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LP-L1-Time decay estimate for solution of the Cauchy
problem for hyperbolic partial differential equations
of linear thermoelasticity

by JERZY GAWINECKI (Warszawa)

Abstract. We prove the LP-L9-time decay estimates for the solution of the Cauchy
problem for the hyperbolic system of partial differential equations of linear thermoelas-
ticity. In our proof based on the matrix of fundamental solutions to the system we use
Strauss—Klainerman’s approach [12], [5] to the LP-L9-time decay estimates.

0. Introduction. We consider the Cauchy problem for the hyperbolic
system of partial differential equations of linear thermoelasticity (cf. [13]):

(0.1) pOPu—pAu — (X + p) grad divu + S grad 6,7 = 0,
(0.2) B div Oyu + prd?T — kAT =0,

with initial conditions

u(+0,2) = u’(z), (Opu)(+0,z) = u'(x)
T(+0,z) =T z), (0:T)(+0,2) =T (x)

where u = (uq, ug, us) is the displacement vector field of the medium, 7" the

temperature of the medium, ¢t > 0, z € R, 9; = 9/0t, A = 2221 8]2-; 0y [y

A\, B, T, k are positive physical constants; u°, u', T°, T' are given functions.

(0.3)

Remark 0.1. The system (0.1)—(0.2) is the principal part of a hyper-
bolic system of partial differential equations describing the evolution of a
thermoelastic medium (cf. E. S. Suhubi [13], p. 199, formulae (2.7.36)). For
the sake of simplicity we assume in system (2.7.36) that v =1 and Ty = 1.

Under the assumption that the Cauchy data «°, u', 70, T' are smooth
enough (cf. [4], formulae (5.1)—(5.3)) the solution of the problem (0.1)—(0.3)
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is given by

(0.4) Ut,x) = (u(t,2), T(t,x)) = H(t,") xg(z) + O, H(L,-) * h(z)
where () = §(-) + D(9)h(-), §lx) =

(ul(2), TH(2)), h(z) = (u*(z), T(z)),
0 0 0 B
0 0 0 o
D@OY=| o o o B85 |

B0y B (I3 0

* denotes the three-dimensional convolution in R? and H (¢, x) is the matrix
of fundamental solutions of the system (0.1)—(0.2) constructed in [4] of the
form

(0.5) Hjp(t, z)
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i X
[ (=22 o
X X
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Ag ZjTh 5 (t ]ac]) +B B ZjTh o
T || ||
Agt | —2% ! t— — t— —
s (=) [ (- 5) < (-
K
Jk=1,234,

where §;;, denotes the Kronecker symbol, §(-) is Dirac’s distribution, e(-) is
Heaviside’s function
a(t):{l for t > 0,

0 fort <O,
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and a1, as, b, Ay, ..., A1g, B are constants.

The aim of this paper is to prove the L>°-L!-time decay estimates for the
solution of the problem (0.1)—(0.3) using the formula (0.4), then to prove the
L?-L?-time decay estimates for this solution applying some theorems of the
theory of symmetric first order hyperbolic systems (cf. Yu. V. Egorov [3],
p. 320-333) and finally the LP-L9-time decay estimates using interpolation
inequalities in Sobolev spaces (cf. [10], [7], [14]).

Such LP-Li-time decay estimates play an important role in the proof of
global (in time) existence of solution to the Cauchy problem for nonlinear
wave equations (cf. [5], [7]).

Notation: Besides other standard notation we use the symbol L{)m(R3) =
WmP(R3) (1 < p < oo, m € NU{0}) for the well-known Sobolev spaces
with norm ||+ [, es) = |-y (cf. [1], [11]); WOP(RS) = LP(R?) with
norm || : ”LP(RS).

We also write

vf = (8tf78$1f7 awzf)ang)

for the space-time gradient of a function f, and

Df = (alflfaawgf’6$3f)

for the space gradient of f.
[s] denotes the smallest integer larger than or equal to s for s € R.

1. The L*°-L!-time decay estimates. We shall prove the following
theorem:

THEOREM 1.1 (L*°-L!'-time decay estimates). Let the Cauchy data u°,
ul, T°, T be functions vanishing at infinity. Moreover, let

(u', Du’, T", DT°) € L'5(R?).

Then the solution (u,T) of the problem (0.1)—(0.3) given by the formula (0.4)
satisfies the following estimates:

(L1 [l(u(t, ), T )| Lo rsy < C(1+ t)le(UlaDUO,TlaDTO)\|L}3(R3)7
(1.2)  [(Vult, ), VT'(t, )l Lo m3)

< O +8)7Y[(u!, Du’, T, DTO)|| 11, ms)
fort >0, where C is a constant independent of u°, u', T°, T and t.

Proof. We prove (1.2). The proof of (1.1) runs in the same way. Writing
the solution U (¢, x) = (u(t,x),T'(t,z)) given by the formula (0.4) in the form

4 4
(1.3) Uj(t,o) = > Hjp(t,") = g(x) + > 0iHju(t, ) * h*(x),
k=1 k=1
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Jj =1,2,3,4, where U;(t,z) = u;(t,x), j = 1,2,3, Us(t,z) = T(t,z), and
differentiating (1.3) with respect to t and z; (for | = 1,2,3) we get

(14) U (ta) = OHu(t, ) * g*(x)
k=1
4 3
£ S Baute,) + 2 0y )| B

O H,p(t,) * h¥(x), j=1,2,3,

—~
\_P#
~—
*
Q
a
—
8
~—

k
4
(15)  OUu(t,z) =Y O Hu
O Hur(t, ") * hi(z)

8tHlk(t, ) * TZ;C(ZL‘) 5

4

k
4
(1.6)  aUj(ta) = dHu(t,) = §"(x) + Y OHji(t,-) * hf(z),
k=1 k=1

1=1,2,3,j=1,2,3,4, h* =, h* m =1,2,3. We can write (1.4)—(1.6)
in vector form as follows:

(1.7) V(t,x) = R(t,-) * VO(x)
where
(1.8) V(t,z) = (Vu,VT), V°z)=(u',Du’, T, DT?)

and R(t,x) is a 16 x 16 matrix with elements which are linear combinations
of the terms 0;H,;(t,x) and 0;Hji(t,x) (cf. (1.3)—(1.6)). From (1.3)—(1.6)
and (1.7) it follows that in order to prove the estimate (1.2) it is sufficient
to prove the following estimates:

(1.9) 10 Hjio(t, ) * flloegsy < COL+8) I FllLy, @s)
(1.10) 1O H 1 (t, ) * fllooe sy < O+ 7HIfll L, sy

for j,k = 1,2,3,4 and any scalar function f(x) satisfying the assumptions of
Theorem 1.1. Taking into account the form of the matrix H (¢, z) (cf. (0.5))
we get

(1.11) Hji(t,-) * f(x)
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A t
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]M[ lil ) lL - ) }
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AG [ tzjzkf(x—i-tz ds, +— ftzf i +tz)dsz}
o may 2 i

0; 3ziz

a1<z|<az

0 32z
+4s | t(ﬂ’;_ |;’5k)f(x—|—tz)dz

z|
b<|z|<as
0 322k
+4y | t(|;’3— |z]|5 )f(a:—l—tz)dz]
b<|z|<as

ﬁf(:c—l—tz) dz

+ 645 (1 — 05) A1 f FE

a1<|z|<as
+54j( (5k] A10|: f t J2f x+tz) S
|z|=a1
Zj
1l ta—%f(x—i—tz)dSz
|z|=az

where dS. is the area element of the sphere |z| = a;, j = 1,2, or of
|z| = b.

For simplicity we consider two typical integrals occurring on the right
hand side of (1.11) (other integrals in (1.11) are estimated similarly):

(1.12) I'= [ tf(x+ty)ds,,
ly|=b
[z +ty)
(1.13) I? = = dy .
T

Differentiating the integrals I' and I? with respect to ¢t and z; (I = 1,2, 3)
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we obtain (1)

(1.14) I} = ff(a:+ty)d5’y+ ftatf(x+ty)dsy,

ly|=b ly|=b
+ ty)
(1L1s) = [ fx| ’3y dy+ [ " |3at (z + ty) dy,
b<|y|<a b<|y|<a
(116) I, = [ tos f(z+ty)dS,,
ly|=b
t
iy 2= f WaI,f(acHy)dy.
b<lyl<a

Following S. Klainerman (cf. [5], pp. 53-59) we get

oo

(1.18)  f(z+ty) =— f@f:z:—l—sy)d f (s — )02 f(z + sy) ds

~+

. I
t

(1.19) O f(z+ty) = —f62 (x +sy)d f (s — )02 f(x + sy) ds.
t
In view of (1.18), (1.19) we have
(1.20) = [ [(s=t)02f(z+sy)dsds,
lyl=b 1
ft f@gf(x—i-sy)dsty
lyl=b 1
:t‘l[ f ft(s—t)@?f(x—i—sy)dsty
ly|=b t
f ftzaszf(x—{—sy) dsty}
lyl=b
for ¢ > 0.

Taking into account that

(1.21) |02f x+sy|—1z 2+ syysun| < SPIDf( + sy)
J,k=1

(}) We use the notation 917 = [tj, o = I%l, ji=1,2.
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for [yl =band t(s —t) < s, 12 < 5% for 0 <t < s < 0o we get

(1.22) I < t1b? f f s*|D2f(x + sy)|dsdS, .
lyl=b ¢

Using the spherical coordinates we have

(1.23) I} <ot Y| D2f|lprgsy fort>0.

Acting in the same way we get

(1.24) L=~ [t [ 0.0xf(x+sy)dsdS,.
ly|=b t

Since

3
00l f (2 + s))| = | 30 02,0, flw+ sy)ys| < BDEf (e +5y)| - for Jyl = b
j=1

we have
(1.25) L] <t 'b f fSQ\Dif(x—i—sy)dsMSy
lyl=bt
< t_l”DifHLl(Rs) fort > 0.
Similarly
(1L26) <6 [ @t wldy+ [ U0+ )l dy]
b<|y|<a b<|y|<a
<o [ If@+wldy+a [ 4DLf(@+1ty)ldy|,
b<ly|<a b<ly|<a
(1.27) L <b™® [ DL f(x + ty)| dy.
b<ly|<a

Changing the variable ty to z in the above integrals we derive

(1.28) |It2]§b_3[1 [ fla+2)d

t3
bt<|z|<at

+5 |D;f(x+z)|dz]

bt<|z|<at

511 a
<078 [l + SIDL e
b3 b3
120)  BI<SD [ Dt 2)lds < SO0 e
bt<|z|<at
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Noting that 1/t3 < 1/t2 <1/t for t > 1 we get

(1.30) 17|+ 12| < Ct7 Dy fllpirsy  fort >1.
From (1.23), (1.25), (1.30) we obtain

(1.31) IVHi(t,) * f()lpoe sy < O fll o, es)

fort >0and 5,k =1,2,3,4.

In order to obtain an estimate analogous to (1.30) for 0 < t <
proceed as above expressing the integrals I} and I? (cf. (1.18), (1.1
the following form:

1 we
9)) in

(1.32) I=-1 f f(s —1)?02 f(z + sy) dsdS,
ly|=b t
+ f t T(s—t)&?f(x%—sy)dsd%,
lyl=b 1
(133) Bo= [t [ (=080 flx + sp)] dsds,
yl=b

After some calculations we get

(1.34) 11|+ Lz, | < Cllfll oy gsy  for t > 0.
It is easy to see that for 0 <t <1
f( x+ty _
(1.35) [ gy <6 [ 1@+ ty)ldy
b<|y|<a b<|y|<a
< b f Il rey -
at +ty _3 &
(1.36) [ = ’ E dy| <v=* [ ‘Zc%jf(x +ty)y;| dy
b<|y|<a b<|y|<a j=1
<b%al|Dy Sl @),
t
(1.37) [ Hgmﬂx+wm4<b3 [ 100 f (e + 1) dy

b<|y|<a b<|y|<a

< b 3Dy fllr(ms) -



LP-LI-Time decay estimate 143

Hence
(1.38) [IE)+ 112 < Cllfllpy sy  for0<t<1.
Thus from (1.38) and (1.34) we obtain

)

Now, in view of 1 <2(1+¢) "t for0<t<landt ! <2(1+¢)"tfort>1
and taking into account (1.31), (1.39) we conclude that

(140) [ VH(t,) * fO)llpmge) < CO+ ) fllgs) fort>0. m

2. The L?-L?-time decay estimates. We derive the L?-L2-time decay
estimates for solution of the Cauchy problem (0.1)—(0.3). More precisely,
we formulate the following theorem:

THEOREM 2.1 (L2-L2-time decay estimates). Let the Cauchy data u°,
ul, TO, T be functions vanishing at infinity. Moreover, let
(u', Du°, T', DT) € L*(R%).
Then the solution (u,T') of the problem (0.1)—(0.3) given by the formula (0.4)
satisfies the following estimates:
(21) H(U(t, )7T(t7))HL2(R3)
< C||(ut, Du®, T, DT°)||p2(rsy  fort >0,
(22) ||(Vu(t> ')7 VT(ta '))HL2(R3)
< C||(u1,DuO,Tl,DTO)||Lz(R3) fort >0,
where C' is constant independent of u®, ut, T, T* and t.
Sketch of proof. Following Yu. V. Egorov (cf. [3], pp. 320-322,
326-333) we reduce the Cauchy problem (0.1)—(0.3) to an equivalent Cauchy
problem for a linear symmetric hyperbolic system of first order. Next, ap-

plying the existence and uniqueness theorems (cf. [3], Theorem 3.2, p. 329)
we obtain the estimates (2.1), (2.2).

3. The LP-Li-time decay estimates. In this section we express the
LP-L9-time decay estimates for solutions of the Cauchy problem (0.1)—(0.3)
in terms of their gradient.

We consider the operator I, defined as follows:

(3.1) II.f(x) = R(t,-) * f(z) for any function f(x)

satisfying the assumptions of Theorems 1.1 and 2.1, where R(¢,x) is defined
by (1.7).
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From Theorems 1.1 and 2.1 it follows that
(3.2) II) ;LY (R%) — L=®(R®), I <C(1+t)7",
(3.3) Tl L*(R%) — L*(R®), |} <C.

By interpolation (cf. J. Shatah [10], S. Klainerman and G. Ponce [7]) we
have

(3.4) 1l (LY, L)y — [L™, L%,

*

2| = 1200 ) with 0 <6 <1,

where [X,Y]s (0 <6 < 1) denotes the complex interpolation space (cf. [§],
[14]) with respect to X and Y.

In order to obtain the LP-L9-time decay estimates (where ¢ = 2a + 2,
p=(2a+2)/(2a+1),1/p+1/q =1, a is a nonnegative integer) we notice
that for 0 = 1/(a+ 1)

3a 200 + 2
(3.5) [L}3,L2]1/(a+1) = L*~ where sg = [ ] y D=

a+1 T 20417
(3.6) [L°°, L2]1/(a+1) — [2ot2

Hence, we have

(3.7) 7 . I, (R¥) — L22+2(R3),

(8:8) ||| = ' DT D < 01+ g7 ek,
So, we have proved the following theorem:

THEOREM 3.1 (LP-L9-time decay estimates). Let the Cauchy data u°,
ul, T, T be functions vanishing at infinity. Moreover, let

200+ 2
L Du’, T, DT°) € LP, (R? =
(', DU, T, DTY) € 5, (&) forp =202,
so = [3a/(a + 1)] and o a nonnegative integer. Then the solution of the

problem (0.1)—(0.3) given by the formula (0.4) satisfies the following esti-
mates:

(3.9) [(Vu(t,-),VT(t,-))||L2a+2@msy < C(1 + t)=o/ e+ D)
X H(ul,Duo,Tl,DTO)HL{)SO(Rs) fO?"t Z 0

where C is a constant independent of u°, u', T°, T and t.

Remark 3.1. In a subsequent paper, we shall apply Theorem 3.1 in
the proof of global (in time) existence of solution of the Cauchy problem for
the nonlinear hyperbolic system of partial differential equations describing
a thermoelastic medium.
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