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Some application of the implicit function theorem
to the stationary Navier–Stokes equations

by Konstanty Holly (Kraków)

Abstract. We prove that—in the case of typical external forces—the set of stationary
solutions of the Navier–Stokes equations is the limit of the (full) sequence of sets of
solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for
every inner approximation of the space of velocities). Then the uniqueness of the N–S
equations is equivalent to the uniqueness of almost every of these Galerkin equations.

1. Relations between approximate and exact solutions of the
stationary N–S equations. A steady motion of a viscous incompressible
fluid, filling an open bounded set Ω ⊂ Rn, is described by the stationary
Navier–Stokes equations:

∂vv = ν∆v + f −∇p ,(1.1)
div v = 0 ,(1.2)

where ν ∈ ]0,∞[ (kinematic viscosity) and f : Ω → Rn (external forces)
are given, while v : Ω → Rn (velocity of fluid) and p : Ω → R (pressure of
fluid) are looked for. In the present paper the symbol ∂uw stands for the
vector field

∑n
i=1 ui ∂w/∂xi (: Ω → Rn), for any differentiable vector fields

u,w : Ω → Rn. To the system (1.1), (1.2) we add the boundary condition

(1.3) v∂Ω = 0 .

Let us consider the Sobolev space

W 1,2 := {u ∈ L2(Ω,Rn) : ∂u/∂xi ∈ L2(Ω,Rn), ∀i} .

It is a Hilbert space with the scalar product

(u,w) 7→ (u|w)L2 + ((u|w)) := (u|w)L2 +
n∑
i=1

(
∂u

∂xi

∣∣∣∣ ∂w∂xi
)
L2

.
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Let W 1,2
0 denote the closure of the subspace D(Ω,Rn) (:= C∞(Ω,Rn) ∩

{compact support}) in W 1,2. By the well known inequality of Poincaré, the
bilinear form ((·|·)) is a scalar product in W 1,2

0 and it induces the topology
inherited from W 1,2. Finally, V denotes the closure of the subspace V :=
D(Ω,Rn) ∩ {div = 0} in W 1,2

0 . Then (V, ((·|·))) is a Hilbert space.
If (v, p) is a smooth solution of the equation (1.1), then taking the scalar

product (in Rn) of both sides of this equation with a vector field φ ∈ V and
next integrating with respect to x ∈ Ω, we obtain

(1.4) b(v, v, φ) = −ν((v|φ)) + f̃(φ) ,

where b(v, v, φ) :=
∫
Ω

(∂vv)φdm, f̃(φ) :=
∫
Ω
fφ dm. The above heuristics

brought J. Leray to the following

(1.5) Definition. Suppose that n ≤ 4, f̃ ∈ V ′. A vector field v ∈ V is
a (weak) solution of the boundary value problem (1.1)–(1.3) iff the identity
(1.4) holds for every φ ∈ V .

Definition (1.5) is correct because for n ≤ 4 the 3-linear form

b : V 3 3 (u,w, φ) 7→
∫
Ω

(∂uw)φdm ∈ R

is well defined and continuous. Moreover,

∀(u,w, φ) ∈ V 3 : b(u,w, φ) = −b(u, φ,w) .

Proofs of these facts and a construction of the (weak) solution of the
problem (1.1)–(1.3) can be found e.g. in Lions [5] or Temam [10] (see also
(2.2), (2.6), (1.10) and (1.11) in the present paper). Uniqueness of (1.1)–
(1.3) for arbitrary ν, f̃ is still an open problem. By the Riesz theorem

∃! c ∈ V ∀φ ∈ V :
1
ν
f̃(φ) = ((c|φ))

(∃! ≡ there exists a unique). Analogously for a fixed v ∈ V

∃! Q(v) ∈ V ∀φ ∈ V :
1
ν
b(v, v, φ) = ((Q(v)|φ)) (for n ≤ 4) .

It is easy to verify that Q : V → V is a continuous homogeneous polynomial
of degree 2; furthermore, Q is a whirling vector field (with centre zero), i.e.

∀v ∈ V : ((Q(v)|v)) = 0 .

Here are the key topological properties of the polynomial Q:

(1.6) Lemma. If
k
u
k→∞−→ u weakly in V , then Q(

k
u) k→∞−→ Q(u) weakly in

V . For n ∈ {2, 3} and all u ∈ V , the Fréchet differential duQ is completely
continuous (as an operator V → V ).
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Lemma (1.6) and a number of further assertions are well known; however
(also for convenience of the reader), we prove them once more in this work.
All the proofs are found in Section 2. Theorem (1.18) is surely new.

The variational equation (1.4) may be written in the form

(1.7) Q(v) + v = c .

Let R(c) denote the set of all solutions of this equation.

(1.8) R e m a r k. R(c) is a compact subset of the sphere with centre c/2
and radius ‖c/2‖V in V .

Consider a sequence (WN )∞N=1 of finite-dimensional subspaces of V such
that

∀φ ∈ V : lim
N→∞

‖φ− PN (φ)‖V = 0 ,

where PN : V →WN is the orthogonal projection. On eachWN the equation
(1.7) induces the Galerkin equation

(1.7)N PNQ(w) + w = cN := PNc (w ∈WN ) .

The homogeneous polynomial WN 3 φ 7→ PNQ(φ) ∈WN is also rotation
invariant, thus by analogy with (1.8) the set

(1.8)N RN (c) := {w ∈WN : w satisfies the equation (1.7)N} is a compact
subset of the sphere

(1.9)
{
φ ∈WN :

∥∥φ− 1
2cN

∥∥
V

=
∥∥ 1

2cN
∥∥
V

}
.

From Brouwer’s fixed-point theorem it results that ∀c ∈ V ∀N : RN (c) 6= ∅
(see Lions [5] or Temam [10]).

(1.10) Lemma. If (v1, v2, . . .) ∈×∞N=1
RN (c) and vN → v weakly in V ,

then v ∈ R(c) and vN → v (strongly) in V .

According to the Banach–Alaoglu theorem, every sequence (v1, v2, . . .) ∈
×N

RN (c) contains a weakly convergent subsequence: vN → v weakly in V
as N 3 N →∞ for some infinite N ⊂ N; if in Lemma (1.10) we substitute
(vN )N∈N for (vN ), then we obtain v ∈ R(c), ‖vn−v‖V → 0 as N 3 N →∞.
In particular,

(1.11) R(c) 6= ∅
since×N

RN (c) 6= ∅.
Here is a prototype of the main theorem:

(1.12) Proposition. If #R(c) = 1, then limN→∞RN (c) = R(c) in
the metric space of all non-empty bounded and closed subsets of V with the
Hausdorff metric; in particular , limN→∞ diamRN (c) = 0.

As usual, an element c ∈ V is called a regular value of the polynomial
Q+ id if ∀v ∈ R(c) : dv(Q+ id)(V ) = V .



96 K. Holly

(1.13) Theorem (Foia,s–Temam [4]). Assume that n ∈ {2, 3}. If c is a
regular value of Q+ id, then #R(c) <∞. The class of all regular values of
this polynomial is an open dense subset of V . (See also (2.35).)

Certainly the regular values of the polynomial

(1.14) WN 3 φ 7→ PNQ(φ) + φ ∈WN

have the same properties and even more: by the Sard theorem

(1.13)N the set of critical values of the polynomial (1.14) has measure
zero in WN .

We shall apply the following version of the implicit function theorem:

(1.15) Theorem. Consider a topological space X and Banach spaces Y ,
Z. Suppose that a map F : X × Y → Z vanishes at some point (x0, y0) and
∀y ∈ Y : F (·, y) is continuous. Moreover , suppose that for every (x, y) ∈
X × Y the derivative dII(x,y)F := dyF (x, ·) ∈ L(Y,Z) exists and the map
dIIF is continuous at (x0, y0). Finally , assume d(x0,y0)F : Y → Z is an
isomorphism. Then there exist neighbourhoods X ∈ topX, Y ∈ topY of
x0, y0 respectively , such that the relation F−1{0}∩ (X × Y) is a continuous
function X → Y. (See (2.24)*.)

We take X = N ∪ {∞}, Y = Z = V ,

(1.16) F (N, u) =
{
PNQ(u) + u− cN for N <∞,
Q(u) + u− c for N =∞,

x0 =∞ and y0 = v ∈ R(c), to obtain

(1.17) Corollary. If n ∈ {2, 3}, v ∈ R(c) and dvQ+ id is a monomor-
phism, then

(i) ∃Y ∈ topV : v ∈ Y and ∀!N ∈ N : # (Y ∩RN (c)) = 1,
(ii) limN→∞ ‖vN − v‖V = 0, where {vN} = Y ∩RN (c).

(∀!N ≡ for sufficiently large N .) The following main theorem reduces the
uniqueness problem to a finite-dimensional space:

(1.18) Theorem. If n ∈ {2, 3} and c is a regular value of the polynomial
Q+ id, then

(a) limN→∞RN (c) = R(c) in the sense of the Hausdorff metric (see
(1.12)),

(b) ∀!N : #RN (c) = #R(c) <∞.

Consequently, if n ∈ {2, 3}, c is a regular value and #RN (c) = 1 for an
infinite number of N , then also #R(c) = 1. Conversely:
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(1.19) R e m a r k. If n ∈ {2, 3} and {c ∈ V : #RN (c) > 1 for an infinite
number of N} is of second Baire category, then also {c ∈ V : #R(c) > 1} is
of second category; in particular, it is non-empty. (See (2.34)*.)

Commentary . In accordance with the argument prior to (1.11), the
Galerkin method only yields a subsequence of a sequence of solutions of
equations (1.7)N convergent to a solution of (1.7). Theorem (1.18) as-
sures that, for typical external forces, for every exact solution v there ex-
ists a whole sequence (vN ) of solutions of the Galerkin equations such that
limN→∞ ‖vN − v‖V = 0. This sequence is uniquely determined for suffi-
ciently large N . The “typical character” of external forces is here under-
stood in the sense of Theorem (1.13), i.e. the Riesz representations of these
forces form a set C which is dense and open in V . It seems improbable that
the external forces considered in practice are non-typical. In particular,
Theorem (1.18) assures that for any c ∈ C every exact solution v ∈ R(c) is
attainable by the Galerkin method.

Theorem (1.13) (originating from C. Foia,s and R. Temam) was an in-
spiration for many generalizations and related results. In [9] J. C. Saut
indicated their common source: the transversality theorem of Quinn. Saut
considered in [9] boundary value problems in which, generically with re-
spect to one of the relevant parameters, the set of solutions is finite. By
parameters one means here for instance coefficients of differential operators,
boundary data, the open set under consideration. The main aim of the
present paper is a reduction of the equation (1.7) to a finite-dimensional
space. Theorem (1.18) says that in order to obtain some information about
solutions of (1.7) it is sufficient to study (1.7)N . In [3] C. Foia,s and J. C. Saut
achieved this aim in a different manner. Using the spectral theory for the
linear Stokes operator they derived an analytic equation in Rm which is
completely equivalent to (1.7) (and even to an analogous equation corre-
sponding to non-homogeneous boundary data). The equation of Foia,s–Saut
is more complicated than (1.7)N , but it contains all information about (1.7).

Generalizations. We shall start from a modification of Theorem (1.15).
Let B be a filter base on a set X, i.e. ∅ 6= B ⊂ 2X , ∅ 6∈ B and ∀A,B ∈
B ∃C ∈ B: C ⊂ A ∩B.

We say that an element y0 of a topological space Y is a limit of a function
ψ : X → Y over the base B (and we write limx�B ψ(x) = y0 or {ψ(x) →
y0 as x � B}) iff ∀U ∈ F(y0) ∃B ∈ B: ψ(B) ⊂ U , where F(y0) denotes the
filter of all neighbourhoods of y0.

For fixed x0 ∈
⋂
B
(
:=
⋂
B∈B B

)
the family

B(x0) := {{x} : x0 6= x ∈ X} ∪
{ k⋂
i=1

Bi : k ∈ N , Bi ∈ B
}
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is a topological base in X, i.e.
⋃
B(x0) = X and

∀A,B ∈ B(x0) ∀x ∈ A ∩B ∃C ∈ B(x0) : x ∈ C ⊂ A ∩B .
Thus

topX :=
{⋃
A : A ⊂ B(x0)

}
is a topology in X. In this situation from Theorem (1.15) one can easily
derive the following more general

(1.20) Theorem. Let B be a filter base on a set X and let x0 ∈
⋂
B.

Consider Banach spaces Y , Z and fix a point y0 in an open subset H of
Y . Suppose that a map F : X × H → Z satisfies the following condi-
tions:

(i) F (x0, y0) = 0,

(ii) for every (x, y) ∈ X ×H the derivative dII(x,y)F ∈ L(Y,Z) exists,

(iii) dII(x0,y0)F : Y → Z is an isomorphism,

(iv) ∀y ∈ H : limx�B F (x, y) = F (x0, y),

(v) dII(x,y)F → dII(x0,y0)F in L(Y, Z) as (x, y) � B×F(y0), where
B×F(y0) := {B × U : B ∈ B, U ∈ F(y0)}.

Then there exist X ∈ B and Y ∈ F(y0) ∩ topH such that the relation
ψ := {F = 0} ∩ (X × Y) is a function X → Y and limx�B∩X ψ(x) = y0,
where B∩X := {B ∈ B : B ⊂ X}.

Above V was a concrete function space. Let now V denote an abstract
separable real Hilbert space with a scalar product (·|·) inducing the norm
| · |. The symbol S(V ) will stand for the class of all closed linear subspaces of
V . For a finite-dimensional subspace W ∈ S(V ) and for a positive number
δ we introduce the following subclass of S(V ):

BW,δ := {M ∈ S(V ) : W ∩ S ⊂M +B(δ)} ,
where B(δ) := {x ∈ V : |x| ≤ δ}, S := ∂B(1). Remark that

BW1+W2,min{δ1,δ2} ⊂ BW1,δ1 ∩BW2,δ2 .

Therefore the family

B := {BW,δ : W ∈ S(V ) ∩ {dim <∞}, δ > 0}
is a filter base on the set S(V ). Here is another definition of BW,δ:

(1.21) R e m a r k. Let M ∈ S(V ). Then M ∈ BW,δ ⇔ ∀x ∈ W :
|x− PM (x)| ≤ δ|x|, where PM is the orthogonal projection V →M .

Hence, putting W = Rw, we obtain the following obvious

(1.22) Corollary. ∀w ∈ V : limM�B PM (w) = w.
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Suppose that a sequence (Wk) ∈ (S(V ) ∩ {dim <∞})N is an inner ap-
proximation of the space V , i.e.

∀x ∈ V : lim
k→∞

|x− PWk
(x)| = 0 .

If e1, . . . , el is an orthonormal basis of a linear subspace W of V , then

∀k ∈ N ∀x ∈W ∩ S : |x− PWk
(x)| ≤

( l∑
i=1

|ei − PWk
(ei)|2

)1/2

.

This estimate together with Remark (1.21) gives

(1.23) Corollary. Let (δk) ∈ ]0,∞[N be a sequence convergent to zero.
Then

(a) for any W ∈ S(V ) ∩ {dim <∞} and any δ > 0

BWk,δk
⊂ BW,δ, ∀! k ∈ N ;

(b) if (Mk) ∈×∞k=1
BWk,δk

, then

∀x ∈ V : lim
k→∞

|x− PMk
(x)| = 0 .

Using once again Remark (1.21) and slightly modifying the proof of
Lemma (2.25) we obtain the following generalization of this lemma:

(1.24) Lemma. If an operator A ∈ EndV is completely continuous, then
PM ◦A→ A in EndV as M � B.

Consider a homogeneous polynomial Q : V → V of degree 2 with the
following properties:

(1.25) ∀x ∈ V : (Q(x)|x) = 0;

(1.26) if xk → x weakly in V as k →∞, then Q(xk)→ Q(x) weakly in V
as k →∞ (then by the Banach–Alaoglu theorem sup|x|≤1 |Q(x)| <
∞ and hence Q is continuous in the strong topology);

(1.27) ∀x ∈ V : the Fréchet differential dxQ is completely continuous.

Theorem (1.13) is true also in this abstract case (see the proof of (1.13)
in Section 2).

For any M ∈ S(V ), c ∈ V we set

RM (c) := {x ∈M : x+ PM (Q(x)− c) = 0} , R(c) := RV (c) .

Suppose that v ∈ V is a regular argument of the polynomial id +Q, i.e.
dv(id +Q) ∈ AutV , and set c := (id +Q)(v). We claim that the map

F : S(V )× V 3 (M,u) 7→ u+ PM (Q(u)− c) ∈ V

satisfies the assumptions of Theorem (1.20) for the pair (V, v).
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Of course F (V, v) = 0 and

(1.28) dII(M,u)F = id +PM ◦ duQ, ∀(M,u) ∈ S(V )× V .
Putting w = Q(u)− c in Corollary (1.22) we obtain

lim
M�B

F (M,u) = F (V, u), ∀u ∈ V .

It remains to verify (1.20)(v). Let ε > 0. The derivative Q′ : V → EndV is
continuous at v, thus

∃U ∈ F(v) ∀u ∈ U : |duQ− dvQ| ≤ 1
2ε .

In virtue of Lemma (1.24) we have

∃B ∈ B ∀M ∈ B : |dvQ− PM ◦ dvQ| ≤ 1
2ε .

Therefore for every (M,u) ∈ B × U ,

|(PM ◦ duQ)− dvQ| ≤ |(PM ◦ duQ)− (PM ◦ dvQ)|
+ |(PM ◦ dvQ)− dvQ|

≤ |PM ◦ (duQ− dvQ)|+ ε/2 ≤ ε/2 + ε/2 .

Hence, remembering (1.28), we get

dII(M,u)F → dII(V,v)F in EndV as (M,u) � B×F(v) ,

which completes the proof of our claim.
By Theorem (1.20) there exist X ∈ B and an open Y ∈ F(v) such

that the relation ψ := {F = 0} ∩ (X × Y) is a function X → Y and
limM�B∩X ψ(M) = v. Remark that

∀M ∈ X : {ψ(M)} = Y ∩RM (c) .

In this manner we have proved the following generalization of Corollary
(1.17):

(1.29) Corollary. Let v be a regular argument of the polynomial id +Q.
Then there are an element X of the base B and an open neighbourhood Y of
v such that

(i) ∀M ∈ X : #(Y ∩RM (c)) = 1, where c := (id +Q)(v),
(ii) limM�B∩X |vM − v| = 0, where {vM} = Y ∩RM (c).

Now one can modify the proof of (1.18) and—using Corollary (1.23) at
the stage (2.31)—obtain the following generalization of the main theorem:

(1.30) Theorem. Let c be a regular value of the polynomial id +Q. Then
for every ε > 0 there exist a finite-dimensional subspace W of V and a
positive number δ such that

(a) d(RM (c),R(c)) ≤ ε (where d denotes the Hausdorff metric),
(b) #RM (c) = #R(c) <∞,
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whenever M is a closed linear subspace of V and W ∩ S ⊂M +B(δ).

2. Proofs

(2.1) Lemma. Consider a set G ∈ top Rn and an exponent r ∈ ]1,∞[.
Suppose that a sequence (gk)∞k=1 is bounded in Lr(G) and pointwise con-
vergent to a function g. Then g ∈ Lr(G) and gk → g weakly in Lr(G) as
k →∞.

P r o o f. Assume that (gk) is weakly convergent to some function h in
Lr(G). Then the sequence fk := gk−h, k = 1, 2, . . . , is pointwise convergent
to f := g − h and weakly convergent to the zero function. For fixed N ∈ N
we set

ZN := {|x| < N} ∩ {f > 0} ∩
⋂
k>N

{fk ≥ 0} .

Then 0 = limk→∞
∫
ZN

fk dm = limk→∞ ‖fk‖L1(ZN ) and in virtue of the well
known Riesz–Fisher theorem, f = 0 almost everywhere in ZN . However,
ZN ⊂ {f 6= 0}, and therefore m(ZN ) = 0. Also m({f > 0}) = 0, because
{f > 0} =

⋃∞
N=1 ZN . Similarly one can show that m({f < 0}) = 0. Finally,

f = 0 as an element of Lr(G) and hence gk → g weakly in Lr(G).
Repeating the above argument for a subsequence and using the Banach–

Alaoglu theorem we prove that from every subsequence of (gk) one can
extract a subsequence weakly convergent to g. Hence we obtain the weak
convergence of the whole sequence (gk) to g.

P r o o f o f L e m m a (1.6). From the Sobolev imbedding theorem it
follows that

(2.2) the inclusion W 1,2
0 ↪→ L4 := L4(Ω,Rn) is continuous.

The well known Rellich theorem says that the inclusion W 1,2
0 ↪→ L2 is

completely continuous. Therefore the sequence (
k
u) is bounded in L4 and

limk→∞ ‖
k
u − u‖L2 = 0. Consequently, the sequence (

k
ui
k
u)∞k=1 is bounded

in L2 and its every subsequence has a subsequence pointwise convergent to
the vector field uiu almost everywhere in Ω(i = 1, . . . , n). Hence and by
Lemma (2.1) (for r = 2, G = Ω),

k
ui
k
u → uiu weakly in L2 as k → ∞. Let

φ ∈ V . Then

b(
k
u,

k
u, φ) = −

∑
i

(
k
ui
k
u|∂φ/∂xi)L2

k→∞−→ −
∑
i

(uiu|∂φ/∂xi)L2 = b(u, u, φ) ,

or in other words ((Q(
k
u)|φ)) k→∞−→ ((Q(u)|φ)).

Now, suppose that n ∈ {2, 3}. Then

(2.3) the inclusion W 1,2
0 ↪→ L6 is continuous.
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If R : V → V ′ denotes the canonical Riesz isomorphism, then for any w ∈ V ,
(R ◦Q)(w) = 1

ν b(w,w, ·) and

(2.4) (R ◦ duQ)(w) =
1
ν
b(u,w, ·) +

1
ν
b(w, u, ·) .

It is sufficient to show that the operator R ◦ duQ : V → V ′ is completely
continuous. Suppose

k
w → 0 weakly in V as k →∞. One has to prove that

R(duQ(
k
w))→ 0 in V ′. Again, by the Rellich theorem,

k
w → 0 in L2. At the

same time, by (2.3) the sequence (
k
w) is bounded in L6, thus

(2.5) ‖ kw‖L4 ≤ (‖ kw‖L2)1/4(‖ kw‖L6)3/4 → 0 as k →∞ .

Take φ ∈ V . Then (2.4) yields

(2.6)

(RduQ(
k
w))(φ) =− 1

ν

∫
Ω

∑
i

ui
∂φ

∂xi

k
w dm− 1

ν

∫
Ω

∑
i

k
wi

∂φ

∂xi
u dm ,

|(RduQ(
k
w))(φ)| ≤ 2

ν

∫
Ω

|u(x)| · | kw(x)| ·
(∑

i

∣∣∣∣ ∂φ∂xi (x)
∣∣∣∣2)1/2

dx

≤ 2
ν
‖u‖L4‖ kw‖L4‖φ‖V .

Since this holds for every φ, we get ‖RduQ(
k
w)‖V ′ ≤ (2/ν)‖u‖L4‖ kw‖L4 , and

now (2.5) finishes the proof.

P r o o f o f R e m a r k (1.8). Let v ∈ R(c). We multiply both sides of
(1.7) scalarly (in V ) by v to get

(2.7) ‖v‖2V = ((v|c)) (and consequently ‖v‖V ≤ ‖c‖V ) .

Hence ‖v−c/2‖2V = ‖c/2‖2V . It remains to prove that every sequence (vk) ∈
R(c)N has a subsequence convergent (in V ) to some solution of (1.7). By
(2.7), (vk) is bounded in V . From the Banach–Alaoglu theorem,

∃v ∈ V ∃ an infinite N ∈ N : vk → v weakly in V as N 3 k →∞ .

(1.6) shows that Q(vk) → Q(v) weakly in V as N 3 k → ∞. Therefore
v ∈ R(c). Again by (2.7), ‖vk‖2V = ((vk|c)) → ((v|c)) as N 3 k → ∞ and
finally

‖vk − v‖2V = ‖vk‖2V − 2((vk|v)) + ‖v‖2V(2.8)
→ ((v|c))− 2‖v‖2V + ‖v‖2V = 0 as N 3 k →∞ .

P r o o f o f L e m m a (1.10). We multiply both sides of (1.7)N (for
w = vN ) scalarly (in V ) by vN and by a given test field φ ∈ V respectively
to get

(2.7)N ‖vN‖2V = ((vN |c)) (and consequently ‖vN‖V ≤ ‖c‖V ) ,
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(2.9) ((Q(vN )|PN (φ))) + ((vN |φ)) = ((cN |φ)) .

By (1.6), letting N → ∞ in (2.9) yields ((Q(v)|φ)) + ((v|φ)) = ((c|φ)).
Since this is true for any φ, it follows that v ∈ R(c) and v satisfies (2.7).
The relations (2.7) and (2.7)N allow us to repeat the reasoning (2.8) to get
limN→∞ ‖vN − v‖V = 0.

P r o o f o f P r o p o s i t i o n (1.12). Let v denote the unique solution of
(1.7). Let (v1, v2, . . .) ∈×∞N=1

RN (c). Assume that

(2.10) vN 6→ v in V as N →∞ ,

or in other words

(2.11) ∃ε0 > 0 ∃ an infinite N ⊂ N ∀N ∈ N : ‖vN − v‖V ≥ ε0 .

In virtue of (2.7)N the sequence (vN ) is bounded and by the Banach–Alaoglu
theorem

∃ an infinite N1 ⊂ N ∃u ∈ V : vN → u weakly in V as N1 3 N →∞ .

By (1.10), u ∈ R(c), and ‖vN−u‖V → 0 asN1 3 N →∞. Since #R(c) = 1,
we get u = v, which is impossible in view of (2.11).

The hypothesis (2.10) has led to a contradiction. In this way we have
proved that

(2.12) ∀(v1, v2, . . .) ∈×
N

RN (c) : lim
N→∞

‖vN − v‖V = 0 .

Let ε > 0. By (2.12), ∀ !N : v ∈ RN (c) +B(ε), where B(ε) := {φ ∈ V :
‖φ‖V ≤ ε}. It remains to show that

(2.13) ∀!N : RN (c) ⊂ v +B(ε) ;

but this follows from (2.12).

P r o o f o f T h e o r e m (1.13). First we shall prove the openness of the
set O := V \S(K) = {c ∈ V : c is a regular value of S}, where S := Q+ id,
K := {u ∈ V : duS(V ) 6= V } (= the class of critical arguments of S). Sup-
pose, contrary to our claim, that

(2.14) ∃c ∈ V : c ∈ O \ intO .
Then c is a limit of some sequence (cl)∞l=1 ∈ S(K)N. In particular,
∀l ∈ N ∃vl ∈ K : S(vl) = cl. By (2.7) and the Banach–Alaoglu theorem

∃ an infinite N ⊂ N ∃v∗ ∈ V : vl → v∗ weakly in V as N 3 l→∞ .

By (1.6), Q(vl) → Q(v∗) weakly in V as N 3 l → ∞. It follows that 0 =
Q(vl)+vl−cl → Q(v∗)+v∗−c weakly in V as N 3 l→∞ and consequently
v∗ ∈ R(c) = S−1{c}, dv∗S(V ) = V (because c is a regular value of S).
Slightly modifying the reasoning (2.8) we find that ‖vl − v∗‖V → 0 as N 3
l→∞; thus dvl

S → dv∗S in EndV as N 3 l→∞, where
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(2.15) EndV is the Banach space of all continuous linear operators of V
into itself.

However, in virtue of (2.16), dv∗S ∈ AutV := {E ∈ EndV : kerE = 0,
E(V ) = V }, while ∀ l : dvl

S 6∈ AutV . This contradicts the openness of
AutV in EndV .

The hypothesis (2.14) has led to a contradiction. Thus we have showed
that O ∈ topV .

Let u ∈ V . From Lemma (1.6) it follows that the operator duQ (∈
EndV ) is completely continuous. Therefore

(2.16)
(duQ+ id)(V ) ∈ cotopV ,
dim ker(duQ+ id) = dim(V/(duQ+ id)(V )) <∞ ;

in particular,

duQ+ id is an injection ⇔ (duQ+ id)(V ) = V

(see Rudin [8]). From the Smale theorem (see Berger [1] or Maurin [6]) the
set O is dense in V .

Let c ∈ O. We shall prove that #R(c) < ∞. We already know that
R(c) is compact (see (1.8)), therefore it remains to show that it is discrete
as a topological space. Let v ∈ R(c). By (2.16), dvS ∈ AutV . Taking, in
Theorem (1.15), X = Y = Z = V , F (u,w) = S(w) − u, x0 = c, y0 = v we
find that there are neighbourhoods C, V of c, v respectively such that the
relation F−1{0} ∩ (C × V) is a function. Hence V ∩ R(c) = {v}. Therefore
v is an isolated element of R(c).

P r o o f o f T h e o r e m (1.15). We shall slightly modify the known
argument of Crandall–Rabinowitz–Nirenberg (see Crandall–Rabinowitz [2]
or Nirenberg [7], Chapter 2). The map

R : X × Y 3 (x, y) 7→ A(y)− F (x, y) ∈ Z , where A := dII(x0,y0)F ,

is continuous with respect to x; moreover,

(2.17) ∀(x, y) ∈ X × Y : dII(x,y)R = A− dII(x,y)F .

First we will prove that ∀ε > 0 ∃ an open neighbourhood Oε of x0

∃δ > 0:

(2.18) |R(x, y1)−R(x, y2)| ≤ ε|y1 − y2| ,
for any x ∈ Oε , y1, y2 ∈ B(y0, δ) ,

where | · | denotes the norm in Y or Z, andB(y0, δ) := {y ∈ Y : |y − y0| ≤ δ}.
Let ε > 0. Since dIIF is continuous at (x0, y0), there exist an open neigh-
bourhood Oε of x0 and δ > 0 such that

(2.19) ∀(x, y) ∈ Oε ×B(y0, δ) : |dII(x,y)F − d
II
(x0,y0)F | ≤ ε
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(this time | · | denotes the norm in L(Y, Z)). From the mean value theorem
(for R(x, ·), where x ∈ Oε is fixed) and from (2.17) we infer that Oε, δ
satisfy (2.18).

In particular, for ε = (2|A−1|)−1 there are appropriate Oε, δ.
The map g := A−1 ◦R is also continuous with respect to X. Moreover,

(2.20) ∀x ∈ Oε ∀y1, y2 ∈ B(y0, δ) : |g(x, y1)− g(x, y2)| ≤ 1
2 |y1 − y2| .

Since g(·, y0) is continuous at x0, there is a neighbourhood Ω ∈ topOε of
x0 such that

(2.21) ∀x ∈ Ω : |g(x, y0)− g(x0, y0)| ≤ 1
2δ .

The equality g(x0, y0) = y0 together with (2.20) and (2.21) gives

(2.22) g(x, y) ∈ B(y0, δ) , for any x ∈ Ω , y ∈ B(y0, δ) .

Next (2.20) and (2.22) allow us to apply the Banach contraction principle
in the following manner:

(2.23) ∀x ∈ Ω ∃!ψ(x) ∈ B(y0, δ) : g(x, ψ(x)) = ψ(x) .

Thus there is a function ψ : Ω → B(y0, δ) such that ∀x ∈ Ω : F (x, ψ(x)) = 0.
In brief: ψ ⊂ F−1{0} ∩ (Ω × B(y0, δ)). The inverse inclusion follows from
the uniqueness in (2.23). Hence ψ = F−1{0}∩ (Ω×B(y0, δ)); in particular,
(x0, y0) ∈ ψ.

Now we shall study the continuity of ψ. Remembering (2.20) we esti-
mate:
|ψ(x1)− ψ(x2)| = |g(x1, ψ(x1))− g(x2, ψ(x2))|

≤ |g(x1, ψ(x1))− g(x1, ψ(x2))|+ |g(x1, ψ(x2))− g(x2, ψ(x2))|
≤ 1

2 |ψ(x1)− ψ(x2)|+ |g(x1, ψ(x2))− g(x2, ψ(x2))| .
Hence

|ψ(x1)− ψ(x2)| ≤ 2|g(x1, ψ(x2))− g(x2, ψ(x2))|, ∀x1, x2 ∈ Ω .

If a ∈ Ω, b := ψ(a), then

∀x ∈ Ω : |ψ(x)− ψ(a)| ≤ 2|g(x, b)− g(a, b)| ,
and so ψ is continuous.

We put Y = intB(y0, δ), X = ψ−1(Y).

(2.24)* D i g r e s s i o n . Theorem (1.15) also holds for a map F defined
on X × H, where H ∈ topY ; in the assumptions and in the conclusion
one should substitute H for Y . The above proof works without changes,
one should only diminish the radius δ in (2.18) so as to have additionally
B(y0, δ) ⊂ H.

(2.25) Lemma. Let A ∈ EndV (see (2.15)). Then A is completely con-
tinuous ⇔ PN ◦A→ A in EndV as N →∞. (See (2.26)*.)
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P r o o f. ⇐ Each PN ◦A is completely continuous as a finite-dimensional
operator. All completely continuous operators V → V form a closed set in
EndV .
⇒ Let ε > 0. The ball B := {u ∈ V : ‖u‖V ≤ 1} is bounded, therefore

its image A(B) is conditionally compact, and so ∃y1, . . . , ys ∈ V : A(B) ⊂⋃s
i=1B(yi, ε), where as usual B(yi, ε) := {y ∈ V : ‖y − yi‖V ≤ ε}. Let

u ∈ B. Then ∃j ∈ {1, . . . , s} : A(u) ∈ B(yj , ε). We estimate:

‖(PN ◦A)(u)−A(u)‖V
≤ ‖PN (A(u))− PN (yj)‖V + ‖PN (yj)− yj‖V + ‖yj −A(u)‖V

≤ 2ε+
s∑
i=1

‖PN (yi)− yi‖V .

Hence ‖(PN ◦ A) − A‖EndV ≤ 2ε +
∑s
i=1 ‖PN (yi) − yi‖V for every N , and

therefore limN→∞‖(PN ◦A)−A‖EndV ≤ 2ε (∀ε > 0).

(2.26)* D i g r e s s i o n . Certainly Lemma (2.25) also holds for an ab-
stract Hilbert space V , whenever a sequence (PN ) of finite-dimensional pro-
jections is convergent pointwise to idV .

P r o o f o f C o r o l l a r y (1.17). Assume for a moment that

(2.27) the map (1.16) satisfies the assumptions of Theorem (1.15) with
respect to the point (x0, y0) = (∞, v).

Then there are suitable neighbourhoods X , Y. It is easy to verify that
∀N ∈ X \{∞} : Y ∩RN (c) = {ψ(N)}, where ψ := F−1{0}∩ (X ×Y). This
gives (i). If (∞, v) ∈ F−1{0} ∩ (X × Y) then ψ(∞) = v, and so (ii) results
from the continuity of ψ at ∞.

Thus it is sufficient to verify (2.27). It is clear that ∀(N, u) ∈ N × V :
F (·, u) is continuous and

dII(N,u)F =
{

(PN ◦ duQ) + id for N <∞ ,
duQ+ id for N =∞ .

(Here N := N ∪ {∞}.) In particular, dII(∞,v)F = dvQ + id; this is an auto-
morphism by (1.6) and (2.16). It remains to verify that

(2.28) dIIF : N× V → EndV is continuous at (∞, v) .

Let E be a neighbourhood of dII(∞,v)F in EndV . One has to prove that
(dIIF )−1(E) is a neighbourhood of (∞, v). E − id is a neighbourhood of
dvQ, i.e. ∃ε > 0 : B(dvQ, ε) := {E ∈ EndV : ‖E−dvQ‖EndV ≤ ε} ⊂ E− id.
The derivative Q′ : V 3 u 7→ duQ ∈ EndV is continuous, therefore ∃δ > 0 :
Q′(B(v, δ)) ⊂ B(dvQ, 1

2ε). Lemma (2.25) gives

∃N(ε) ∀N ≥ N(ε) : ‖(PN ◦ dvQ)− dvQ‖EndV ≤ 1
2ε .
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We shall prove that just

(2.29) {N(ε), N(ε) + 1, . . . ,∞}×B(v, δ) ⊂ (dIIF )−1(E) .

Consider an element (N, u) of the left side of (2.29). If N = ∞, then of
course (N, u) ∈ (dIIF )−1(E). Suppose that N < ∞. Then dII(N,u)F =
(PN ◦ duQ) + id, ‖(PN ◦ dvQ)− dvQ‖EndV ≤ 1

2ε, ‖duQ− dvQ‖EndV ≤ 1
2ε.

The last inequality implies that

‖(PN ◦ duQ)− (PN ◦ dvQ)‖EndV ≤ 1
2ε ,

and finally

‖(PN ◦ duQ)− dvQ‖EndV

≤ ‖(PN ◦ duQ)− (PN ◦ dvQ)‖EndV + ‖(PN ◦ dvQ)− dvQ‖EndV

≤ 1
2ε+ 1

2ε .

Hence PN ◦ dvQ ∈ B(dvQ, ε) (⊂ E − id) and thus (dIIF )(N, u) ∈ E .

P r o o f o f T h e o r e m (1.18). In the present proof the right side c is
fixed, thus we shall write R, RN in place of R(c), RN (c) respectively. By
(1.13), #R <∞. Let v ∈ R. By (1.6) and (2.16), dvQ+ id is an automor-
phism of V . Now (1.17) yields that ∃N(v) ∈ N ∃ an open neighbourhood
Y(v) of v:

(i) #(Y(v) ∩RN ) = 1 , ∀N > N(v),
(ii) limN→∞ ‖vN − v‖V = 0, where {vN} = Y(v) ∩RN .

If N > N∗ := maxv∈RN(v), then ∀v ∈ R : #(Y(v) ∩RN ) = 1.
First we shall establish the assertion (b) of Theorem (1.18). There exists

δ > 0 so small that the balls {B(v, δ) : v ∈ R} are pairwise disjoint and
∀v ∈ R : B(v, δ) ⊂ Y(v). Since limN→∞maxv∈R ‖vN − v‖V = 0,

∃N(δ) ∈ N : N(δ) > N∗ and max
v∈R
‖vN − v‖V < δ, ∀N > N(δ) .

If N > N(δ), then the function R 3 v 7→ vN ∈ RN is an injection. In
particular,

(2.30) ∀N > N(δ) : #R ≤ #RN .

Assume, contrary to our claim, that

(2.31) the set N := {N > N(δ) : #R < #RN} is infinite .

Let N ∈ N . The subset {vN : v ∈ R}(⊂ RN ) has exactly #R elements,
therefore it is not the whole RN . We select an aN ∈ RN \ {vN : v ∈ R}. It
is clear that aN 6∈

⋃
v∈R Y(v) ∈ topV . By (2.7)N , the sequence (aN )N∈N

is bounded, thus in virtue of the Banach–Alaoglu theorem

∃a ∈ V ∃ an infinite N1 ⊂ N : aN → a weakly in V as N1 3 N →∞ .
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By (1.10), a ∈ R and aN → a in V as N1 3 N → ∞. This leads to a
contradiction: ⋃

v∈R
Y(v) 63 a ∈ R ⊂

⋃
v∈R
Y(v) .

Therefore N is finite (it may be empty; then supN = −∞). From this fact
together with (2.30) we obtain

∀N > max{N(δ), supN} : #R = #RN .
Now we pass to the proof of the statement (a). Let ε > 0. Then

∃N > max{N(δ), supN} ∀N > N : max
v∈R
‖vN − v‖V ≤ ε .

Let N > N . It is clear that

(2.32) R ⊂ RN +B(ε) ,

where B(ε) := {ψ ∈ V : ‖ψ‖V ≤ ε}. We next show that

(2.33) RN ⊂ R+B(ε) .

Let u ∈ RN (= {vN : v ∈ R}), i.e. u = vN for some v ∈ R. Therefore
‖u− v‖V = ‖vN − v‖V ≤ ε. This gives u ∈ v +B(ε) ⊂ R+B(ε).

The inclusions (2.32), (2.33) mean that the Hausdorff distance between
RN and R is not greater than ε

(
∀N > N

)
.

P r o o f o f R e m a r k (1.19). By assumption, the set

C := {c ∈ V : #RN (c) > 1 for an infinite number of N}
is of second category. Next, the set O of all regular values of the polynomial
Q+ id is open and dense in V (see (1.13)). The complement of O is of first
category and C ⊂ (C ∩O) ∪ (V \ O), thus C ∩O is of second category. By
(1.18),

C ∩ O ⊂ {c ∈ V : #R(c) > 1} ,
which yields the assertion.

(2.34)* D i g r e s s i o n . Under the assumptions of Remark (1.19), we
have int{c ∈ V : #R(c) > 1} 6= ∅, since
(2.35) the function {regular values of Q+id} 3 c 7→ #R(c) ∈ N is locally

constant.
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Reçu par la Rédaction le 18.1.1989
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