Poisson-Boltzmann equation in \mathbb{R}^{3}

by A. Krzywicki and T. Nadzieja (Wrocław)

Abstract. The electric potential u in a solute of electrolyte satisfies the equation

$$
\Delta u(x)=f(u(x)), \quad x \in \Omega \subset \mathbb{R}^{3},\left.\quad u\right|_{\partial \Omega}=0
$$

One studies the existence of a solution of the problem and its properties.
I. It is known that some sorts of polymeric chains, called polyelectrolytes, when put into a container with a suitable electrolyte, dissociate into a polymeric core and mobile ions. The latter together with the ions and counterions of the solute produce an electric field whose potential u satisfies the Poisson equation $\Delta u=-4 \pi \rho$. Assuming that the charge density ρ varies in accordance with the Boltzmann law $\rho=C e^{\alpha u}$, where C is a normalization parameter and α characterizes the charge of ion, we are led to the following problem:

$$
\begin{equation*}
\Delta u=f(u), \quad u: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R} \tag{1}
\end{equation*}
$$

where

$$
f(u)=\sigma \mu_{0} e^{\alpha u}+N\left(\mu_{+} e^{\beta u}-\mu_{-} e^{-\beta u}\right)
$$

Here α, β, σ, N are positive parameters, σ, N denote the total charges of ions dissociated from the polyelectrolyte and ions of the solute ($-N$ being the charge of the corresponding counterions) and

$$
\begin{equation*}
\mu_{0}=\left(\int_{\Omega} e^{\alpha u}\right)^{-1}, \quad \mu_{ \pm}=\left(\int_{\Omega} e^{ \pm \beta u}\right)^{-1} \tag{2}
\end{equation*}
$$

Moreover, if the polyelectrolyte is removed from the container the only boundary condition will be

$$
\begin{equation*}
\left.u\right|_{\partial \Omega}=0 . \tag{3}
\end{equation*}
$$

For physical background see [5].
1985 Mathematics Subject Classification: Primary 35J60, 78A35.
Key words and phrases: Poisson-Boltzmann equation, existence of solution.

Using the Leray-Schauder theorem and some idea suggested by [2] we will show that the problem (1), (3) has a unique solution. Moreover, the form of the estimates obtained permits us to control the behaviour of the solutions as $N \rightarrow 0$ and as $N \rightarrow \infty$ and when Ω expands to the whole space. Though similar to the case considered in [2], [3], the problem discussed in the present paper differs in some important details.

All solutions under consideration are classical, Ω is a bounded domain in \mathbb{R}^{3} with C^{2} boundary.
II. We start with two lemmas.

LEmma 1. If u is a solution of (1), (3) then $u \leq 0$ and $f(u) \geq 0$ in Ω.
Proof. Integrating (1) over Ω we obtain $\int_{\Omega} f(u)=\sigma>0$, therefore the set $\widetilde{\Omega}=\{x \in \Omega: f(u(x))<0\}$ cannot be equal to Ω. We shall show that $\widetilde{\Omega}$ is empty. If not, let ω be its connected component. We have $f(u)=0$ on the boundary $\partial \omega$ and $\Delta u=f(u)<0$ in ω, hence u restricted to ω attains its minimal value u_{0} on $\partial \omega, f\left(u_{0}\right)=0$ and $u(x)>u_{0}$ for $x \in \omega$. However, $f(u)$ with fixed $\mu_{0}, \mu_{ \pm}$is a strictly increasing function of u, so the last inequality would give us $f(u(x))>0$ in ω, which contradicts the definition of $\widetilde{\Omega}$.

Some auxiliary facts will be needed. Let u, v be arbitrary functions continuous on $\bar{\Omega}$. For any positive real λ define

$$
\begin{equation*}
I_{\lambda}(u, v)=\int_{\Omega}\left(\mu_{u} e^{\lambda u}-\mu_{v} e^{\lambda v}\right)(u-v) \tag{4}
\end{equation*}
$$

where

$$
\mu_{u}^{-1}=\int_{\Omega} e^{\lambda u}, \quad \mu_{v}^{-1}=\int_{\Omega} e^{\lambda v}
$$

Then

$$
\begin{equation*}
I_{\lambda}(u, v) \geq 0 \tag{5}
\end{equation*}
$$

A short and elegant proof is given in [2], for completeness of exposition we repeat it here. Since the function $u \rightarrow e^{u}$ is increasing we have for any pair of functions u, v and reals l, m

$$
\begin{equation*}
\int_{\Omega}\left(e^{\lambda(u+l)}-e^{\lambda(v+m)}\right)((u+l)-(v+m)) \geq 0 . \tag{6}
\end{equation*}
$$

If we now choose l, m so that $\lambda l=\log \mu_{u}, \lambda m=\log \mu_{v}$, we may rewrite the last inequality in the form $I_{\lambda}(u, v)+D(u, v) \geq 0$ where

$$
D(u, v)=\int_{\Omega}\left(\mu_{u} e^{\lambda u}-\mu_{v} e^{\lambda v}\right)(l-m)
$$

is obviously zero, and this completes the proof of (5). Moreover, equality holds in (5) if and only if $u-v=$ const and this will be used in the proof of the unicity of solution of (1), (3).

Lemma 2. Let u be a solution of the problem (1), (3) with $\mu_{0}, \mu_{ \pm}$defined by (2). Then

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} \leq 4 \sigma^{2} K^{2}|\Omega|^{-1} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
|\Omega|^{-1} \leq \mu_{0}, \mu_{+} \leq|\Omega|^{-1} \exp \left(2 \sigma \gamma K^{2}|\Omega|^{-1}\right), \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
|\Omega|^{-1} \exp \left(-2 \delta \gamma K^{2}|\Omega|^{-1}\right) \leq \mu_{-}<|\Omega|^{-1} \tag{9}\\
\frac{1}{\delta} \log \frac{N}{N+\sigma}-\frac{2 \sigma \gamma K^{2}}{\delta|\Omega|} \leq u \leq 0 \tag{10}
\end{gather*}
$$

where $\gamma=\max (\alpha, \beta), \delta=\min (\alpha, \beta), K$ is the constant appearing in the Poincaré inequality (15) below, and $|\Omega|$ is the volume of Ω.

Proof. Let u be a solution of (1), (3). We define

$$
H(t)=\frac{1}{2} t^{2} \int_{\Omega}|\nabla u|^{2}+\frac{\sigma}{\alpha} \log \int_{\Omega} e^{t \alpha u}+\frac{N}{\beta} \log \left(\int_{\Omega} e^{t \beta u} \int_{\Omega} e^{-t \beta u}\right)
$$

for $t \in[0,1]$. Then

$$
\begin{aligned}
H^{\prime}(t)= & t \int_{\Omega}|\nabla u|^{2}+\sigma \int_{\Omega} u e^{t \alpha u}\left(\int_{\Omega} e^{t \alpha u}\right)^{-1} \\
& +N\left(\int_{\Omega} u e^{t \beta u}\left(\int_{\Omega} e^{t \beta u}\right)^{-1}-\int_{\Omega} u e^{-t \beta u}\left(\int_{\Omega} e^{-t \beta u}\right)^{-1}\right) .
\end{aligned}
$$

We also have

$$
\begin{equation*}
H^{\prime}(1)=\int_{\Omega}|\nabla u|^{2}+\int_{\Omega} u f(u)=0 ; \tag{11}
\end{equation*}
$$

the last equality is obtained by multiplying (1) by u and integrating over Ω.
Consider now the difference

$$
\begin{aligned}
H^{\prime}(1)-H^{\prime}(t)= & (1-t) \int_{\Omega}|\nabla u|^{2}+\frac{\sigma}{1-t} I_{\alpha}(u, t u) \\
& +\frac{N}{1-t} I_{\beta}(u, t u)+\frac{N}{1-t} I_{\beta}(-u,-t u) .
\end{aligned}
$$

The right hand side of the formula results by a simple manipulation with members of $H^{\prime}(t) ; I_{\alpha}$ and I_{β} are defined by (4).

By the properties of $I_{\lambda}, H^{\prime}(1)-H^{\prime}(t) \geq 0$ for $t \in[0,1]$ and this implies, by $(11), H(1) \leq H(0)$. The explicit form of the last inequality is

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{\sigma}{\alpha} \log \int_{\Omega} e^{\alpha u}+\frac{N}{\beta} \log \left(\int_{\Omega} e^{\beta u} \int_{\Omega}\right. & \left.e^{-\beta u}\right) \\
& \leq\left(\frac{\sigma}{\alpha}+\frac{2 N}{\beta}\right) \log |\Omega|
\end{aligned}
$$

from which we get

$$
\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{\sigma}{\alpha} \log \int_{\Omega} e^{\alpha u} \leq \frac{\sigma}{\alpha} \log |\Omega|
$$

since $|\Omega|^{2} \leq \int_{\Omega} e^{\beta u} \int_{\Omega} e^{-\beta u}$. Jensen's inequality applied to $e^{\alpha u}$ gives us

$$
\begin{equation*}
\frac{\alpha}{|\Omega|} \int_{\Omega} u \leq \log \int_{\Omega} e^{\alpha u}+\log \frac{1}{|\Omega|}, \tag{12}
\end{equation*}
$$

hence

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} \leq-\frac{2 \sigma}{|\Omega|} \int_{\Omega} u \tag{13}
\end{equation*}
$$

Using now Cauchy's inequality we have

$$
\begin{equation*}
\left(\int_{\Omega} u\right)^{2} \leq|\Omega| \int_{\Omega} u^{2} \leq K^{2}|\Omega| \int_{\Omega}|\nabla u|^{2}, \tag{14}
\end{equation*}
$$

the last inequality resulting from the Poincaré inequality

$$
\begin{equation*}
\int_{\Omega} u^{2}<K^{2} \int_{\Omega}|\nabla u|^{2} \tag{15}
\end{equation*}
$$

Combining (13) with (14) we get (7), which applied to (14) gives us

$$
\begin{equation*}
-\int_{\Omega} u<2 \sigma K^{2} \tag{16}
\end{equation*}
$$

Finally, from (12) and (16) we get

$$
\log \int_{\Omega} e^{\alpha u} \geq \log |\Omega|-2 \sigma \alpha K^{2}|\Omega|^{-1}
$$

from which the estimate (8) from above for μ_{0} follows. The estimate from below is a simple consequence of $u \leq 0$. In a similar way one finds the estimates for μ_{+}and μ_{-}.

To prove (10) we make use of Lemma 1 , which gives $f(-m) \geq 0$, where $-m=\min u<0$, or written explicitly,

$$
\begin{equation*}
N \mu_{-} e^{\beta m} \leq \sigma \mu_{0} e^{-\alpha m}+N \mu_{+} e^{-\beta m} . \tag{17}
\end{equation*}
$$

By the obvious inequality $e^{-\beta m}|\Omega|^{-1} \leq \mu_{-}$and the estimates of Lemma 2, this yields

$$
\frac{N}{|\Omega|} \leq e^{-\delta m}|\Omega|^{-1}(\sigma+N) \exp \left(2 K^{2} \delta \gamma|\Omega|^{-1}\right)
$$

and consequently

$$
m \leq \delta^{-1} \log \left((\sigma+N) N^{-1}\right)+(\delta|\Omega|)^{-1} 2 K^{2} \sigma \gamma
$$

which implies (10).
III. Consider the family of problems

$$
\begin{equation*}
\Delta u_{\lambda}=\lambda f\left(u_{\lambda}\right),\left.\quad u_{\lambda}\right|_{\partial \Omega}=0 \tag{18}
\end{equation*}
$$

with $0 \leq \lambda \leq 1$. To get the estimates for u_{λ} similar to those of Lemma 2, it suffices to replace in f the parameter σ and N by $\lambda \sigma$ and λN respectively, which does not affect the estimates ; therefore they remain valid without any change for the whole family $u_{\lambda}, 0 \leq \lambda \leq 1$.

The assumed C^{2} regularity of $\partial \Omega$ guarantees the existence of the Green function $G(x, y)$ for the Laplace operator considered in Ω with Dirichlet zero data, satisfying the estimates

$$
\begin{equation*}
G(x, y) \leq C|x-y|^{-1}, \quad\left|\nabla_{x} G(x, y)\right| \leq C|x-y|^{-2} \tag{19}
\end{equation*}
$$

uniformly for $x, y \in \Omega, x \neq y$, with some constant C [4]. By using G we replace (18) by the equivalent integral equation

$$
u_{\lambda}=T_{\lambda} u_{\lambda}, \quad 0 \leq \lambda \leq 1
$$

where

$$
\left(T_{\lambda} v\right)(x)=\lambda \int_{\Omega} G(x, y) f(v(y)) d y
$$

The T_{λ} considered as operators defined on the space $C(\bar{\Omega})$ of functions continuous on $\bar{\Omega}$ with sup-norm are continuous uniformly with respect to $\lambda, 0 \leq \lambda \leq 1$, and compact; this easily follows from the fact that $f(v)$ and $\nabla T_{\lambda} v$ are uniformly bounded on any bounded set $K \subset C(\bar{\Omega})$ by (19), which implies the equicontinuity of the family $T_{\lambda} v, v \in K$, and the possibility of applying Arzelà's theorem. This together with the a priori estimates (10) valid for the family $\left\{u_{\lambda}\right\}$ allows us to apply the Leray-Schauder theorem which yields the existence of solution of the problem (1), (3). The unicity may be proved exactly as in [2] by using the equality

$$
\int_{\Omega}|\nabla w|^{2}+\int_{\Omega}(f(u)-f(v)) w=0
$$

where u, v are two solutions of $(1),(3)$ and $w=u-v$. As is easily seen the last equality may be transformed to the form

$$
\int_{\Omega}|\nabla w|^{2}+\sigma I_{\alpha}(u, v)+N I_{\beta}(u, v)+N I_{\beta}(-u,-v)=0
$$

where I_{α}, I_{β} are defined by (4). From the properties of I_{α}, I_{β} formulated above it follows that $u-v=$ const and because $u-v=0$ on $\partial \Omega$ we obtain $u=v$.

Thus we have proved
Theorem 1. The problem (1), (3) has exactly one solution.
In the case $N=0$ the estimate (10) is useless. To get a proper estimate we may proceed as follows.

From the equation (1), which in the case under consideration has the form

$$
\begin{equation*}
\Delta u=\sigma \mu_{0} e^{\alpha u},\left.\quad u\right|_{\partial \Omega}=0 \tag{20}
\end{equation*}
$$

we deduce the relation

$$
\int_{\Omega}|\Delta u|^{2}=\sigma \mu_{0} \int_{\Omega} e^{\alpha u} \Delta u=-\alpha \sigma \mu_{0} \int_{\Omega} e^{\alpha u}|\nabla u|^{2}+\sigma^{2} \mu_{0}
$$

and therefore

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} \leq \sigma^{2} \mu_{0} \leq \sigma^{2} \exp \left(2 \sigma \alpha K^{2}|\Omega|^{-1}\right)|\Omega|^{-1} \tag{21}
\end{equation*}
$$

by the estimate (8) for μ_{0}, also valid in our case $N=0$. Making now use of the following representation of u :

$$
u(x)=\sigma \mu_{0} \int_{\Omega} G(x, y) e^{\alpha u(y)} d y
$$

we get, applying Cauchy's inequality, (21) and (19),

$$
\begin{equation*}
|u| \leq C D^{1 / 2}|\Omega|^{-1 / 2} \exp \left(\sigma \alpha K^{2}|\Omega|^{-1}\right) \tag{22}
\end{equation*}
$$

with D denoting the diameter of Ω. The last inequality results by majorizing $\sup \left\{\left(\int_{\Omega}|x-y|^{-2} d y\right)^{1 / 2}: x \in \Omega\right\}$ in the obvious way.

Now, proceeding as before, we can prove
Theorem 2. There exists a unique solution of the problem (20).
IV. Let u_{N} be the solution of (1), (3).

Theorem 3. The sequence u_{N} tends to u_{0} uniformly on $\bar{\Omega}$ as $N \rightarrow 0$.

Proof. u_{N} satisfies the integral equation

$$
u_{N}(x)=\int_{\Omega} G(x, y) f\left(u_{N}(y)\right) d y
$$

Hence (8), (10) and (19) yield that u_{N} is a family of uniformly continuous functions. Using Arzelà's theorem we can choose a uniformly convergent subsequence of $\left\{u_{N}\right\}$; its limit is the unique solution of (20). From this we conclude that $u_{N} \rightarrow u_{0}$.

ThEOREM 4. When $N \rightarrow \infty$, with all other parameters fixed, then the solutions $u=u_{N}$ of (1), (3) tend to zero uniformly on Ω.

Proof. Let $-m=-m_{N}=\inf u_{N}$ as before. We have

$$
\begin{aligned}
\mu_{+} e^{-\beta m}-\mu_{-} e^{\beta m} & =\mu_{+} \mu_{-} \int_{\Omega}\left(e^{-\beta(m+u)}-e^{\beta(m+u)}\right) \\
& =-2 \mu_{+} \mu_{-} \int_{\Omega} \operatorname{sh} \beta(m+u) \leq 0
\end{aligned}
$$

since $0 \leq m+u$. Therefore the inequality $f(-m) \geq 0$ gives us

$$
2 \mu_{+} \mu_{-} \int_{\Omega} \operatorname{sh} \beta(m+u) \leq \sigma \mu_{0} N^{-1} e^{-\alpha m} .
$$

In the sequel we consider only $N>1$. Applying (8) and (9) we get from the last inequality

$$
\begin{equation*}
0<\int_{\Omega}(m+u) \leq C N^{-1} \tag{23}
\end{equation*}
$$

with C independent of u.
Now we have

$$
\int_{\Omega} f^{4}(u)=\int_{\Omega} f^{3}(u) \Delta u=-3 \int_{\Omega} f^{2}(u) f^{\prime}(u)|\nabla u|^{2}+f^{3}(0) \sigma .
$$

Dividing the last equality by N^{4} and using Lemma 2 we get

$$
\begin{equation*}
\int_{\Omega}\left(\mu_{+} e^{\beta u}-\mu_{-} e^{-\beta u}\right)^{4} \leq C N^{-1} \tag{24}
\end{equation*}
$$

The application of Hölder's inequality to

$$
\nabla u(x)=\int_{\Omega} \nabla_{x} G(x, y) f(u(y)) d y
$$

gives us

$$
|\nabla u(x)|^{4} \leq\left(\int_{\Omega}\left|\nabla_{x} G(x, y)\right|^{4 / 3}\right)^{3} \int_{\Omega} f^{4}(u)
$$

which with the help of (24) and the estimates of G given by (19) leads to

$$
\begin{equation*}
|\nabla u(x)|^{4} \leq C N^{3} \tag{25}
\end{equation*}
$$

Here and in the sequel the same letter C will denote different constants independent of u.

Consider now the set

$$
\Omega_{0}=\{x \in \Omega: u(x) \geq-m / 2\}
$$

In $\Omega_{0}, m+u \geq m / 2$, thus the inequality (23) allows us to estimate the measure of Ω_{0} :

$$
\begin{equation*}
\left|\Omega_{0}\right| \leq \frac{C}{m N} \tag{26}
\end{equation*}
$$

Let $x \in \partial \Omega_{0} \backslash \partial \Omega$ and let d_{x} denote the distance from x to $\partial \Omega$. From (25) one gets $m / 2=|u(x)| \leq C d_{x} N^{3 / 4}$, hence

$$
d_{x} \geq C m N^{-3 / 4}=\xi
$$

uniformly for $x \in \partial \Omega_{0} \backslash \partial \Omega$, and this implies that the boundary strip

$$
S=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \leq \xi\}
$$

is contained in Ω_{0}, consequently

$$
\begin{equation*}
|S|<\left|\Omega_{0}\right| \tag{27}
\end{equation*}
$$

From the assumed C^{2} regularity of $\partial \Omega$ and from the fact that ξ tends to zero as $N \rightarrow \infty$, we conclude that for sufficiently large N

$$
\begin{equation*}
|S|>\xi|\partial \Omega|(1-\xi \sup \{\mathcal{K}(x): x \in \partial \Omega\})>\frac{\xi}{2}|\partial \Omega| \tag{28}
\end{equation*}
$$

where $\mathcal{K}(x)$ denotes the Gaussian curvature of $\partial \Omega$ at x and $|\partial \Omega|$ is the two-dimensional volume of $\partial \Omega$. Now from (26)-(28) we get

$$
m N^{-3 / 4}<\frac{C}{m N}
$$

that is, $m<C N^{-1 / 8}$, which completes the proof.
Consider now the case when Ω grows to the whole \mathbb{R}^{3}. However, some restrictions on the way of this expansion will be needed. We assume that $R^{-2}|\Omega| \rightarrow \infty$ where R is the radius of the smallest ball containing Ω. As is well known, the constant K in the Poincare inequality is less than R; therefore the last assumption implies also $K^{2}|\Omega|^{-1} \rightarrow 0$.

Theorem 5. If Ω expands to \mathbb{R}^{3} so that the above assumption holds, then the corresponding solutions u of (1), (3) tend to zero uniformly on each ball.

Proof. Consider first the case $N=$ const. Then from the relation [1]

$$
u=\int_{\Omega} G f<\int_{K_{R}} G_{R} f
$$

where G_{R} is the Green function for the ball K_{R} of radius R containing Ω, we conclude, in view of (8) and the estimate $\left|G_{R}(x, y)\right| \leq|x-y|^{-1}, x, y \in K_{R}$, that

$$
|u(x)| \leq C R^{2}|\Omega|^{-1}
$$

from which our statement follows.
If now $N \rightarrow \infty$ the desired result follows directly from the estimate (10).
V. In radially symmetric case: Ω an open ball of radius $R, \Omega=K_{R}$, our problem has the form

$$
\begin{equation*}
\left(r^{2} u^{\prime}\right)^{\prime}=r^{2} f(u) \tag{29}
\end{equation*}
$$

where

$$
\begin{gather*}
f(u)=\sigma \mu_{0} e^{\alpha u}+N\left(\mu_{+} e^{\beta u}-\mu_{-} e^{-\beta u}\right) \\
\mu_{0}=\left(4 \pi \int_{0}^{R} r^{2} e^{\alpha u} d r\right)^{-1}, \quad \mu_{ \pm}=\left(4 \pi \int_{0}^{R} r^{2} e^{ \pm \beta u} d r\right)^{-1} \\
u^{\prime}(0)=0, \quad u(R)=0 . \tag{30}
\end{gather*}
$$

The existence of a solution of (29), (30) which is a radially symmetric solution of (1), (3) results from the following argument. If T is any rotation of Ω then

$$
f(u(T x))=f(u)(T x)=\Delta u(T x)=(\Delta u)(T x)
$$

Hence if Ω is invariant under any rotation then the solution of (1), (3), the existence and uniqueness of which has been proved, is radially symmetric. Integrating (29) over $[0, r]$ we get

$$
\begin{equation*}
u^{\prime}(r)=r^{-2} \int_{0}^{r} s^{2} f(u(s)) d s \tag{31}
\end{equation*}
$$

Hence $u^{\prime}(r) \geq 0$ by Lemma 1. We shall prove that $u^{\prime \prime} \geq 0$. Suppose that $u^{\prime \prime}(\bar{r})<0$ for some $\bar{r}>0$. Using (29), (31) and the monotonicity of u and f we get

$$
f(u(\bar{r}))<\frac{2}{3} f(u(\bar{r}))
$$

a contradiction.
The positivity of u^{\prime} and $u^{\prime \prime}$ leads to the estimates

$$
0 \leq u^{\prime}(r) \leq \sigma R^{-2}, \quad-\sigma R^{-1} \leq u(r) \leq 0
$$

Let $\Omega \subset K_{R}(0)$ and let u be a solution of (1), (3). We consider the following problem:

$$
\begin{align*}
& \left(r^{2} v^{\prime}\right)^{\prime}=r^{2} f(v), \quad r \in K_{R}(0) \tag{32}\\
& f(v)=\sigma \mu_{0} e^{\alpha v}+N\left(\mu_{+} e^{\beta v}-\mu_{-} e^{-\beta v}\right)
\end{align*}
$$

where $\mu_{0}, \mu_{ \pm}$are defined by (2),

$$
\begin{equation*}
v^{\prime}(0)=0, \quad v(R)=0 \tag{33}
\end{equation*}
$$

The problem (32), (33) has exactly one solution [1]. By the positivity of f^{\prime} we can easily see, applying the maximum principle, that $u \geq v$.

References

[1] R. Courant, Partial Differential Equations, Interscience, New York London 1962.
[2] A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the PoissonBoltzmann equation, J. Differential Equations 69 (1987), 15-38.
[3] A. Krzywicki and T. Nadzieja, Radially symmetric Poisson-Boltzmann equation in a domain expanding to infinity, submitted.
[4] W. Pogorzelski, Integral Equations and their Applications, Pergamon Press and PWN, 1969.
[5] I. Rubinstein, Counterion condensation as an exact limiting property of solution of the Poisson-Boltzmann equation, SIAM J. Appl. Math. 46 (1986), 1024-1038.

INSTITUTE OF MATHEMATICS
WROCŁAW UNIVERSITY
PL. GRUNWALDZKI 2/4
50-384 WROCŁAW, POLAND

