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The super complex Frobenius theorem

by C. Denson Hill and Santiago R. Simanca (Stony Brook, N.Y.)

Abstract. We formulate and prove a super analogue of the complex Frobenius the-
orem of Nirenberg.

1. Introduction. We shall discuss the super analogue of the complex
Frobenius theorem of L. Nirenberg [9]. Let us first recall a special case of
this classical result: suppose X is a smooth real manifold of dimension N
without boundary, and locally there are prescribed smooth complex vector
fields P1, . . . , Pn which satisfy the conditions:

P1, . . . , Pn, P 1, . . . , Pn are linearly independent,

(1.1) [Pj , Pk] =
n∑
i=1

αijkPi ,

[Pj , P k] =
n∑
i=1

βijkPi +
n∑
i=1

γijkP i ,

for some smooth functions αijk, βijk and γijk. Here 2n + d = N with d ≥ 0.
Then there exists a system of local real coordinates (x1, . . . , xn, y1, . . . , yn,
r1, . . . , rd) such that, setting zk = xk +

√
−1yk, and possibly replacing

{Pk} by a suitable nonsingular linear combination of the Pj ’s with smooth
coefficients, one has

Pk = ∂/∂zk ,

with r1, . . . , rd playing the role of parameters. This means that X is foliated
by a real d-parameter family of complex manifolds of complex dimension
n. Another way to state the hypothesis would be to say that we have an
abstract Levi flat CR structure of type Cn×Rd on X. Our first task will be
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to formulate, in Theorem 1, the super analogue of this special case. Then
we shall discuss, in Theorem 2, the super analogue of the more general
result of Nirenberg, which involves dropping the first hypothesis in (1.1)
and allowing some of the {Pk} to be real vector fields. For completeness
we include a self-contained proof of the super version of the real Frobenius
theorem. We also include a Corollary and a Lemma which might be of some
independent interest.

Let (X,A, α) be a real C∞ supermanifold of dimension (N,M). Recall
what this means [1], [4], [6], [7]: X is a C∞ manifold of real dimension
N , A is a sheaf over X of Z2 graded-commutative algebras over R, and
the augmentation map α : A → C∞ is a sheaf homomorphism of algebras.
The following axiom must be satisfied, which gives a local splitting: there
exists a basis {V } for the open sets of X such that for every V there is an
isomorphism βV which makes the diagram

A(V )
βV−→ C∞(V )⊗ ∧∗RM

α↘ ↙π
C∞(V )

commutative. Here and in what follows we use the notation S(U) for the
space of continuous sections over U of a sheaf S over X. In the diagram
above, π is the natural projection.

A Z2 grading of A means that two subspaces A0 and A1 are fixed, the
even and odd part respectively, such that A = A0 ⊕ A1. The elements of
A0 commute with all elements in A while the elements in A1 anticommute
with all elements in A1. Let N be the subsheaf of nilpotent elements of A.
It follows from the above diagram that for any open set U in X there is a
map tilde induced by α such that

(1.2) A(U) −→ C∞(U)
∼=−→A/N (U) , f −→ f̃ .

Sections x1, . . . , xN ∈ A0(U) are called even coordinates if the functions
x̃1, . . . , x̃N ∈ C∞(U) form a coordinate system in U in the usual sense.
Sections ξ1, . . . , ξk of A1(U) are algebraically independent if the product
ξ1 . . . ξk 6= 0. The odd dimension M is defined as the smallest integer j such
that N j+1 = 0. Then M algebraically independent sections ξ1, . . . , ξM ∈
A1(U) are said to form odd coordinates. Therefore a section f of A(U),
called a C∞ superfunction, can be written as f =

∑
µ fµ(x)ξµ where fµ(x) ∈

A/N (U). Here µ = (µ1, . . . , µM ) is a multi-index with µj = 0 or 1, and
ξµ = ξµ1

1 . . . ξµM

M . By (1.2), in a sufficiently small open set U , we can think
of a superfunction as an expression of the form

f =
∑
µ

fµξ
µ
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with fµ ∈ C∞(U). The grading is thus determined by f ∈ A(U)0 ⇔ f =∑
µ:|µ| even fµξ

µ while f ∈ A(U)1 ⇔ f =
∑
µ:|µ| odd fµξ

µ. The collection
{xi, ξj} will be called a supercoordinate system.

The algebra of derivations DerA has a natural Z2 grading. Namely
a derivation D has degree j iff D(fg) = (Df)g + (−1)j deg ff(Dg) for all
homogeneous f, g ∈ A. Given D ∈ (DerA(U))0 the nilpotent set N is stable
under D, and therefore it generates a derivation D̃ of the quotient A/N (U).
Thus D̃ can be thought of as a vector field over U . The correspondence

(1.3) (DerA(U))0 → DerC∞(U) , D → D̃ ,

is a Lie algebra epimorphism and we have D̃F = D̃f̃ for all f ∈ A(U). In a
supercoordinate system {xi, ξj} we have the partial derivations ∂/∂xi and
∂/∂ξj defined by

∂

∂xi
(fµξµ) =

∂fµ
∂xi

ξµ ,
∂

∂ξj
(fµξµ) = µj(−1)pfµξµ

′
,

where p = µ1 + µ2 + . . . + µj−1 and ξµ
′

= ξµ1
1 · ξ

µ2
2 . . . ξ

µj−1
j . . . ξµM

M . The
even {∂/∂xi} commute and can be thought of as classical partial derivatives,
whereas the odd {∂/∂ξj} anticommute. Locally DerA is a freeA(U)-module
with basis {∂/∂xi, ∂/∂ξj}, i.e., linear combinations of these basis elements
with C∞ superfunction coefficients.

We use extension by real linearity to complexify both the superalgebra
A and the algebra of derivations DerA; let AC and DerCAC denote the
respective complexifications. We also use real linearity to extend the super-
commutator defined by

[X,Y ] = XY − (−1)d(X)d(Y )Y X

for homogeneous derivations X, Y , where d(X) denotes the degree of X.
We make the following definition: suppose 2n+ l = N and 2m+k = M ,

with l, k ≥ 0. Then a Levi flat super CR structure on (X,A, α) of CR
dimension (n,m) (or CR codimension (l, k)) consists in the prescription of
a locally direct subsheaf H of the sheaf DerCAC of AC-modules over X
of rank (n,m). This means that locally the sections of H form a direct
summand in the free module of local sections DerCAC, which is generated
by n even and m odd linearly independent derivations. We also require that

H ∩H = 0 , [H,H] ⊂ H , [H,H] ⊂ H+H .

Thus locally in U , the prescription of H is equivalent to prescribing a basis
for sections of H of the form {P1, . . . , Pn+m} = {L1, . . . , Ln,M1, . . . ,Mm},
where L1, . . . , Ln are of degree 0 andM1, . . . ,Mm are of degree 1. In terms of
the basis {Pi}, the conditions above are written as in (1.1), except one must
use the supercommutator, n is replaced by n+m, and the coefficients αijk,
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βijk, γijk are C∞ superfunctions. In terms of the {Li,Mj} these integrability
conditions become:

(1.4)
L1, . . . , Ln, L1, . . . , Ln,M1, . . . ,Mm,M1, . . . ,Mm

are linearly independent,

(1.5)

[Li, Lj ] = arijLr + bsijMs ,

[Mp,Mq] = crpqLr + dspqMs ,

[Li,Mq] = eriqLr + fsiqMs ,

(1.6)

[Li, Lj ] = lrijLr − l
r

jiLr +ms
ijMs −ms

jiMs ,

[Mp,Mq] = nrpqLr + nrqpLr + ospqMs + osqpMs ,

[Li,Mq] = pjiqLj + rjiqLj + sliqMl + tliqM l ,

where the coefficients in these expressions are sections of AC. Note that the
middle equations in (1.5) and (1.6) involve anticommutators. Also the last
equation in (1.6) implies that

(1.7) [Li,Mq] = rjiqLj + pjiqLj + t
l
iqMl + sliqM l .

When l, k = 0 the conditions (1.6) are automatically true, since DerCAC
has rank N+M = 2(n+m); in that case we have an integrable super almost
complex structure on (X,A, α). This case has been discussed by A. McHugh
[8] and the authors [3]. Now we can state our first result.

Theorem 1. Let H be a Levi flat super CR structure on (X,A, α) of
CR dimension (n,m). Then given a point p ∈ X, there is a neighborhood
U of p in X, and a supercoordinate system on U with even coordinates
(x1, . . . , xn, y1, . . . , yn, r1, . . . , rl) and odd coordinates (ξ1, . . . , ξm, η1, . . . ,
ηm, %1, . . . , %k), so that setting zj = xj +

√
−1yj , ζj = ξj +

√
−1ηj , there is

a basis in U for H of the form

Li = ∂/∂zi , Mq = ∂/∂ζq .

Here the ri, %j play the role of parameters, and the derivations ∂/∂zi, ∂/∂ζq

are defined by the usual formulas in terms of the real derivations:

∂

∂zi
=

1
2

(
∂

∂xi
−
√
−1

∂

∂yi

)
,

∂

∂ζq
=

1
2

(
∂

∂ξq
−
√
−1

∂

∂ηq

)
.

In order to formulate the super analogue of the general result of Niren-
berg we make the following definition: suppose 2n + l + e = N and 2m +
k+ d = M , with l, k, e, d ≥ 0. Then by a super complex Frobenius structure
of type (n, e,m, d) on (X,A, α) we shall mean that a locally direct subsheaf
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D of DerCAC has been prescribed which satisfies

rankD = (n+ e,m+ d) , rankD ∩D = (e, d) ,
[D,D] ⊂ D , [D,D] ⊂ D +D .

This means that:

1. Locally there is a basis for sections of D of the form {L1, . . . , Ln,
X1, . . . , Xe,M1, . . . ,Mm, Y1, . . . , Yd} where the Li, Xj are even, the Mi,
Yj are odd, and the Xi, Yj are real.

2. The collection {L1, . . . , Ln, L1, . . . , Ln, X1, . . . , Xe,M1, . . . ,Mm,M1,
. . . ,Mm, Y1, . . . , Yd} is linearly independent.

3. The supercommutator of any two derivations from the list in 1 is a
linear combination of the list from 1; and the supercommutator of any two
derivations from the list in 2 is a linear combination of the list from 2.

Notice that when d = e = 0, we have a Levi flat super CR structure of
CR dimension (n,m).

Theorem 2. Let D be a complex Frobenius structure on (X,A, α) of type
(n, e,m, d). Then given a point p ∈ X, there is a neighborhood U of p in
X, and a supercoordinate system on U with even coordinates (x1, . . . , xn, y1,
. . . , yn, r1, . . . , rl, s1, . . . , se) and odd coordinates (ξ1, . . . , ξm, η1, . . . , ηm,
%1, . . . , %k, σ1, . . . , σd), so that setting zj = xj +

√
−1yj , ζj = ξj +

√
−1ηj ,

there is a basis in U for D of the form

Li =
∂

∂zi
, Mi =

∂

∂ζi
, Xi =

∂

∂si
, Yi =

∂

∂σi
.

Here the ri, %j play the role of parameters.

2. Related results. We will need to utilize some closely related results
which we discuss in this section.

First we shall need the super analogue of the real Frobenius theorem,
which we shall formulate and prove since we have not been able to find a
proof in the literature. Suppose n + l = N and m + k = M , with l, k ≥ 0.
Then a super real integrable distribution on (X,A, α) of type (n,m) con-
sists in the prescription of a locally direct subsheaf J of the sheaf DerA
of A-modules over X of rank (n,m). We require the integrability condi-
tion

[J ,J ] ⊂ J ,
where of course we use the supercommutator. Thus locally the sections of
J form a direct summand in the free module of local sections DerA, which
is generated by n even and m odd real linearly independent derivations. So
locally in U , the prescription of J is equivalent to prescribing a basis for
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the sections of J of the form {X1, . . . , Xn, Y1, . . . , Ym}, where X1, . . . , Xn

are of degree 0 and Y1, . . . , Ym are of degree 1. In terms of this basis the
integrability condition is written as:

[Xi, Xj ] = arijXr + bsijYs ,

[Yp, Yq] = crpqXr + dspqYs ,(2.8)
[Xi, Yq] = eriqXr + fsiqYs ,

with coefficients that are real C∞ superfunctions. Since the Yj are odd, the
anticommutator occurs in the middle expression above.

Theorem 3. Let J be a super real integrable distribution on (X,A, α) of
type (n,m). Then given a point p ∈ X there is a neighborhood U in X and
a supercoordinate system on U with even coordinates (x1, . . . , xn, r1, . . . , rl)
and odd coordinates (ξ1, . . . , ξm, %1, . . . , %k) so that in U the sections of J
are spanned by the derivations

∂/∂xi , 1 ≤ i ≤ n , ∂/∂ξq , 1 ≤ q ≤ m.

P r o o f. Using (1.3) we associate to the even derivations X1, . . . , Xn ∈
DerA(U) the C∞ vector fields Xj = X̃j . Since the derivations [Xi, Xj ] are
even and the Yi are odd, the sections bsij in (2.8) must be nilpotent. Thus the
integrability condition implies that {X1, . . . ,Xn} span a classical integrable
distribution J̃ of n planes in U , i.e., [J̃ , J̃ ] ⊂ J̃ where [ , ] is now the usual
bracket of vector fields in U . Applying the classical Frobenius theorem we
find coordinates (x̃1, . . . , x̃n, r̃1, . . . , r̃l) in a possibly smaller neighborhood
U , so that J̃ is spanned by ∂/∂x̃j , 1 ≤ j ≤ n. Using the augmentation map,
we lift to some choice of even coordinates (x1, . . . , xn, r1, . . . , rl) in the su-
permanifold. After replacing the original Xi by suitable linear combinations
which we rename Xi, we have

Xi = ∂/∂xi +A ,

for some A in the kernel of (1.3) on U . On the other hand, we can select odd
coordinates ξ1, . . . , ξm+k such that, after replacing the Yi by some suitable
linear combinations, which we rename Yi, we have

Yi =
∂

∂ξi
+

k∑
j=1

fij
∂

∂ξj+m
+B , j = 1, . . . ,m,

for some real even sections fij , where the derivation B is in the span of
N DerA(U). If we perform the linear change ξj → ξj , 1 ≤ j ≤ m, ξs+m →
fjsξ

j + %s, 1 ≤ s ≤ k, we see that fjk can be assumed to be zero. Thus we
have supercoordinates (x, r, ξ, %) such that, for some nilpotent sections Ai,rj ,
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Bi,rj , Cq,rj , Dq,r
j , the derivations

(2.9)
Xi =

∂

∂xi
+Aj,0i

∂

∂xj
+Bs,0i

∂

∂rs
+ Cj,0i

∂

∂ξj
+Dq,0

i

∂

∂%q
,

Yj =
∂

∂ξj
+Ai,1j

∂

∂xi
+Bi,1j

∂

∂ri
+ Cs,1j

∂

∂ξs
+Dq,1

j

∂

∂%q
,

span the distribution J . Suppose that all of the coefficients labeled A and
C above are in N p. The sections Aj,0i and Cq,1j are even, while the sections
Ai,1j and Cq,0i are odd. So by changing our derivations to

Xi − (Aj,0i Xj + Cq,0i Yq) , Yj − (Ai,1j Xj + Cq,1j Yq) ,

we obtain a new family, which we rename {Xi, Yj}, generating the same
structure J and for which (2.9) holds with all of the coefficients labeled A
and C in N p+1. Iterating the procedure M + 1 = m+k+ 1 times we obtain
derivations of the form

(2.10)
Xi =

∂

∂xi
+Bs,0i

∂

∂rs
+Dq,0

i

∂

∂%q
,

Yj =
∂

∂ξj
+Bi,1j

∂

∂ri
+Dq,1

j

∂

∂%q
,

which span J .
To eliminate the remaining coefficients in the expression above we pro-

ceed also by induction on their order of nilpotency. Assume (2.10) holds
with coefficients in N l modulo N l+1. We have proven the result for l = 1.
Assuming it holds for any k ≤ l we want to show it is true for l+1. Suppose
l is even, as the cases where l is even or odd differ slightly.

We expand Xi, Yj modulo nilpotent terms of degree l + 1 times deriva-
tions. Looking at the Z2 grading, we conclude that the coefficients Dq,0

i and
Bi,1j must be zero. Thus

(2.11)
Xi =

∂

∂xi
+Bs,0i

∂

∂rs
,

Yj =
∂

∂ξj
+Dq,1

j

∂

∂%q
,

mod N l+1 DerA(U) .

The integrability condition applied to the bracket of these derivations implies
readily that

∂Bs,0j
∂xi

=
∂Bs,0i
∂xj

,
∂Bs,0j
∂ξi

= 0 ,
∂Dq,1

k

∂ξj
= −

∂Dq,1
j

∂ξk
.

Thus we can solve the equation

∇xvs = (Bs,01 , . . . , Bs,0n ) ,
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with a solution independent of ξ. We then switch coordinates by x → x,
rs → vs + rs, ξ → ξ, % → %. Then our spanning set can be expressed
as in (2.10), and it is such that (2.11) holds with the coefficient Bs,0i zero.
Now suppose that Dq,1

j is homogeneous in ξ. The condition imposed by the
integrability implies that −ξj∂ξkDq,1

j = ξj∂ξjDq,1
k = λDq,1

k , where λ is the
degree of homogeneity in ξ. Thus, if we now change our supercoordinates
by x → x, r → r, ξ → ξ, %q → (λ + 1)−1Dq,1

j ξj + %q, the conclusion
about the Xi remains unchanged, and in the new coordinate system, (2.11)
holds with the coefficients Dq,1

j equal to zero. In general Dq,1
j is the sum

of homogeneous terms, and we can make them vanish by a similar change,
giving the appropriate weight corresponding to the homogeneity of each one
of them. This completes the proof of Theorem 3.

R e m a r k 1. If one has basis elements {X1, . . . , Xn, Y1, . . . , Ym} for J
such that the brackets in (2.8) are all zero, one can find a supercoordinate
system (x, r, ξ, %) in which the basis elements are the coordinate derivations
∂/∂xi, ∂/∂ξq. One can prove this statement by an argument which follows
almost verbatim the one above, where one needs to use the super version
of the Poincaré lemma with parameters. This is true since the proof of the
super Poincaré lemma in [4] goes through with parameters. Furthermore,
the super real Frobenius theorem discussed above also holds with smooth
dependence on parameters.

Before going any further, we discuss a corollary of Theorem 3 which is
analogous to the classical construction of an integral manifold of a family
of linearly independent vector fields {X1, . . . , Xk}, on an open set U in Rn,
which commute. Indeed, if we have a coordinate system (t, x) such that

Xi =
∂

∂ti
+ asi

∂

∂xs
,

then one can solve the initial value problem{
∂xs

∂ti
= asi (t, x) , 1 ≤ i ≤ k , 1 ≤ s ≤ n− k ,

x(0) = x0 .

The integrability conditions for this system are exactly the conditions on
the coefficients asi which arise from the fact that [Xi, Xj ] = 0. The integral
manifold through the point (0, x0) is defined by F t

1

X1
◦ . . . ◦ F tkXk

(0, x0) =
(t1, . . . , tk, x1(t), . . . , xn−k(t)), where F tY is the flow of the vector field Y at
time t.

We discuss the notion of “flow” of particular types of superderivations.
Let X be a basis for a real super distribution of rank (1, 0) which is in-
tegrable. According to the Theorem above, there exists a supercoordinate
system (x, ξ) where X = ∂/∂x1. We define its flow for even time t in the
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coordinate system (x, ξ) by

F tX(x, ξ) = (x1 + t, x′, ξ) ,

where x′ = (x2, . . . , xN ). On the other hand, if Y is a basis for a real
superdistribution of rank (0, 1) which is integrable, then there exists a su-
percoordinate system (y, η) such that Y = ∂/∂η1. We define its flow for
odd time τ in the coordinate system (y, η) by

F τY (y, η) = (y, η1 + τ, η′) ,

where η′ = (η2, . . . , ηM ).

R e m a r k 2. In the terminology of Manin [7], the derivations X and Y
above are rectifiable of type (1, 0) and (0, 1), respectively. There is yet a
third type of derivation, rectifiable of type (1, 1), for which a purely even or
purely odd flow will not work. The typical model in supercoordinates (x, ξ)
of such a derivation is ∂ξ1 + ξ1∂x1 . In this case we refer the reader to [5].

One then can define the notion of a super Lie derivative as follows: for
the derivation X above, we set

LXf(x, ξ) = lim
t→0

f(F tX(x, ξ))− f(x, ξ)
t

,

where the limit is computed in a natural topology on superfunctions which
one can introduce having chosen the supercoordinates (x, ξ). It is then
elementary to check that

LXf(x, ξ) = (Xf)(x, ξ) .

For the odd derivation Y the situation is only slightly more complicated
because division by the odd parameter τ is not defined. However, we can
use the evaluation map eτ (sometimes called Berezin integral [2] in τ , a
term which we refrain from using as various authors mean different things
by such). This map acts as a superderivation. Indeed, if we separate the τ
dependence in f by writing f = f0 + τf1, then

eτ (f) = f1 .

We therefore define

LY f(y, η) = eτ (f(F τY (y, η)) ,

and once again we get

LY f(y, η) = (Y f)(y, η) .

With these definitions set forth for rectifiable derivations of type (1, 0)
and (0, 1), the classical result that the flows commute if and only if the
vector fields commute holds with the appropriate modifications. One must
use flows of real time for the first type of derivations and flows of odd time
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for the second, while the notion of commutativity is computed using the
superbrackets of derivations.

Our corollary then goes as follows: suppose {X1, . . . , Xn, Y1, . . . , Ym} is
a basis for a real superdistribution of rank (n,m) which in a supercoordinate
system (t, x, τ, ξ) can be expressed as

(2.12)
Xk =

∂

∂tk
+ a0s

k

∂

∂xs
+ b0jk

∂

∂ξj
,

Yk =
∂

∂τk
+ a1s

k

∂

∂xs
+ b1jk

∂

∂ξj
.

We assume further that

(2.13) [Xi, Xj ] = 0 , [Xi, Yl] = 0 , [Yl, Yj ] = 0 .

These conditions together suffice to conclude that each even derivation Xi

is rectifiable of type (1, 0) while each odd derivation Yj is rectifiable of type
(0, 1). We thus have flows of even and odd time, respectively.

Corollary 1. Let Xk, Yl be superderivations which locally in U can be
expressed as in (2.12) and satisfy (2.13). Then the initial value problem

∂xs

∂tk
= a0s

k (t, x, τ, ξ) ,
∂ξs

∂tk
= b0sk (t, x, τ, ξ) ,

∂xs

∂τk
= a1s

k (t, x, τ, ξ) ,
∂ξs

∂τk
= b1sk (t, x, τ, ξ) ,

x(0, 0) = x0 , ξ(0, 0) = ξ0 ,

has a smooth unique local solution x(t, x0, τ, ξ0), ξ(t, x0, τ, ξ0).

P r o o f. Each of the conditions [Xk, Xr] = 0, [Xk, Yl] = 0 and [Yl, Yj ] = 0
gives rise to two conditions; the six of them are:

∂tka
0s
r − ∂tra0s

k + a0l
k ∂xla0s

r − a0l
r ∂xla0s

k + b0jk ∂ξja0s
r − b0jr ∂ξja0s

k = 0 ,

∂tkb
0j
r − ∂trb

0j
k + a0l

k ∂xlb0jr − a0l
r ∂xlb0jk + b0lk ∂ξlb0jr − b0lr ∂ξlb0jk = 0 ,

∂tka
1s
l − ∂τ la0s

k + a0j
k ∂xja1s

l − a
1j
l ∂xja0s

k + b0jk ∂ξja1s
l − b

1j
l ∂ξja0s

k = 0 ,

∂tkb
1j
l − ∂τ lb0jk + a0s

k ∂xsb1jl − a
1s
l ∂xsb0jk + b0sk ∂ξsb1jl − b

1s
l ∂ξsb0jk = 0 ,

∂τ la1s
j + ∂τja1s

l + a1k
l ∂xka1s

j + a1k
j ∂xka1s

l + b1kj ∂ξka1s
l + b1kl ∂ξka1s

j = 0 ,

∂τ lb1kj + ∂τj b1kl + a1s
l ∂xsb1kj + a1s

j ∂xsb1kl + b1sl ∂ξsb1kj + b1sj ∂ξsb1kl = 0 .

These conditions correspond exactly with the integrability conditions of the
system of equations stated in the corollary. With the flows defined above,
the rest of the proof follows the classical argument.

Second we shall need the super analogue of the Newlander–Nirenberg
theorem with parameters. We carefully formulate this notion for two rea-
sons: one is that we need it to prove our results and the other is that it
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will shed light on the way the parameters come naturally into our work. By
analogy the reader can formulate the parametric version of the super real
Frobenius theorem alluded to in Remark 1.

Recall the notion of a super integrable almost complex structure on a
real C∞ supermanifold (Y,B, β) of dimension (2n, 2m). This is just the
prescription of a locally direct subsheaf F of the sheaf DerC BC of BC-
modules over Y , of rank (n,m), which satisfies

F ∩ F = 0 , [F ,F ] ⊂ F .
Locally in V the prescription of F is equivalent to prescribing a basis for
F(V ) of the form {L1, . . . , Ln,M1, . . . ,Mm}, where the Li are of degree 0,
the Mi are of degree 1, and which satisfy conditions (1.4) and (1.5) with
coefficients that are sections of BC.

Let (X,A, α) be a real C∞ supermanifold of dimension (N,M), where
N = 2n + l and M = 2m + k, with l, k ≥ 0. Let U be an open set in
X where supercoordinates (t1, . . . , t2n, r1, . . . , rl, τ1, . . . , τ2m, %1, . . . , %k) are
given and suppose we have complex derivations {L1, . . . , Ln,M1, . . . ,Mm}
of AC which on U can be written as

Li =
2n∑
j=1

aji (t, r, τ, %)
∂

∂tj
+

2m∑
j=1

bji (t, r, τ, %)
∂

∂τ j
,

Mi =
2n∑
j=1

cji (t, r, τ, %)
∂

∂tj
+

2m∑
j=1

dji (t, r, τ, %)
∂

∂τ j
,

where the coefficients are sections of AC. We say that this family forms
a super integrable almost complex structure with parameters (r, %) on
(U,A(U), α) if the span of this collection is closed under supercommuta-
tors and the family {L1, . . . , Ln, L1, . . . , Ln,M1, . . . ,Mm,M1, . . . ,Mm} is
linearly independent. Note that such a collection defines a super integrable
almost complex structure on the super submanifold (Ur,Ar,%, α̂), where Ur
is the submanifold of U defined by freezing the value of the function r̃,
Ar,% is the Z2 graded algebra generated by 1 and τ = (τ1, . . . , τ2m) over
C∞(Ur)⊗

∧∗ Rk%, and α̂ is the corresponding induced augmentation map.

Theorem 4. Let {L1, . . . , Ln,M1, . . . ,Mm} be a super integrable almost
complex structure with parameters (r, %) on (U,A(U), α). Then, on a pos-
sibly smaller open set U , there exists a C∞ change of the real supercoor-
dinates of the form {x = x(t, r, τ, %), y = y(t, r, τ, %), r, ξ = ξ(t, r, τ, %), η =
η(t, r, τ, %), %} such that (x, y, ξ, η) are real supercoordinates on (Ur,Ar,%, α̂).
If we set zj = xj +

√
−1yj , ζj = ξj +

√
−1ηj , the derivations ∂/∂zj , ∂/∂ζk

form a basis for the original structure spanned by the Lj , Mk.

The nonparametric version of this result was proven in [8]. The authors
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[3] have given a proof of the nonparametric version of the above result in
the much more complicated case in which the work must be done on one
side of a weakly pseudoconvex boundary near a boundary point p. But
when one is working in a full neighborhood of an interior point p, as we are
now doing in this paper, all of the technical up-to-the-boundary difficulties
encountered in [3] disappear. Hence the method of proof used there implies
Theorem 4 immediately, since every step in the proof depends smoothly on
parameters; e.g., we need only use the Dolbeault lemma for, say, a polydisc
in Cn, which can clearly be made to depend smoothly on parameters. Thus
Theorem 4 is implicitly contained in [3], although it was not explicitly stated
there.

3. Proof of Theorem 1. Consider a local basis {P1, . . . , Pn+m} =
{L1, . . . , Ln,M1, . . . ,Mm} for the sections of H with properties (1.4)–(1.6).
The coefficients in (1.5) and (1.6) are elements of AC(U). Using only addi-
tion, subtraction, and complex conjugation, we see that the supercommu-
tators [RePi,RePj ], [RePi, ImPj ] and [ImPi, ImPj ] are all linear combi-
nations of the RePi, ImPj with real coefficients in A(U). Thus the sub-
sheaf J spanned by these derivations is a super integrable distribution on
(U,A(U), α) of type (2n, 2m). By Theorem 3, given a point p ∈ U , there
exists a neighborhood V and supercoordinates (t1, . . . , t2n, r1, . . . , rl, τ1, . . . ,
τ2m, %1, . . . , %k) such that J is spanned by the derivations ∂/∂ti, ∂/∂τk,
1 ≤ i ≤ 2n, 1 ≤ k ≤ 2m.

From the definition of J it then follows that there are C∞ complex
superfunction coefficients for which

Li =
2n∑
j=1

aji (t, r, τ, %)
∂

∂tj
+

2m∑
j=1

bji (t, r, τ, %)
∂

∂τ j
,

Mi =
2n∑
j=1

cji (t, r, τ, %)
∂

∂tj
+

2m∑
j=1

dji (t, r, τ, %)
∂

∂τ j
.

This means that on (V,A(V ), α) we have a super integrable almost complex
structure with parameters (r, %). We now apply Theorem 4 to obtain real
supercoordinates (x, y, r, ξ, η, %) such that the ∂/∂zj , ∂/∂ζk span the same
subsheaf as the one spanned by the Lj , Mk. This completes the proof of
Theorem 1.

4. Proof of Theorem 2. Recall that locally there is a basis for the
super complex Frobenius structure D of the form {L1, . . . , Ln, X1, . . . , Xe,
M1, . . . ,Mm, Y1, . . . , Yd} where the Li, Xj are even, the Mi, Yj are odd, and
the Xi, Yj are real. From the integrability conditions [D,D] ⊂ D, [D,D] ⊂
D + D and their complex conjugates, it readily follows that
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[D + D,D + D] ⊂ D + D and [D + D,D +D] ⊂ D + D. This means that
the real derivations {ReLi, ImLi, Xj ,ReMi, ImMi, Yj} span an integrable
super real distribution J on (X,A, α) of type (2n + e, 2m + d). Hence by
Theorem 3 there is a neighborhood U and a real supercoordinate system in
U with even supercoordinates (q1, . . . , q2n+e, r1, . . . , rl) and odd supercoor-
dinates (ϕ1, . . . , ϕ2m+d, %1, . . . , %k) such that the ∂/∂qi, ∂/∂ϕj span J . In
term of these coordinates we can write

Li = A0j
i

∂

∂qj
+B0j

i

∂

∂ϕj
, Xk = C0j

k

∂

∂qj
+D0j

k

∂

∂ϕj
,

Mi = A1j
i

∂

∂qj
+B1j

i

∂

∂ϕj
, Yk = C1j

k

∂

∂qj
+D1j

k

∂

∂ϕj
,

with superfunction coefficients depending on (q, r, ϕ, %) and with the Cijk ,
Dij
k real. In effect we have solved for a local “big leaf” corresponding to

constant “values” of the parameters (r, %) = (r1, . . . , rl, %1, . . . , %k).
For each value of these parameters we have the super distribution D ∩

D ⊂ D + D spanned on U by {X1, . . . , Xe, Y1, . . . , Yd}. It is integrable
of type (e, d) because our given integrability condition implies that [D ∩
D,D ∩ D] ⊂ D ∩ D and [D ∩ D,D ∩D] ⊂ D ∩ D. Thus we have a real
super distribution with parameters (r, %), so by Remark 1 we can find new
real even supercoordinates (p1, . . . , p2n, t1, . . . , te) to replace the q’s, and
new odd supercoordinates (π1, . . . , π2m, τ1, . . . , τd) to replace the ϕ’s, so
that we can take as a new basis for D ∩ D the supercommuting coordinate
derivations

X ′k = ∂/∂tk , k = 1, . . . , e, Y ′l = ∂/∂τ l , l = 1, . . . , d .

In this new supercoordinate system (p, t, r, π, τ, %) the Li, Mj are expressed
in the form

Li = a0j
i

∂

∂pj
+ c0ji

∂

∂tj
+ b0ji

∂

∂πj
+ d0j

i

∂

∂τ j
,

Mi = a1j
i

∂

∂pj
+ c1ji

∂

∂tj
+ b1ji

∂

∂πj
+ d1j

i

∂

∂τ j
,

with superfunction coefficients depending on (p, t, r, π, τ, %). We can replace
the Li, Mj by

L′i = Li − c0ki X ′k − d0k
i Y

′
k , M ′i = Mi − c1kj X ′k − d1k

j Y
′
k ,

and obtain a new basis {L′1, . . . , L′n, X ′1, . . . , X ′e,M ′1, . . . ,M ′m, Y ′1 , . . . , Y ′d} for
D as well as a new basis {L′1, . . . , L′n, L

′
1, . . . , L

′
n, X

′
1, . . . , X

′
e,M

′
1, . . . ,M

′
m,

M
′
1, . . . ,M

′
m, Y

′
1 , . . . , Y

′
d} for D∩D. It is now convenient to drop the primes
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and write

Li = a0j
i

∂

∂pj
+ b0ji

∂

∂πj
, Xk =

∂

∂tk
,

Mi = a1j
i

∂

∂pj
+ b1ji

∂

∂πj
, Yl =

∂

∂τ l
.

The advantage of this new basis is that, while the Xk, Yl supercommute
among themselves, the supercommutators of the Li and Mj are linear com-
binations of the ∂/∂pi and ∂/∂πj solely. From the integrability conditions,
we conclude that [Li, Lj ], [Mi,Mj ] and [Li,Mj ] are linear combinations of
the Lk and Mk only; whereas the [Li, Lj ], [Mi,M j ] and [Li,M j ] are linear
combinations of the Lk, Mk and Lk, Mk only, with (t, r, τ, %) playing the
role of parameters. Thus we have a local integrable super almost complex
structure of dimension (n,m) on each “small leaf” corresponding to con-
stant “values” of the parameters (t1, . . . , te, r1, . . . , rl, τ1, . . . , τd, %1, . . . , %k).
Therefore we can apply Theorem 4 to obtain real new even supercoordi-
nates (x1, . . . , xn, y1, . . . , yn) to replace the p’s, and new odd supercoordi-
nates (ξ1, . . . , ξm, η1, . . . , ηm) to replace the π’s, so that the new superderiva-
tions

(4.14) Li = ∂/∂zi , i = 1, . . . , n, Mj = ∂/∂ζj , j = 1, . . . ,m ,

span the super complex structure on each subleaf. Here the Xk, Yl are
not changed, but they have new expressions in the new supercoordinates
(x, y, t, r, ξ, η, τ, %) of the form

(4.15)
Xk =

∂

∂tk
+ α0j

k Lj + α 0j
k Lj + β0j

k Mj + β
0j

k M j ,

Yk =
∂

∂τk
+ α1j

k Lj + α1j
k Lj + β1j

k Mj + β
1j

k M j ,

for some complex superfunction coefficients αijk , βijk , which may depend on
all the coordinates (x, y, t, r, ξ, η, τ, %).

Consider a mixed bracket, such as [Li, Xk]. From [D,D] ⊂ D and the
form of the Xk, Yl, we see that it must be a linear combination of the Li,
Mj only, from which it follows that Liα

0j
k = 0 and Liβ

0j

k = 0. A similar
consideration of the bracket [Mi, Xk] shows that Miα

0j
k = 0 and Miβ

0j

k = 0.
Likewise with Xk replaced by Yk. It follows that all the coefficients αijk , βijk
are superholomorphic with respect to (z, ξ). Note also that the Xk, Yl still
supercommute. In order to complete the proof of the theorem we need the
following

Lemma 1. Consider Li, Xk, Mj , Yl as in (4.14), (4.15) where the Xk,
Yl supercommute, and the coefficients αijk , βijk are C∞ holomorphic
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superfunctions with respect to (z, ζ). Then there is a C∞ change of super-
coordinates of the form

t = s , z = z(s, w, r, σ, ω, %) , r = r ,

τ = σ , ζ = ζ(s, w, r, σ, ω, %) , % = % ,

such that all the z’s and ζ’s are superholomorphic with respect to the w’s
and ω’s, and satisfy

(4.16)

∂zj

∂sk
= α0j

k (s, z, r, σ, ζ, %) ,
∂ζj

∂sk
= β0j

k (s, z, r, σ, ζ, %) ,

∂zj

∂σk
= α1j

k (s, z, r, σ, ζ, %) ,
∂ζj

∂σk
= β1j

k (s, z, r, σ, ζ, %) ,

with initial conditions

(4.17) zj(0, 0) = wj , ζj(0, 0) = ωj .

Here s = (s1, . . . , se), σ = (σ1, . . . , σd).

Assuming the Lemma for the moment, we proceed to finish the proof
of Theorem 2: we calculate the Xk, Yk in the new supercoordinate system
(w, s, r, ω, σ, %) and find that

∂

∂sk
=

∂

∂tk
+ α0j

k

∂

∂zj
+ α0j

k

∂

∂zj
+ β0j

k

∂

∂ζj
+ β

0j

k

∂

∂ζ
j

= Xk ,

∂

∂σk
=

∂

∂τk
+ α1j

k

∂

∂zj
+ α1j

k

∂

∂zj
+ β1j

k

∂

∂ζj
+ β

1j

k

∂

∂ζ
j

= Yk .

We also have

∂

∂wi
=
∂zj

∂wi
Lj +

∂ζj

∂wi
Mj ,

∂

∂ωi
=
∂zj

∂ωi
Li +

∂ζj

∂ωi
Mj

by the superholomorphicity, and the above linear combinations preserve
linear independence. Hence we may take {∂/∂w1, . . . , ∂/∂wn, ∂/∂s1, . . . ,
∂/∂se, ∂/∂ω1, . . . , ∂/∂ωm, ∂/∂σ1, . . . , ∂/∂σd} as a new local basis for D, and
the proof of Theorem 2 is complete.

P r o o f o f L e m m a 1. Using

Lsα
ij
k = 0 , Lsβ

ij
k = 0 , Msα

ij
k = 0 , Msβ

ij
k = 0 ,

and the fact that the Xk, Yl are real with Xk even and Yl odd, we see
that each of the relations [Xk, Xl] = 0, [Xk, Yl] = 0, [Yk, Yl] = 0 yields the
vanishing of two expressions. Thus we are led to calculate the following six
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integrability conditions:

∂tkα
0j
l + α0s

k Lsα
0j
l + β0s

k Msα
0j
l = ∂tlα

0j
k + α0s

l Lsα
0j
k + β0s

l Msα
0j
k ,

∂tkβ
0j
l + α0s

k Lsβ
0j
l + β0s

k Msβ
0j
l = ∂tlβ

0j
k + α0s

l Lsα
0j
k + β0s

l Msβ
0j
k ,

∂tkα
1j
l + α0s

k Lsα
1j
l + β0s

k Msα
1j
l = ∂τ lα0j

k + α1s
l Lsα

0j
k + β1s

l Msα
0j
k ,

∂tkβ
1j
l + α0s

k Lsβ
1j
l + β0s

k Msβ
1j
l = ∂τ lβ0j

k + α1s
l Lsβ

0j
k + β1s

l Msβ
0j
k ,

∂τkα1j
l + α1s

k Lsα
1j
l + β1s

k Msα
1j
l = −∂τ lα1j

k − α
1s
l Lsα

1j
k − β

1s
l Msα

1j
k ,

∂τkβ1j
l + α1s

l Lsβ
1j
k + β1s

l Msβ
1j
k = −∂τ lβ1j

k − α
1s
l Lsβ

1j
k − β

1s
l Msβ

1j
k .

We now may use the holomorphicity to add to each of the above expressions,
in respective order, the zero terms

α0s
k Lsα

0j
l + β

0s

k Msα
0j
l = α0s

l Lsα
0j
k + β

0s

l Msα
0j
k ,

α0s
k Lsβ

0j
l + β

0s

k Msβ
0j
l = α0s

l Lsβ
0j
k + β

0s

l Msβ
0j
k ,

α0s
k Lsα

1j
l + β

0s

k Msα
1j
l = α1s

l Lsα
0j
k + β

1s

l Msα
0j
k ,

α0s
k Lsβ

1j
l + β

0s

k Msβ
1j
l = α1s

l Lsβ
0j
k + β

1s

l Msβ
0j
k ,

α1s
k Lsα

1j
l + β

1s

k Msα
1j
l = −α1s

l Lsα
1j
k − β

1s

l Msα
1j
k ,

α1s
k Lsβ

1j
l + β

1s

k Msβ
1j
l = −α1s

l Lsβ
1j
k − β

1s

l Msβ
1j
k .

Recall that zj = xj +
√
−1yj and ζj = ξj +

√
−1ηj . Let

αijk = aijk +
√
−1bijk , βijk = cijk +

√
−1dijk

be written in terms of their real and imaginary parts. The system to solve
assumes the real form

(4.18)

∂xj

∂sk
= a0j

k ,
∂yj

∂sk
= b0jk ,

∂ξj

∂sk
= c0jk ,

∂ηj

∂sk
= d0j

k ,

∂xj

∂σk
= a1j

k ,
∂yj

∂σk
= b1jk ,

∂ξj

∂σk
= c1jk ,

∂ηj

∂σk
= d1j

k ,

with right hand sides superfunctions of the real supercoordinates (x, y, s, r,
ξ, η, σ, %), and with initial conditions

(4.19)
xj(0, 0) = Rewj , yj(0, 0) = Imwj ,

ξj(0, 0) = Reωj , ηj(0, 0) = Imωj .

If we take the real and imaginary parts of our six integrability conditions
with the terms added, as indicated above, we get twelve real integrability
conditions, which, by inspection, are seen to be exactly what is needed to
solve (4.18), (4.19) according to Corollary 1. This gives us the C∞ solutions
z = z(s, w, r, σ, ω, %) and ζ = ζ(s, w, r, σ, ω, %).
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We claim that these are superholomorphic with respect to the w’s and
ω’s: consider for example the variable w1 and set uj = ∂

w
1zj , vj = ∂

w
1ζj .

By differentiating we find that the uj , vj satisfy the homogeneous system

∂uj

∂sk
=
∂α0j

k

∂zr
ur +

∂α0j
k

∂ζr
vr ,

∂vj

∂sk
=
∂β0j

k

∂zr
ur +

∂β0j
k

∂ζr
vr ,

∂uj

∂σk
=
∂α1

k

∂zr
ur +

∂α1j
k

∂ζr
vr ,

∂vj

∂σk
=
∂β1j

k

∂zr
ur +

∂β1j
k

∂ζr
vr ,

with the initial conditions

uj(0, 0) = 0 , vj(0, 0) = 0 .

Hence uj ≡ 0 and vj ≡ 0 by the uniqueness part of Corollary 1. A similar
argument applies to the variable ω1. Proceeding in this way by induction
we obtain the result. This completes the proof of the Lemma.
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Reçu par la Rédaction le 12.9.1990


