prove

THEOREM 2. There exists a unique solution of the problem (20).

IV. Let u_N be the solution of (1), (3).

THEOREM 3. The sequence u_N tends to u_0 uniformly on $\overline{\Omega}$ as $N \to 0$.

Proof. u_N satisfies the integral equation

$$u_N(x) = \int_{\Omega} G(x,y) f(u_N(y)) \, dy$$

Hence (8), (10) and (19) yield that u_N is a family of uniformly continuous functions. Using Arzelà's theorem we can choose a uniformly convergent subsequence of $\{u_N\}$; its limit is the unique solution of (20). From this we conclude that $u_N \to u_0$.

THEOREM 4. When $N \to \infty$, with all other parameters fixed, then the solutions $u = u_N$ of (1), (3) tend to zero uniformly on Ω .

Proof. Let $-m = -m_N = \inf u_N$ as before. We have

$$\mu_{+}e^{-\beta m} - \mu_{-}e^{\beta m} = \mu_{+}\mu_{-}\int_{\Omega} \left(e^{-\beta(m+u)} - e^{\beta(m+u)}\right)$$
$$= -2\mu_{+}\mu_{-}\int_{\Omega} \operatorname{sh}\beta(m+u) \le 0$$

since $0 \le m + u$. Therefore the inequality $f(-m) \ge 0$ gives us

$$2\mu_+\mu_- \int_{\Omega} \ \mathrm{sh} \ \beta(m+u) \leq \sigma \mu_0 N^{-1} e^{-\alpha m} \,.$$

In the sequel we consider only N > 1. Applying (8) and (9) we get from the last inequality

(23)
$$0 < \int_{\Omega} (m+u) \le CN^{-1}$$

with C independent of u.

Now we have

$$\int_{\Omega} f^4(u) = \int_{\Omega} f^3(u) \Delta u = -3 \int_{\Omega} f^2(u) f'(u) |\nabla u|^2 + f^3(0)\sigma.$$

Dividing the last equality by N^4 and using Lemma 2 we get

(24)
$$\int_{\Omega} (\mu_{+}e^{\beta u} - \mu_{-}e^{-\beta u})^{4} \leq CN^{-1}.$$

The application of Hölder's inequality to

$$\nabla u(x) = \int_{\Omega} \nabla_x G(x, y) f(u(y)) \, dy$$

gives us

$$|\nabla u(x)|^4 \le \left(\int_{\Omega} |\nabla_x G(x,y)|^{4/3}\right)^3 \int_{\Omega} f^4(u) \,,$$

which with the help of (24) and the estimates of G given by (19) leads to

$$(25) \qquad |\nabla u(x)|^4 \le CN^3.$$

Here and in the sequel the same letter C will denote different constants independent of u.

Consider now the set

$$\Omega_0 = \{ x \in \Omega : u(x) \ge -m/2 \}$$

In Ω_0 , $m + u \ge m/2$, thus the inequality (23) allows us to estimate the measure of Ω_0 :

(26)
$$|\Omega_0| \le \frac{C}{mN}.$$

Let $x \in \partial \Omega_0 \setminus \partial \Omega$ and let d_x denote the distance from x to $\partial \Omega$. From (25) one gets $m/2 = |u(x)| \leq C d_x N^{3/4}$, hence

$$d_x \ge CmN^{-3/4} = \xi$$

uniformly for $x \in \partial \Omega_0 \setminus \partial \Omega$, and this implies that the boundary strip

$$S = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \le \xi \}$$

is contained in Ω_0 , consequently

$$|S| < |\Omega_0|.$$

From the assumed C^2 regularity of $\partial \Omega$ and from the fact that ξ tends to zero as $N \to \infty$, we conclude that for sufficiently large N

(28)
$$|S| > \xi |\partial \Omega| (1 - \xi \sup\{\mathcal{K}(x) : x \in \partial \Omega\}) > \frac{\xi}{2} |\partial \Omega|$$

where $\mathcal{K}(x)$ denotes the Gaussian curvature of $\partial \Omega$ at x and $|\partial \Omega|$ is the two-dimensional volume of $\partial \Omega$. Now from (26)–(28) we get

$$mN^{-3/4} < \frac{C}{mN} \,,$$

that is, $m < CN^{-1/8}$, which completes the proof.

Consider now the case when Ω grows to the whole \mathbb{R}^3 . However, some restrictions on the way of this expansion will be needed. We assume that $R^{-2}|\Omega| \to \infty$ where R is the radius of the smallest ball containing Ω . As is well known, the constant K in the Poincaré inequality is less than R; therefore the last assumption implies also $K^2|\Omega|^{-1} \to 0$.

132

THEOREM 5. If Ω expands to \mathbb{R}^3 so that the above assumption holds, then the corresponding solutions u of (1), (3) tend to zero uniformly on each ball.

Proof. Consider first the case N = const. Then from the relation [1]

$$u = \int_{\Omega} Gf < \int_{K_R} G_R f \,,$$

where G_R is the Green function for the ball K_R of radius R containing Ω , we conclude, in view of (8) and the estimate $|G_R(x,y)| \leq |x-y|^{-1}, x, y \in K_R$, that

$$|u(x)| \le CR^2 |\Omega|^{-1},$$

from which our statement follows.

If now $N \to \infty$ the desired result follows directly from the estimate (10).

V. In radially symmetric case: Ω an open ball of radius R, $\Omega = K_R$, our problem has the form

(29)
$$(r^2 u')' = r^2 f(u)$$

where

$$f(u) = \sigma \mu_0 e^{\alpha u} + N(\mu_+ e^{\beta u} - \mu_- e^{-\beta u}),$$

$$\mu_0 = \left(4\pi \int_0^R r^2 e^{\alpha u} dr\right)^{-1}, \quad \mu_\pm = \left(4\pi \int_0^R r^2 e^{\pm\beta u} dr\right)^{-1},$$

$$u'(0) = 0, \quad u(R) = 0.$$

(30)

$$(0) = 0, \quad u(R) = 0.$$

The existence of a solution of (29), (30) which is a radially symmetric solution of (1), (3) results from the following argument. If T is any rotation of Ω then

$$f(u(Tx)) = f(u)(Tx) = \Delta u(Tx) = (\Delta u)(Tx).$$

Hence if Ω is invariant under any rotation then the solution of (1), (3), the existence and uniqueness of which has been proved, is radially symmetric. Integrating (29) over [0, r] we get

(31)
$$u'(r) = r^{-2} \int_{0}^{r} s^{2} f(u(s)) \, ds \, .$$

Hence $u'(r) \ge 0$ by Lemma 1. We shall prove that $u'' \ge 0$. Suppose that $u''(\overline{r}) < 0$ for some $\overline{r} > 0$. Using (29), (31) and the monotonicity of u and f we get

$$f(u(\overline{r})) < \frac{2}{3} f(u(\overline{r})),$$

a contradiction.

The positivity of u' and u'' leads to the estimates

$$0 \le u'(r) \le \sigma R^{-2}, \quad -\sigma R^{-1} \le u(r) \le 0.$$

Let $\Omega \subset K_R(0)$ and let u be a solution of (1), (3). We consider the following problem:

(32)
$$(r^2 v')' = r^2 f(v), \quad r \in K_R(0), f(v) = \sigma \mu_0 e^{\alpha v} + N(\mu_+ e^{\beta v} - \mu_- e^{-\beta v})$$

where μ_0 , μ_{\pm} are defined by (2),

(33) $v'(0) = 0, \quad v(R) = 0.$

The problem (32), (33) has exactly one solution [1]. By the positivity of f' we can easily see, applying the maximum principle, that $u \ge v$.

References

- [1] R. Courant, Partial Differential Equations, Interscience, New York London 1962.
- [2] A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Differential Equations 69 (1987), 15–38.
- [3] A. Krzywicki and T. Nadzieja, *Radially symmetric Poisson-Boltzmann equation* in a domain expanding to infinity, submitted.
- [4] W. Pogorzelski, Integral Equations and their Applications, Pergamon Press and PWN, 1969.
- [5] I. Rubinstein, Counterion condensation as an exact limiting property of solution of the Poisson-Boltzmann equation, SIAM J. Appl. Math. 46 (1986), 1024–1038.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

Reçu par la Rédaction le 21.5.1989