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On minimal periods of functional-differential
equations and difference inclusions

by M. MEDVED (Bratislava)

Abstract. We prove several results on lower bounds for the periods of periodic
solutions of some classes of functional-differential equations in Hilbert and Banach spaces
and difference inclusions in Hilbert spaces.

Introduction. In this paper we give a simple method for finding lower
bounds for the periods of periodic solutions of some classes of functional-
differential equations and difference inclusions in Hilbert spaces. First re-
sults on lower bounds of differential and functional-differential equations
were proved by J. A. Yorke [8], A. Lasota and J. A. Yorke [4] and T. Y. Li
[5]. Recently W. Slomczynski [7] gave a generalization of Theorem 4 of
Lasota and Yorke [4] to delay differential equations of the form

(1) i(t) = F(z(t), z(1(1)),1) -
He also studied this problem for difference equations of the form
(2) Tp41 — Tn = f(xnaxn—hn) .
His method differs from that used in the above mentioned papers. The
problem of the existence of a lower bound for the periods of periodic solutions
of difference equations has also been studied by S. Busenberg, M. Martelli
and D. Fisher (see [1]-[3]).

We give a new approach to the problem of finding a lower bound for

the periods of periodic solutions of functional-differential equations which
we apply to equations of the form

(3) #(t) = fr(x(m(®)) + -+ fn (2T (1))) -

If we take the equation (3) with 7 (t) = ¢, fs,..., fmn = 0 we obtain an
equation of the form (1). Our result concerning the latter equation is weaker
than that proved in [7]. Probably it is possible to prove a stronger result
concerning (3) with several delays by another method; however, our method
is simple and we shall show that it is also suitable for a class of difference
inclusions.
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We also prove some results on functional-differential equations by the
method developed in [1]-[3].

1. Bounds for periods of functional-differential equations

THEOREM 1. Let H be a Hilbert space, let f; : H — H,i=1,...,m,
be Lipschitz mappings with Lipschitz constant L > 0 and let 7; : R — R,

1=1,...,m, be continuously differentiable, strictly monotone functions. If
the equation (3) has a nonconstant, T-periodic solution then
(4) T>2/KLm,

where K = K1Ko, K1 = max{|7;(t)| 7' : 0 <t < T, 1 <i<m}, Ky =
max{|7(s)|: 0<s<T, 1<i<m}.

Proof. Let ¢(t) be a T-periodic, nonconstant solution of (3) and d =
max{|lo(t) —p(s)|| : 0 < t, s < T}, where ||u|| = (u,u)'/?, (-,-) is the scalar
product in H. Then there exist xg,yo € v := {¢(t) : 0 <t < T} such that
d = ||zo — yo||. Obviously, there are t1,t2 € [0,7] such that ¢(t1) = o,
©(ta) = yo (we assume t; < t3), and so

d* = (yo — Zo, Yo — LUO) = (yo — Zo, @(tz) - 90(751))
to

= (o =0, [ () + -+ Fnlp(Tm())))dls)-

t1

Thus

(5) => f — 0, fi(p(7:(5))))ds .

=1 ty
Since 7; € C! and it is strictly monotone, we have
to 7i(t2)
[ o — w0, i) ds = [ (yo — o, Filep(r) (il (1))~
t1 Ti(t1)
Ti(tg)
< max(yo — @0, fi(2)| [ (R(rM @) dr
Tey T~(t1)

< max(yo — 2o, fi(z)) - e (15| 7I(t2) - (e

< max(yo — 2o, £:(w) - masx (14(0)]~") - max [ (s)t2 — t1].

Thus we have proved that

(6) d? §KTZIQ{1§§<(y0—DCO7fi(3?)),
=1
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where K is defined as in the theorem.

Let maxge~ (Yo — o, fi(x)) = (yo — o, fi(x;)) for some z; € 7. Then we
can write (6) in the form

(7) d* < KTZ(?JO — o, fi(zi)) -

=1

If we change the roles of xy and yo we obtain

(8) d® < KT (20 — o, fi(y:))

i=1

for some y; € v. From (7), (8) we get

2d° < KT(yo — w0, y_(filw:) = fi(y:))) < KT|lyo — woll Y Ll — yill
=1 i=1

< KLTml||yo — x0]|> = KLTmd*.
This inequality immediately yields (4).

Now consider the equation

(9) d’;f;(f) = F(z(r1(?)),...,z(tm(t))), z€ B,

where B is a Banach space. As a direct consequence of [3, Lemma 3.1] we
obtain

LEMMA. Let B be a Banach space and let y : R — B be a T-periodic
mapping of class C™~* with ||y™ (t)|| integrable. Then

[ [ Iy = ys)l| dsdt < (@/6)" [ [ ly™t) -y (s)]] dsdt
0 0 0 0

(yt" = dy/dt™).

THEOREM 2. Let B be a Banach space, let F: B X ... x B — B satisfy
the Lipschitz condition

(10) IF (@1, wm) = Fyn,sym)l LY s — ill
i=1

for all z;,y; € B, and let 7, : R - R, i = 1,...,m, be continuously differ-
entiable, strictly monotone functions with |7;(t)| < 1 for all t € R. If the
equation (9) has a nonconstant, T-periodic solution x(t) then

(11) T > 6(Lm)~ /™.
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Proof. The Lemma and (10) yield
T T
f f () — x(s)| dsdt < L(T/6)" > [ [ lla(ri(t)) — x(7i(s))|| ds dt
=1 0 0
m 7 (T) 7:(T)

L/6)"y [ [ llew) () dpdg

1= 17'1(0) 7:(0)

3

< mL(T/6)" f f lz(p) — 2(q)|| dpdq .

This implies that mL(T/6)™ > 1 and (1 ) follows.

Now we use the above lemma to solve the problem of finding a lower
estimate for the periods of periodic solutions of an equation of the form
(12) 2(t) = G(x(t), 2°(t), ..., z™ (1)),
where G : R™ — R, z: R — R, and 2%(¢) = (zo...ox)(t) is the ith iteration
of z.

THEOREM 3. Let G : R™ — R satisfy the Lipschitz condition
(13) G(@1, - m) = Gy, ym)| S LY |2 — il

for all z;,y; € R and suppose there is a constant M > 0 such that |G(u)| <
M for all w € R™. If the equation (12) has a nonconstant, T-periodic
solution x(t) then

T>6(M™ "' —1)(M-1)L)""  ifM+#1,

(14) T >6(Lm)" if M =1.

We shall formulate and prove a more general theorem concerning
functional-differential equations of the form appearing in ecological mod-
els (see e.g. [6]).

Consider the functional-differential equation
(15) i(t) = g(J* (Grox)(t), ... J" (G o 2)(1)),
where g : RF1+1 x .. x RF»+l . B B is a Banach space, G; : B — R,
G, o x is the composition of G; and = (i = 1,...,m) and (G; ox)7 is the jth
iteration of G; oz, JPy(t) := (y(t),y2(t),...,yP(t)), y'(¢) is the ith iteration
of y(t).

THEOREM 4. Let B be a Banach space, X = RF1+L x| x RF»t1 and
let g: X — B be a mapping satisfying the Lipschitz condition

(16) l9(z) —g(W)llp < Lllx =yl forallz,yeX,
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where L >0, || - || is the norm on X, || - || is the norm on B and there is a
constant M > 0 such that ||g(x)||g < M forallz € X. Let G; : B— R, i =
1,...,m, be continuously differentiable functions with |DG;(u)v| < M;|v||
for all w,v € B, i = 1,...,m, where DG;(u) € L(B,R) is the Fréchet
deriative of G; at u and M; > 0. If the equation (15) has a nonconstant,
T'-periodic solution x(t) then

(17) T >6(LS)™"
where

S = Lzm: M;(M;M — D][(M;M)* — 1171 if M;M # 1,

=1

S:ZMikzi if MM =1.

Proof. The Lemma, the condition (16), the boundedness of g and DG;
and the mean value theorem for mappings of Banach spaces imply

T T
[ [ le(t) = (s)lls dtds < L(T/6) f f||w )|l dt ds
0o 0

T
L(T/6) f f [[(Grox)(t) — (Grox)(s)|+ ...
0 0

+(Groa)(t) — (GlowWW )+
+ (G ox)(t) — (Gmox)(s)|+ ...
+ (G 0 2)™ () = (G 0 )" (5)|] dt ds

T T
L(T/6)S [ [ lla(t) — x(s)||p dtds.
0 0
From this inequality we obtain (17).

2. Bounds for periods of difference inclusions. Consider the
difference inclusion
(18) ziv1 — 2z € F(zi),
where F' : U — H¢, U C H, H is a Hilbert space and H¢ is the set of all
compact subsets of H. We shall use the Hausdorff metric on H¢ defined as
follows:

h(A, B) = max{r(A,B),r(B,A)}, A,Be€H®,

where (A, B) = max,ca d(z, B), d(z,B) = inf{||lx — y|| : y € B}, ||u|| =
(u,u)'/?, v € H.
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THEOREM 5. Let H be a Hilbert space, U C H, and let F : U — H€ be
a multivalued mapping satisfying the following hypotheses:
(H1) Ifz,ye U, x+#y and F(x) N F(y) # 0 then diam(F(x) N F(y)) <
h(F(x), F(y)), where diam X is the diameter of the set X.
(H2)  h(F(z),F(y)) < L||lx—y|| for allz,y € U, where L > 0 is a constant.
Let v = {xo,x1,...,on_1} be any N-periodic orbit of the inclusion (18)
satisfying

(H3) max diam F'(z) < 3L diam~.
zEY

Then

(19) N >2/3L.

Proof. Let d = diam~. Then there exist 7,5 € {0,1,..., N — 1} such
that d = ||z; — z;||. Assume j > 4. Then
(20) %= (x5 — @i, (25 —2jo1) + (o1 = Tjm2) + oo A (T — 30) -
The mapping F' is compact valued and therefore there exist u; € v and
y1 € F(uy) such that

21 RZY) = ) — Ly — ) .
(21) (zj — xi01) zg%gl)(% Ti, 2) = max yrenlgé)(fcy i, Y)

Since x41 —xy € F(zy) for k =14,i+1,...,j —1 we obtain from (20), (21)

22 d*> < max T —T;Yy)+ ...+ max (r;, — x;,
(22) yeF(xj,l)( j Y) yeF(xi)( J Y)

< N(xj —x4,91) -

Obviously
i—1 N—2

(23) Ti— T = Z (Tmt1 — Tm) + Z (Tn41 — ZTn) +To — TN—1 -
m=0 n=j

There exist us € v and ya € F(uz) such that

(24) (X —xj,y2) = Zen;z(xii)(xi —xj,2) = g1§$yglgé)(xi —Z5,Y).

From (23), (24) we obtain
i—1 N-2
25 d? < max (x; —x;,y)+ max (r; —x,,
(25) m:()yEF(wm)( i Y) —~ yGF(a:n)( 3> Y)
+ max (z; —x,,
yeF(xN_l)( J Y)
< N(x; — 90;‘73/2) = N(l’j - Ti, —Y2) -
The inequalities (22), (25) imply
(26) 2d* < Nlaj — zillllyr — yell.
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We shall prove that
(27) ly1 = all < 3Ll — i

If F(u;) = F(ug) then ||y; — y2|| < diam F(up). By the hypothesis
(H3) we have diam F'(u;) < 3Ldiam~y = 3L|jz; — x;||, i.e. (27) holds.
Let F(uy) # F(uz2). There exist 21,29 € F(u1), v1,v2 € F(ug) such that
h(F(u1), F(u2)) = max{dy,ds}, where di = ||z1 — v1]| = r(F(uz2), F(u1)),
dy = [|z2 — va| = r(F(u1), F(u2)).

First we assume that F(u;) N F(uz) = (). Then obviously

(28) lyr — o1l <[]z — w1l = dy < h(F(u1), F(u2)),

(29) ly2 — 22| < [lz2 — val| = d2 < h(F(u1), F(u2)),

(30) 1 = 22f] < do < h(F(u1), F(uz)).

From these inequalities and the hypothesis (H2) we obtain

(L) llyr — w2l < 3h(F(u1), F(uz)) < 3L[Jur — us|| < 3L[lxj — x| -

Let now F(u1) N F(ug) # 0. If y1,y2 € F(u1) N F(u2) then from (H1),
(H2) it follows that
91 = yall < diam(F(u1) N0 F(uz)) < h(F(u1), F(uz))
< 3Lljuy — ual| < 3Lljz; — il
If y1 € Fui) \ F(u2) and ya € F(uz) \ F(u1) then (28) and (29) obviously
hold and (H1) implies that
|lvr — 2z2|| < diam(F(u1) N F(uz)) < h(F(u1), F(usz)).
Therefore (31), and hence (27) holds. If y;3 € F(u1) \ F(u2) and yy €
F(u1) N F(uz) then (28) obviously holds and (H1) yields
ly2 = zol| < diam(F (ur) N F(ug)) < h(F(u1), F(uz)),
|lv1 — 2z2|| < diam(F(u1) N F(uz)) < h(F(u1), Fusz)).
Therefore (27) again holds. The inequalities (26), (27) yield
2d*> < 3LN||z; — z;||* = 3LNd*
and this implies (19).

EXAMPLE 1. Let f : [a,b] — R be a countinuously differentiable function,
a<b,ce(ab), A=[0,c—0]U[c+6,b], U= AU{c}. Define a multivalued
mapping F : U — R¢ (R€ is the set of all compact subsets of R) as follows:
F(z) = {f(x) — 2z} if v € A and F(c) = I. := [a — €,a], where a =
f(e)—cand 0 < e. If z,y € A then the mean value theorem implies that
hF(x), F(y)) = [ f(z)=2—(f(y)—y)| < plz—yl, where p = maxc |f'(z)[+
1. If x € A then there exists u € I. such that h(F(z), F(c)) = |f(z) —z —u].
Define k(z,y) = |(f(z) — 2 — u)(x — ¢) 7| for (x,y) € A x I.. Then k has a
maximum ¢ > 0 and therefore | f(z) — z — u| < gz — ¢| for all € A. Thus
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we have proved that h(F(z), F(c)) < glx—c| for all z € A. If L = max (p, q)
then h(F(z), F(y)) < Lz —y| for all x,y € U, i.e. F satisfies (H2). Since F'
is single-valued on A the hypothesis (H1) is trivially satisfied. By Theorem 5
if v is an N-periodic trajectory of (18) and diam~ > ¢/3L then N > 2/3L.
We remark that if z; # ¢ and z; & (¢ — d,¢+ 0) then x;11 — x; € F(x;) if
and only if x;11 = f(z;).

EXAMPLE 2. Let f : [a,b] — R be a continuously differentiable function,
a < b, cr,ea € (a,0), c1 < e2, f(a1) —c1 = f(e2) =2, A = [a,¢1 — 6]
U[C1+5,CQ—(5]U[CQ+(5,b], 0<d<ec,d<cg—c,0 <b—co, U=
AU{c1} U{ca}. Define F : U — R by F(z) = {f(z) — a} if z € A,
F(eo)=1.=[—¢,0], F(c1) = Isc = [ —3¢,0], B = f(c1) — c1. As above
one can show that (H2) is satisfied, where L = max,c 4 |f'(x)|+1. Obviously,
ifeeU,x#ci,c, Flx)NF(¢;) # 0 (i = 1,2) then diam(F ()N F(¢;)) =0
and diam(F'(c1) N F(c2)) =€ < h(F(c1), F(c2)) = 2¢, 1. e. (H1) is satisfied.
Theorem 5 implies that if v is an N-periodic trajectory and ¢ < L diam~y
then N > 2/3L.
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