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Weil’s formulae and multiplicity

by Maria Frontczak and Andrzej Miodek ( Lódź)

Abstract. The integral representation for the multiplicity of an isolated zero of a
holomorphic mapping f : (Cn, 0)→ (Cn, 0) by means of Weil’s formulae is obtained.

Introduction. Let f = (f1, . . . , fn) : G→ Cn, n > 1, be a holomorphic
mapping defined on some neighbourhood G of 0 ∈ Cn, having an isolated
zero at this point. Let µc(f) be the covering multiplicity of f at the point
0 (see e.g. [9], Ch. V, §2, Sec. 1). Then there exist arbitrarily small neigh-
bourhoods Ω ⊂ G and ∆ of 0 ∈ Cn such that, for almost all w ∈ ∆ (i.e.
outside some proper analytic set), the number #(f−1(w)∩Ω) of pre-images
of w by f lying in Ω is equal to µc(f) (cf. [9], Ch. V, §2, Proposition).

The integral representation of the above multiplicity is well known and
often used (see [6], Ch. V, §1, 2, [10], Ch. IV §18, Sec. 55, (6)). The
proofs of this representation are based on the Stokes theorem. But there
are some difficulties connected with the choice of a suitable version of this
theorem, caused by the occurrence of singular points and by the necessity of
integrating over noncompact manifolds. These difficulties are usually passed
over in silence.

In this paper we get the integral representation of the multiplicity in full
detail. We overcome the difficulties mentioned by applying some properties
of totally real manifolds (see §2) and Weil’s formula obtained in [5] with the
use of a multivalued mapping and without using the Stokes theorem (see
§3, (1), (3)).

1. Notations and basic notions. We adopt the definitions of real and
complex manifolds in Rn and Cn, respectively, from [11], App. II, Def. 4D.
Moreover, a real manifold will always be a manifold of class C∞. We assume
that such a manifold is equipped with the induced metric.

Let N ⊂ Cn be a k-dimensional complex manifold. Then N is a real
manifold of dimension 2k. Moreover, for any p ∈ N , the tangent space to
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N at p when N is treated as a real manifold is identical with the tangent
space to N at p when N is treated as a complex manifold (cf. [11], App. II,
Lemma 5C).

On a real manifold M in Rm or Cn we shall consider the k-dimensional
Hausdorff measure Hk, k ≤ dimM (cf. [3], Sec. 2.10.2) and the Lebesgue
measure L. We shall use the following simple property of these measures
(cf. [3], Sec. 2.10.2, [1], App., Sec. 6.1).

Proposition 1. If k < n = dimM , then Hn(E) = L(E) = 0 for any
set E ⊂M such that Hk(E) <∞.

2. Totally real manifolds in Cn. Let L ⊂ Cn be a linear subspace
over R. If L ∩ iL = {0}, then L is called a totally real subspace of Cn (cf.
[1], App., Sec. 2.4).

Let M ⊂ Cn be a real manifold. We call M totally real if, for any
p ∈ M , the tangent space TpM is a totally real subspace of Cn (cf. [1],
App., Sec. 2.4).

Proposition 2. Let M ⊂ Cn be an n-dimensional totally real manifold
and N ⊂ Cn a complex manifold of complex dimension k < n. Then M ∩N
is a border set in M .

P r o o f. Suppose to the contrary that there exists U open in M such
that U ⊂ M ∩ N . Then U is an n-dimensional real manifold, N is a 2k-
dimensional real manifold, and TpU ⊂ TpN for any p ∈ U .

Obviously, U is totally real. Hence if v1, . . . , vn form a basis of TpU ,
then they are also linearly independent over C. Indeed, if vn = c1v1 +
. . . + cn−1vn−1 for some cj = aj + ibj , 1 ≤ j ≤ n − 1, then vn = (a1v1 +
. . . + an−1vn−1) + i(b1v1 + . . . + bn−1vn−1), so i(b1v1 + . . . + bn−1vn−1) =
vn − (a1v1 + . . . + an−1vn−1) ∈ TpU , which is impossible because b1v1 +
. . .+ bn−1vn−1 ∈ TpU . This implies that v1, . . . , vn, iv1, . . . , ivn are linearly
independent over R. Since, clearly, they belong to TpN , the real dimension
of TpN is at least 2n. So 2k ≥ 2n , contrary to our assumption. This ends
the proof.

Now, we consider the intersection of an analytic set and a totally real
manifold.

Let V be an analytic set in some open set U ⊂ Cn. Assume that dimV =
r < n. Then we may represent V as the disjoint union

V = Nr ∪ . . . ∪N0.

where each Nk is either void or a complex manifold of dimension k (cf. [11],
Ch. III, Th. 6G).

Moreover, if Nk 6= ∅, then the closure of Nk in U is a locally finite union
of irreducible analytic subsets of V whose regular points form Nk (cf. [11],
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Ch. III, Th. 1G). Hence N
k ∩U is an analytic set in U of pure dimension k

(cf. [11], Ch. II, Lemma 1I).
Next, let M ⊂ U be a compact totally real manifold of dimension n.

Proposition 3. Under the above assumptions, V ∩M is nowhere dense
in M .

P r o o f. Since V is closed in U (cf. [11], Ch. II, §1, Prop. (c)) and M ⊂ U
is compact, V ∩M is closed in M . By the previous considerations, V ∩M =
(Nr∪Nr−1∪ . . .∪N0)∩M = (Nr∩M)∪ ((Nr−1∪ . . .∪N0)∩M). In virtue
of Proposition 2, Nr ∩M is border in M . The set Nr−1∪ . . .∪N0 = V \Nr

is analytic in U (cf. [11], Ch. III, Th. 6F). Therefore (Nr−1 ∪ . . .∪N0)∩M
is closed. As before, it is the union of a border set, Nr−1 ∩M , and a closed
set, (Nr−2 ∪ . . . ∪ N0) ∩M . Repeating this argument, we conclude that
(N1 ∪N0) ∩M is closed and it is the union of the border set N1 ∩M and
the set N0 ∩ M which is nowhere dense in M . Thus (N1 ∪ N0) ∩ M is
border in M (cf. [2], Ch. I, Probl. 1.3.E) and, being closed, it is nowhere
dense in M . Returning to the sets considered at the beginning, we find that
(Nr−1 ∪ . . .∪N0)∩M is nowhere dense in M . Hence V ∩M is a border set
in M , and, being closed, it is nowhere dense. This completes the proof.

Assume additionally that M is a real analytic manifold. Then V ∩M is
a real analytic subset of M . By Proposition 3, V ∩M is nowhere dense in
M . Therefore we immediately see that dim(V ∩M) = k < n.

Proposition 4. With the above assumptions, Hn(V ∩M) = 0.

P r o o f. Since M is compact, therefore in virtue of Lelong’s theorem
(cf. [8], §18, Prop. 2), Hk(V ∩M) < ∞. Now Proposition 1 gives Hn(V ∩
M) = 0. This concludes the proof.

3. Integral representation of the multiplicity. Let f=(f1, . . . , fn) :
(Cn, 0)→ (Cn, 0), where n > 1, be a holomorphic mapping with an isolated
zero at the point 0. Then there exists a neighbourhood G of 0 ∈ Cn such
that the restriction of f to G is proper (cf. [9], Ch. IV, §1, Prop. 1; [7],
Ch. IV, §2, Prop. 4) and open (cf. [9], Ch. V, §2, Lemma). Assume that
f−1(0) ∩G = {0}.

Next, let Dj be a disk of the form {ζj ∈ C : |ζj | < εj}, and Γj the
positively oriented boundary of Dj , i.e. Γj is the curve with parametric
representation γj(tj) = εje

2πitj , tj ∈ [0, 1], 1 ≤ j ≤ n.
Define D = D1× . . .×Dn and δ = Γ1× . . .×Γn . Notice that D ⊂ f(G)

for sufficiently small numbers εj , 1 ≤ j ≤ n. Since f is a proper mapping,
f−1(D) is a compact subset of G.

Define Π = {z ∈ G : fj(z) ∈ Dj , 1 ≤ j ≤ n}. Observe that 0 ∈ Π.
As f(Π) = D, Π is a compact subset of G. Without loss of generality we
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may assume that Π is connected. Then Π is a canonical Weil domain, and
σ = {z ∈ G : fj(z) ∈ Γj , 1 ≤ j ≤ n} is its skeleton (cf. [4], §1).

Let Jf be the Jacobian of f , and let G0 and σ0 denote the zero sets of
Jf lying in G and σ, respectively. Since f(G) is open, Jf does not vanish
identically. Since f is proper, f(G0) is an analytic set in f(G) (cf. [9], Ch. V,
§5, Remmert’s th.). Moreover, dim f(G0) < n.

Furthermore, let δ′ be the set of points ζ = (ζ1, . . . , ζn) ∈ δ such that
ζj = γj(0) for some j, 1 ≤ j ≤ n. Put δ0 = f(σ0), σ∗0 = f−1(δ0), σ′ =
f−1(δ′) and σ̃ = σ − (σ∗0 ∪ σ′). Finally, let γ(t) = (γ1(t1), . . . , γn(tn)) for
t = (t1, . . . , tn) ∈ [0, 1]n.

Lemma 1. The set δ is an n-dimensional totally real manifold.

P r o o f. Consider δ as a subset of R2n. Define gj(x1, y1, . . . , xn, yn) =
ε2
j − x2

j − y2
j , 1 ≤ j ≤ n. Then δ = {p = (x1, y1, . . . , xn, yn) ∈ R2n : g1(p) =

. . . = gn(p) = 0}. Since g′j(x1, y1, . . . , xn, yn) = [0, . . . , 0,−2xj ,−2yj , 0, . . . ,
0], the differentials dgj(p) are independent for each p ∈ δ. Thus δ is an
n-dimensional real manifold (cf. [11], App. II, Def. 4D).

Fix p0 ∈ δ. Let w = [u1, v1, . . . , un, vn] be a tangent vector to δ at p0.
Then (dgj(p0))w = 0 for each j, 1 ≤ j ≤ n (cf. [11], App. II, Lemma 5C).
This is equivalent to the system of equations x0

juj + y0
j vj = 0 where p0 =

(x0
1, y

0
1 , . . . , x

0
n, y

0
n). Hence vj = −uj(x0

j/y
0
j ) if y0

j 6= 0, and uj = 0 if y0
j = 0,

for each j. Therefore the jth coordinate of w considered as a vector in Cn
is either (uj/y0

j )(y0
j − ix0

j ) or ivj . So, the jth coordinate of iw is either
(uj/y0

j )(x0
j + iy0

j ) or −vj . Thus, the latter vector considered in R2n has
the form [u′1, v

′
1, . . . , u

′
n, v
′
n] where u′j = uj(x0

j/y
0
j ), v′j = uj if y0

j 6= 0, and
u′j = −vj , v′j = 0 if y0

j = 0. It is easy to see that Tp0δ∩ iTp0δ = {0}, so Tp0δ
is a totally real subspace in Cn. This completes the proof.

Lemma 2. The sets γ−1(δ′), γ−1(δ0) have Lebesgue measure zero.

P r o o f. That γ−1(δ′) has measure zero follows immediately from the
definitions of δ′ and γ.

Consider now γ−1(δ0). From the definition we have δ0 = f(σ0) = f(G0∩
σ) ⊂ f(G0) ∩ f(σ) = f(G0) ∩ δ. Obviously, δ is compact. So, in virtue of
Proposition 3, f(G0) ∩ δ is nowhere dense in δ, while by Proposition 4, it
has n-dimensional Hausdorff measure zero. So, by Proposition 1, it has
Lebesgue measure zero. A fortiori, this holds for δ0. From the definition of
γ it now follows that γ−1(δ0) has measure zero in [0, 1]n. This concludes
the proof.

Since f restricted to G \ f−1(f(G0)) is proper and is a local biholomor-
phism, f |(G \ f−1(f(G0))) is a p-fold covering. From the assumption that
f−1(0)∩G = {0} it easily follows that p = µc(f) (cf. [9], Ch. V, §7, Sec. 2).
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Let h be any function holomorphic on Π and let ∆ be a connected
neighbourhood of D such that h is defined and bounded on f−1(∆).

On ∆ \ f(G0), define

(1) H(ζ) =
∑

z∈f−1(ζ)

h(z).

Then H is holomorphic and extends to a holomorphic function on the whole
∆ (cf. [4], §2).

In particular, putting h(z) ≡ 1, we obtain H = µc(f).
From the classical Cauchy formula (cf. [11], Ch. I, §3, (3.6)) we obtain

(2)
1

(2πi)n
∫
δ

H(ζ1, . . . , ζn)
ζ1 . . . ζn

dζ1 . . . dζn = H(0)

where H(0) = limζ 6∈f(G0),ζ→0H(ζ).
With the above notations and assumptions, σ̃ is an n-dimensional ori-

ented manifold (cf. [5], Lemma 1.2). So, we may consider the integral

(3)
1

(2πi)n
∫̃
σ

h(z)
Jf (z)

f1(z) . . . fn(z)
dz1 ∧ . . . ∧ dzn.

This integral exists and is equal to (2). We omit the proof of this fact
because it runs analogously to the proof of the main theorem in [5].

From the above, for h(z) ≡ 1, we have

Theorem.

µc(f) =
1

(2πi)n
∫̃
σ

Jf (z)
f1(z) . . . fn(z)

dz1 ∧ . . . ∧ dzn.
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