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Invariant pseudodistances and pseudometrics—
completeness and product property

by Marek Jarnicki (Kraków) and Peter Pflug (Vechta)

Abstract. A survey of properties of invariant pseudodistances and pseudometrics is
given with special stress put on completeness and product property.

Introduction. Since the survey article “Intrinsic distances, measures
and geometric function theory” of S. Kobayashi [31] in 1976 there has been
a remarkable progress in studying properties of pseudodistances and in-
finitesimal pseudometrics which are “distance decreasing” under holomor-
phic mappings (cf., for instance, the references in [15], [19], [33], [34], [41]).
Nevertheless a lot of elementary, but basic problems still remain open. Our
aim in this paper is to discuss only some aspects of the whole theory of
“invariant” functions, especially “completeness” and “product property”.

This survey is organized as follows: the first section, besides the basic
definitions, contains several explicit examples—some of them new. In the
second chapter we report on completeness. The paper concludes with a
discussion of the so-called product property. Each section is completed by
a list of open questions. We would like to express our deep gratitude to our
Universities and to DFG for valuable help during writing this paper.

I. Definitions and examples

Definition 1.1. A family (dG)G∈G of pseudodistances dG : G×G→ R+

(G denotes the system of all domains G ⊂ Cn, n arbitrary) is called a
Schwarz–Pick system of pseudodistances [22] if:

(i) whenever f : G→ D (D,G ∈ G) is holomorphic then

dD(f(z′), f(z′′)) ≤ dG(z′, z′′) (z′, z′′ ∈ G) ,

(ii) dE = % := the hyperbolic distance on the unit disc E ⊂ C.

1991 Mathematics Subject Classification: Primary 32H15.



170 M. Jarnicki and P. Pflug

In the above definition we can restrict G to be a subsystem G′ of G with
E ∈ G′. Sometimes we also will use the notion of Schwarz–Pick system in
this general meaning.

It is well known that for any Schwarz–Pick system (dG)G∈G of pseu-
dodistances we have

cG ≤ dG ≤ kG (G ∈ G)
where (cG)G (resp. (kG)G) is the Schwarz–Pick system of Carathéodory
(resp. Kobayashi) pseudodistances.

Since kG : G×G→ R+ is always continuous, so is dG : G×G→ R+.
Observe that for any z, w ∈ G, G ∈ G, there exists a continuous curve

α : [0, 1]→ G connecting z and w with finite kG-length lkG
(α).

Definition 1.2. Let (dG)G∈G be a Schwarz–Pick system of pseudodis-
tances. Put

diG(z, w) := inf{ldG
(α) : α a continuous curve in G connecting z and w} .

R e m a r k. (diG)G∈G is again a Schwarz–Pick system of pseudodistances
with dG ≤ diG. We call diG the associated inner pseudodistance.

By [43] we know that if dG is a distance (i.e. G is dG-hyperbolic) and
dG = diG (i.e. dG is inner) then the dG-topology coincides with the
‖ ‖-topology. In particular, kG is inner; hence, if G is kG-hyperbolic, the
kG-topology is the ‖ ‖-topology [4].

On the other hand, cG, in general, is not inner (cf. [5], [27], [53]; see also
Examples 1.21 and 1.23, 6), and therefore the cG-topology must be studied
by different methods.

It is well known that, if G is biholomorphically equivalent to a bounded
domain, the dG-topology equals the ‖ ‖-topology for any Schwarz–Pick sys-
tem (dG)G∈G.

In general, the question whether the cG-topology coincides with the ini-
tial topology seems to be open (cf. Problem 1.1) (1).

We mention that in the case of complex spaces the answer is negative
[54]. On the other hand, for domains in C1 the answer is affirmative:

Proposition 1.3. For any G ⊂ C1 cG-hyperbolic, the cG-topology coin-
cides with its standard topology.

P r o o f (J. Wiegerinck). Fix a ∈ G and let G 3 zν → a in the
cG-topology. Let f ∈ H∞(G) with f(a) = 0 and f 6≡ 0. Write f = (z−a)kg,
g(a) 6= 0. Then g(zν)− g(a)→ 0 and hence zν → a.

R e m a r k ([46]). For a domain G ⊂ C1 the following properties are
equivalent:

(1) Cf. the addendum.
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(i) G is cG-hyperbolic,
(ii) H∞(G) 6= C,
(iii) the analytic capacity of C \G is positive.

Definition 1.4. A family (FG)G∈G of functions FG : G×G→ [0, 1) is
called a Schwarz–Pick system of functions if

(i) whenever f : G→ D is holomorphic then

FD(f(z′), f(z′′)) ≤ FG(z′, z′′) (z′, z′′ ∈ G) ,

(ii) FE = tanh % =: the Möbius distance in E.

Observe that if (dG)G∈G is a Schwarz–Pick system in the sense of Defini-
tion 1.1 then the family (tanh dG)G∈G is a Schwarz–Pick system in the sense
of Definition 1.4. In particular, the Möbius pseudodistances c∗G := tanh cG,
G ∈ G, form a Schwarz–Pick system of functions.

Let k∗G(z′, z′′) := inf{t ∈ [0, 1) : ∃ϕ ∈ O(E,G) : ϕ(0) = z′, ϕ(t) =
z′′} (z′, z′′ ∈ G). It is clear that (k∗G)G∈G gives a Schwarz–Pick system of
functions, and for any Schwarz–Pick system of functions (FG)G∈G one has

c∗G ≤ FG ≤ k∗G, G ∈ G .

Recall that kG is the largest pseudodistance below tanh−1 k∗G, G ∈ G.

Example 1.5. Let

(a) m(p)
G (a, z) := sup{|f(z)|1/p : f ∈ O(G,E), orda f ≥ p} (a, z ∈ G,

p ∈ N),
(b) gG(a, z) := sup{u(z) : u ∈ KG(a)} where

KG(a) := {u : G→ [0, 1) : u log-psh. and u(z) ≤ c‖z − a‖ near a} .

The families (m(p)
G )G∈G, (gG)G∈G are Schwarz–Pick systems of functions.

Since m(1)
G = c∗G, we call m(p)

G the p-th Möbius function on G. The function
log gG(a, ·) is the pluri-complex Green function for G with pole at a (see
[29], [14], [15]). Obviously one has

c∗G ≤ m
(p)
G ≤ gG ≤ k

∗
G , G ∈ G .

Now we collect some of the properties of m(p)
G and gG:

Proposition 1.6. (a) m(p)
G (a, ·) is a continuous log-psh. function on G.

(b) m(p)
G is upper semicontinuous on G×G (cf. [28]); c∗G = m

(1)
G is even

continuous on G×G and , moreover , cG is log-psh. on G×G (cf. [17], [52]).
If G is biholomorphic to a bounded domain then m(p)

G is continuous on G×G
(cf. [28]).

Proposition 1.7. (a) gG(a, ·) ∈ KG(a), G ∈ G, a ∈ G [29].
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(b) gG is upper semicontinuous on G × G whenever G is a domain of
holomorphy [30]; moreover , if G is bounded hyperconvex then G is continu-
ous on G×G and limz→ζ gG(a, z) = 1, ζ ∈ ∂G [14].

(c) For n = 1, − log gG(a, ·) coincides with the classical Green function
for G with pole at a.

Example 1.8. Let G := {(z, w) ∈ C2 : |z| < 2, |w| < 1/2 or 1 < |z| < 2,
|w| < 2}. Then

gG(0, (z, w)) =


|w| if |z| ≤ 1, |z| ≤ 2|w|,
|z|/2 if |z| ≤ 1, |z| ≥ 2|w|,
|z|/2 if 1 < |z| < 2, |w| ≤ |z|2/2,√
|w|/2 if 1 < |z| < 2, |w| ≥ |z|2/2.

Hence gG(0, ·) is different from g
G̃

(0, ·)|G where G̃ = 2E × 2E is the
envelope of holomorphy of G.

The above example and similar ones were obtained during our discussion
with R. Zeinstra to whom we express our thanks. This example shows that
the idea to obtain (b) in Proposition 1.7 for arbitrary domains in Cn by
passing to the envelope of holomorphy fails (cf. Problem 1.2).

Example 1.9 ([28]). Let G := {z ∈ Cn : |zα| < 1}, where α =
(α1, . . . , αn) ∈ Nn and α1, . . . , αn are relatively prime, n ≥ 2. Then:

(a) m(p)
G (a, z) = [c∗E(aα, zα)](1/p)E+(p/r) (a, z ∈ G, p ∈ N)

where r = r(a) := orda(z → zα), E+(t) := the smallest ν ∈ N with ν ≥ t.
In particular, for p ≥ 2, m(p)

G is neither continuous nor symmetric.

(b) gG(a, z) = [c∗E(aα, zα)]1/r.

Again gG is not continuous and not symmetric.

Definition 1.10. A family (δG)G∈G of functions δG : G × Cn →
R+ (G ⊂ Cn) is called a Schwarz–Pick system of infinitesimal pseudo-
metrics if

δG(z;λX) = |λ|δG(z;X) (z ∈ G,X ∈ Cn, λ ∈ C) and

(i) whenever f : G→ D is holomorphic then

δD(f(z); f ′(z)X) ≤ δG(z;X), z ∈ G ⊂ Cn 3 X ;

(ii) δE(0; 1) = 1.

Example 1.11.

(a) γ
(p)
G (z;X) := lim

λ90

1
|λ|
m

(p)
G (z, z + λX) , z ∈ G ⊂ Cn 3 X [28];
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(b) SG(z;X) := sup
{

lim sup
λ90

1
|λ|
√
u(z, z + λX) : u ∈ SG(z)

}
,

z ∈ G ⊂ Cn 3 X ,

where SG(a) := {u : G → [0, 1) : u log-psh., u(a) = 0 and u of class C2

near a} [47], [50]; note that
√
SG(a) ⊂ KG(a);

(c) AG(z;X) := lim sup
λ90

1
|λ|
gG(z, z + λX) , z ∈ G ⊂ Cn 3 X

[1], [2], [30];
(d) κG(z;X) := inf{|α| : α ∈ C,∃ϕ ∈ O(E,G) : ϕ(0) = z, αϕ′(0) = X},

z ∈ G ⊂ Cn 3 X[45].

The families (γ(p)
G )G∈G, (SG)G∈G, (AG)G∈G, (κG)G∈G are Schwarz–Pick

systems of infinitesimal pseudometrics. γG := γ
(1)
G is called the Carathéo-

dory–Reiffen pseudometric [42]; γ(p)
G is the p-th Reiffen pseudometric and

SG, AG, κG are known as the Sibony, Azukawa and Kobayashi–Royden
pseudometric, respectively.

Observe that
γG ≤ SG ≤ AG ≤ κG ,

γG ≤ γ(p)
G ≤ AG ≤ κG ,

γG ≤ δG ≤ κG
for any Schwarz–Pick system (δG)G.

In the case of convex domains all invariant objects coincide.

Theorem 1.12 ([35], [36]). Let G ⊂ Cn be a domain biholomorphically
equivalent to a convex domain. Then the following equalities hold :

(i) cG = kG = tanh−1 k∗G;
(ii) c∗G = m

(p)
G = gG = k∗G;

(iii) γG = γ
(p)
G = SG = AG = κG.

R e m a r k. By [37] the above results are also true if G is strictly linearly
convex (cf. Problem 1.4).

R e m a r k. For strongly pseudoconvex domains in Cn and for bounded
smooth pseudoconvex domains of finite type in C2 there are a lot of com-
parison results for some of the above invariant objects (for example see [12],
[51] and references there).

We summarize some of the properties of the pseudometrics introduced
in Example 1.11:

Proposition 1.13. (a) γ(p)
G (a;X) = sup{|

∑
|α|=p(1/α!)Dαf(z)Xα|1/p :

f ∈ O(G,E), orda f ≥ p} [28];
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(b) γ
(p)
G is upper semicontinuous on G × Cn [28], γG is even locally

Lipschitz on G× Cn and γG(a; ·) is a seminorm [42];
(c) if G is biholomorphic to a bounded domain then γ

(p)
G is continuous

on G× Cn [28].

Proposition 1.14. (a) SG(a;X) = sup{[
∑n
i,j=1

∂2u
∂zi∂z̄j

(a)XiXj ]1/2 : u ∈
SG(a)};

(b) SG(a; ·) is a seminorm;
(c) AG is upper semicontinuous on G × Cn whenever G is a domain of

holomorphy [30] (cf. Problem 1.2);
(d) if g2

G(a, ·) is C2 near a then SG(a; ·) = AG(a; ·) [30], in particular , if
n = 1 then SG = AG.

Proposition 1.15. (a) κG is upper semicontinuous on G× Cn [45];
(b) κG is continuous on G× Cn whenever G is taut [45].

Example 1.16 ([28]). Let G be as in Example 1.9. Then:

(a) AG(a;X) = [γE(aα;Φr(a,X))]1/r, where r = r(a) (see Example 1.9),
Φ(z) := zα and Φr(a,X) :=

∑
|β|=r(1/β!)DβΦ(a)Xβ ; in particular, AG is

not continuous.
(b)

γ
(p)
G (a;X) =

{
AG(a;X) if r|p,
0 otherwise;

and so, for p ≥ 2, γ(p)
G need not be continuous.

(c)

SG(a;X) =
{
AG(a;X) if ]{j : aj = 0} ≤ 1,
0 otherwise.

Note that here SG is upper semicontinuous but not continuous.

Example 1.17. Let G = Gh = {z ∈ Cn : h(z) < 1} be a bal-
anced domain of holomorphy (h denotes its Minkowski function). Then
AG(0; ·) = κG(0; ·) = h; in particular, there are Gh’s for which κGh

(0; ·) is
not continuous and not a seminorm.

Example 1.18. Let ϕ(ξ, η) =
∑∞
j=1 λj log(|ξ − aj |2/j+ |η|/j) (ξ, η ∈ C)

where {aj}∞j=1 is a dense subset of E with aj 6= 0 and λj > 0 are such that:
(i) ϕ(0) > −∞, (ii) ϕ is C2 on C× C∗, (iii) ϕ is psh. Define

G := {(z1, z2) ∈ C2 : |z1| expϕ(z2, 0) < 1} ,

D := {(z1, z2, z3) ∈ C3 : |z1| expϕ(z2, z3) < 1} ,
f : G→ D, f(z1, z2) := (z1, z2, 0) .
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By the construction of G we obtain SG = 0 on (G ∩ (C×E))×C2 and,
therefore, S∗G = 0 on (G ∩ (C× E))× C2 where

S∗G(z;X) := lim sup
(z′,X′)→(z,X)

SG(z′, X ′) .

On the other hand, since z → |z1|2 exp(2ϕ(z2, z3)) belongs to SD((0, 0, t))
(t > 0), we get

lim sup
t↘0

SD((0, 0, t); (1, 0, 0)) ≥ lim
t↘0

expϕ(0, t) = expϕ(0, 0) > 0 ;

consequently,

S∗D(f(0, 0); f ′(0, 0)(1, 0)) > S∗G((0, 0); (1, 0)) .

This example shows that, in general, SG is not upper semicontinuous
and, even more, that the idea presented in [50] to take (S∗G)G∈G in order to
get a Schwarz–Pick system of upper semicontinuous pseudometrics fails (cf.
Problem 1.5).

Sometimes it is useful to pass from a Schwarz–Pick system of infinitesimal
pseudometrics to a Schwarz–Pick system of pseudodistances:

Let (δG)G∈G′ be a system of upper semicontinuous infinitesimal pseudo-
metrics. Put( ∫

δG

)
(z′, z′′) = ∆G(z′, z′′) := inf

{ 1∫
0

δG(α(t); α̇(t)) dt : α : [0, 1]→ G ,

α piecewise C1, α(0) = z′ and α(1) = z′′
}
.

Then (∆G)G∈G′ is a Schwarz–Pick system of pseudodistances. We mention
that always ∆G = ∆i

G (G ∈ G′).
In the case of the Carathéodory–Reiffen and the Kobayashi–Royden met-

rics even the following more precise results are true:

Theorem 1.19. Let G be a domain in Cn. Then:

(a) kG =
∫
κG [45];

(b) ciG =
∫
γG whenever any cG-rectifiable continuous curve α : [0, 1]→

G is ‖ ‖-rectifiable, in particular , whenever G is biholomorphic to a bounded
domain.

In [38] the statement (b) is proved for the Bergman metric. We only
mention that this proof extends to the above case. Notice that (b) with-
out any additional assumptions is formulated in [31], Theorem 2.6(2) (cf.
Problem 1.6).

The first examples of domains G with cG 6= ciG were given by Th. Barth
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[5] and later by J.-P. Vigué [53] who obtained even a bounded complete
Reinhardt domain of holomorphy with this property. From the latter paper
we can extract the following useful lemma.

Lemma 1.20. Let G be a domain in Cn, let z′, z′′ ∈ G, z′ 6= z′′, and let
f ∈ O(G,E) be such that :

(i) f(z′) = 0 and c∗G(z′, z′′) = |f(z′′)|,
(ii) γG(z′;X) > |f ′(z′)X| for any X ∈ (Cn)∗.

Then cG(z′, z′′) < ciG(z′, z′′).

Example 1.21 ([23]). Let G := {z ∈ C2 : |z1| < 1, |z2| < 1, 2|z1z2| < 1}.
Then there exists an open set V ⊃ ∂G∩ (E×E) such that for all z ∈ V ∩G
we have c∗G(0, z) = |2z1z2| and, therefore, by the above lemma, cG(0, z) <
ciG(0, z) (cf. Problem 1.7).

We like to point out that, so far, there are no sufficient criteria for
cG = ciG (cf. Problem 1.8).

Now we would like to present the full description of all the invariant
objects in the case where G = P := {λ ∈ C : 1/R < |λ| < R} (R > 1).
In order to establish the formulas we need the following lemma of R. M.
Robinson [44]:

Lemma 1.22. Let z0 ∈ (−R,−1/R) and let h : P \ {z0} → C be a
holomorphic function with a simple pole at z0. If lim supz→∂P |h(z)| ≤ 1,
then, for any x ∈ (1/R,R), we have |h(x)| ≤ 1, and here equality holds at
one point ⇔ |h| ≡ 1.

For 1/R < a < R we define

f(a, λ) :=
(

1− λ

a

)
ΠR(a, λ) where

ΠR(a, λ) :=

∞∏
j=1

(
1− a

λR4j

)(
1− λ

aR4j

)
∞∏
j=1

(
1− λa

R4j−2

)(
1− 1

λaR4j−2

) (cf. [13], 335–336).

We only mention that f(a, ·) is meromorphic on C∗, holomorphic on P
and the only zero of f(a, ·) in P is λ = a; moreover,

|f(a, λ)| =
{

1 if |λ| = 1/R,
R/a if |λ| = R.
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Example 1.23.

(a) c∗P (a, λ) =
1

R|λ|
|f(a, λ)|f

(
1
a
,−|λ|

)
;

γP (a; 1) =
1
Ra2

ΠR(a, a)f
(

1
a
,−a

)
[8], [49].

(b) gP (a, λ) =
(

1
R|λ|

)s(a)

|f(a, λ)| where s(a) =
1
2

(
1− log a

logR

)
;

AP (a; 1) = SP (a, 1) =
1
a

(
1
Ra

)s(a)

ΠR(a, a) [2], [15].

(c) m(k)
P (a, λ) = |f(a, λ)|

[(
1

R|λ|

)lk(a)

f(bk(a),−|λ|)
]1/k

where lk(a) := E+(ks(a)), bk(a) := R1−2(lk(a)−ks(a)) and f(R, ·) :≡ 1;

γ
(k)
P (a; 1) =

1
a

ΠR(a, a)
[(

1
Ra

)lk(a)

f(bk(a),−a)
]1/k

.

(d) tanh kP (a, λ) = k∗P (a, λ) =
[
x2 + 1− 2x cos(π(s− t))
x2 + 1− 2x cos(π(s+ t))

]1/2

where a = R1−2s (i.e. s = s(a) in (b)), λ = eiϕR1−2t with −π < ϕ ≤ π and
x := exp(πϕ/(2 logR));

κP (a; 1) =
π

4a logR sin(πs)
[2].

In order to prove (c) observe that, by Lemma 1.22, the function

h(ζ) := [f(a, ζ)]k
(

1
Rζ

)lk(a)

f(bk(a),−e−iϕζ)

is an extremal function for m(k)
P (a, |λ|eiϕ).

The proof of (d) only uses the explicit form for the universal covering
of P .

The above formulas imply the following remarks:

1) m(k)
P → gP and γ

(k)
P → AP as k →∞.

2) For fixed k ∈ N and a the following conditions are equivalent:

(i) ∃λ0 ∈ P \ {a} : m(k)
P (a, λ0) = gP (a, λ0),

(ii) m(k)
P (a, ·) = gP (a, ·),

(iii) γ(k)
P (a; 1) = AP (a; 1),

(iv) k ≥ 2 and ks(a) ∈ N.
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3) c∗P (a, ·) < m
(k)
P (a, ·) in P \ {a} and γP (a; 1) < γ

(k)
P (a; 1) if k ≥ 2 (use

Lemma 1.22).

4) For k, k′ ≥ 2, k 6= k′, the following statements are equivalent:

(i) m(k)
P (a, ·) = m

(k′)
P (a, ·),

(ii) m(k)
P (a, ·) = m

(k′)
P (a, ·) = gP (a, ·),

(iii) ks(a), k′s(a) ∈ N.

5) For k, k′ ≥ 2, k 6= k′:

(i) for λ0 ∈ P there exists λ ∈ P \ {λ0} with

m
(k)
P (λ, λ0) = m

(k′)
P (λ, λ0) ;

(ii) there exists a with γ
(k)
P (a; 1) = γ

(k′)
P (a; 1).

6) For a and any λ = |λ|eiϕ, 0 < ϕ < 2π,

cP (a, λ) < ciP (a, λ)

(use Lemmas 1.20 and 1.22; cf. Problem 1.9 (2)).

Besides Example 1.9 the higher order Möbius functions are known in the
following case.

Example 1.24 ([23]). Let G be a complete Reinhardt domain in Cn with
(|z1|t, . . . , |zn|t) ∈ G whenever (z1, . . . , zn) ∈ G and t > 0. Put T (G) :=
{α ∈ (Zn+)∗ : zα ∈ H∞(G)}. Then we have

m
(k)
G (0, z) = max{|zα| : α ∈ T (G), |α| ≥ k} .

For more concrete examples of this type compare [23], [3].

Problems. 1.1. Decide whether for any domain G ∈ G which is
cG-hyperbolic, the cG-topology coincides with the ‖ ‖-topology of G (2).

1.2. Is gG upper semicontinuous for arbitrary G ∈ G?
1.3. In Example 1.8 calculate gG(a, ·) for all a ∈ G. Describe gG for

G := {z ∈ Cn : 1 < ‖z‖ < 2} (n ≥ 2).
1.4. Let G0 := {z ∈ Cn : ‖z‖2 + (Re z2

1)2 < 1}; observe G0 is strictly
linearly convex but not convex. According to an information by M. Passare
this example is due to V. A. Stepanenko. Is G0 biholomorphic to a convex
domain? If yes, give an example of a domain G, not biholomorphic to a
convex domain, with cG = kG.

1.5. Under what conditions is SG upper semicontinuous?
1.6. Is ciG =

∫
γG for any G ∈ G?

1.7. Let G be as in 1.21. Calculate c∗G(0, ·) on G.
1.8. Find criteria under which cG = ciG holds.

(2) Cf. the addendum.



Invariant pseudodistances and pseudometrics 179

1.9. Calculate ciP .

II. Completeness. First we consider the general situation of a pair
(G, d) where G ⊂ Cn is an arbitrary domain and where d : G×G→ R+ is
a continuous distance on G (i.e. G is d-hyperbolic)—for example d = cG or
d = kG.

Definition 2.1. (a)G is called d-Cauchy complete if (G, d) is a complete
metric space (in the sense of functional analysis);

(b) G is said to be d-complete if, for any d-Cauchy sequence {zν} ⊂ G,
there exists a point z0 ∈ G with zν → z0 in the ‖ ‖-topology;

(c) G is called d-finitely compact if, whenever z0 ∈ G and R > 0, the
d-ball Bd(z0, R) := {z ∈ G : d(z, z0) < R} is relatively compact in G w.r.t.
the ‖ ‖-topology.

Observe that the condition in (c) implies that the d-topology of G co-
incides with the ‖ ‖-topology of G and that G is d-complete and d-Cauchy
complete.

Moreover, there is the following general result due to Hopf–Rinow [43]
(see also [10]).

Theorem 2.2. Let d : G × G → R+ be a continuous inner distance on
the domain G ⊂ Cn. Then the following properties are equivalent :

(i) G is d-Cauchy complete;
(ii) G is d-complete;
(iii) G is d-finitely compact ;
(iv) any half-segment α : [0, b) → G (i.e. α is a continuous curve with

d(α(t′), α(t′′)) = t′′−t′ whenever 0 ≤ t′ < t′′ < b) has a continuous extension
α : [0, b]→ G.

Since kG is inner we obtain

Corollary 2.3. Let G ⊂ Cn be kG-hyperbolic. Then all notions of
Definition 2.1 w.r.t. (G, kG) coincide.

Therefore, in the sequel, we will only use the term kG-complete or
Kobayashi complete. On the other hand, cG is not always inner. Never-
theless there is the following equivalence statement due to N. Sibony [46].

Theorem 2.4. Let G be a cG-hyperbolic domain in the complex plane.
Then the following properties are equivalent :

(i) G is cG-Cauchy complete;
(ii) G is cG-finitely compact.

Observe it is still an open problem whether this result extends to higher
dimensions (cf. Problem 2.1).
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To understand the notion of cG-finite compactness better from the point
of view of complex analysis we quote the following reformulation [40].

Proposition 2.5. For a cG-hyperbolic domain G ⊂ Cn the following
properties are equivalent :

(i) G is cG-finitely compact ;
(ii) for any z0 ∈ G and for any sequence {zν} ⊂ G without accumulation

points in G, there exists f ∈ O(G,E) with f(z0) = 0 and sup |f(zν)| = 1.

R e m a r k s. (a) Hence any cG-finitely compact domain G ⊂ Cn is
H∞(G)-convex and an H∞(G)-domain of holomorphy.

(b) If G is cG-complete then G is an H∞(G)-domain of holomorphy (cf.
Problem 2.2).

(c) Observe [11], [21] that any bounded smooth pseudoconvex domain
G ⊂ Cn is even A∞(G)-convex and an A∞(G)-domain of holomorphy (cf.
Problem 2.3).

(d) There is a pseudoconvex taut domain smooth except at one point
which is not kG-complete and therefore not cG-finitely compact. This exam-
ple is due to N. Sibony (personal communication) (cf. (c) and Problem 2.3).

Using the existence of peak functions [7], [18] and Proposition 2.5 we
obtain the following examples of cG-finitely compact domains:

(i) bounded convex or bounded strongly pseudoconvex domains in Cn,
(ii) bounded smooth pseudoconvex domains in C2 of finite type.

Moreover, we have

Theorem 2.6 ([40]). Any bounded Reinhardt domain G ⊂ Cn of holo-
morphy , with 0 ∈ G, is cG-finitely compact.

Observe that the assumption 0 ∈ G is important; for example the Har-
togs triangle G = {(z, w) ∈ C2 : |z| < |w| < 1} is not cG-complete.

In [46] there is an example of a domain G  E×E for which any bounded
holomorphic function f extends holomorphically to the bidisc. Hence G is
not cG-Cauchy complete. But its construction implies that G is locally
cG-finitely compact.

On the other hand, there is the following result for the Kobayashi com-
pleteness.

Theorem 2.7 ([16]). Let G be a bounded domain in Cn and assume that
for any z0 ∈ ∂G there exists a neighborhood U = U(z0) such that U ∩G is
Kobayashi complete. Then G is kG-complete.

Now we are going to discuss the class of balanced domains.
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Let G = Gh be a balanced domain in Cn (cf. Example 1.17). We recall
the following properties of h which reflect the properties of G = Gh (cf. [6],
[32], [48]):

(i) G = Gh is pseudoconvex ⇔ h is log-psh.;
(ii) G = Gh is taut ⇔ h is log-psh. and continuous;
(iii) G = Gh is a H∞(G)-domain of holomorphy ⇔ h is log-psh. and

{z ∈ Cn : h is not continuous at z} is pluripolar;
(iv) if G = Gh is kG-complete then G is bounded and taut.

Observe that any bounded Reinhardt domain G of holomorphy, with
0 ∈ G, is a taut balanced domain. But, in contrast to Theorem 2.6, the
following result is true.

Theorem 2.8 ([26]). For n ≥ 3, there exists a bounded balanced pseudo-
convex domain G = Gh with continuous Minkowski function h which is not
kG-complete.

In dimension n = 2 it is still unclear whether such an example can exist
(cf. Problems 2.4 and 2.5).

We conclude Section 2 with some results on completeness w.r.t. the
Bergman distance. During this discussion we always assume that G is a
bounded domain in Cn.

The Bergman kernel function of G will be denoted by KG : G×G→ C,
the Bergman metric by

βG(z;X) :=
[ n∑
ν,µ=1

∂2 logKG(z, z)
∂zν∂zµ

XνXµ

]1/2

and its integrated distance—the Bergman distance—by bG : G×G→ R+.
Observe that (βG) and (bG) are, in general, not distance decreasing un-

der holomorphic mappings but they are invariant under biholomorphic map-
pings. In addition, bG = biG, hence all completeness notions of Definition 2.1
coincide.

R e m a r k. cG ≤ bG [10], [20] and therefore any bounded cG-complete
domain is bG-complete.

The class of bG-complete domains is fairly large as the following two
results show.

Theorem 2.9 ([39]). Any bounded pseudoconvex domain G ⊂ Cn with
C1-boundary is bG-complete.

Theorem 2.10 ([25]). Any bounded balanced domain of holomorphy with
continuous Minkowski function is bG-complete.
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R e m a r k. To prove bG-completeness the following two properties have
to be verified: (i) H∞(G) is (locally) dense in L2

h(G), and (ii) KG(z, z)→∞
whenever z → ζ ∈ ∂G (cf. Problem 2.6).

Comparing Theorems 2.8 and 2.10 we obtain

Corollary 2.11. For any n ≥ 3 there exists a bounded balanced domain
of holomorphy G ⊂ Cn for which there is no estimate bG ≤ CkG (C > 0).

Note it is not known whether such an estimate is true in the two-dimen-
sional case (cf. Problem 2.7).

Problems. 2.1. Does Theorem 2.4 remain true if G is an arbitrary
cG-hyperbolic domain in Cn (n > 1)?

2.2. Prove that any cG-complete domain G ⊂ Cn is H∞(G)-convex.
2.3. Does there exist a bounded smooth pseudoconvex domain G which

is not cG-finitely compact or, even more, which is not kG-complete?
2.4. Does Theorem 2.8 still hold in dimension n = 2?
2.5. Describe “completeness” of G = Gh using the properties of the

Minkowski function h.
2.6. Is there a bounded pseudoconvex domain G ⊂ Cn, with int(G) = G,

for which limz→∂GKG(z, z) 6=∞?
2.7. Describe sufficient criteria in data of h which imply bG ≤ CkG,

G = Gh.

III. Product property

Definition 3.1 ([28]). Let F = (FG)G∈G be a Schwarz–Pick system of
functions or pseudodistances (cf. Definitions 1.1, 1.4). Let G1, G2 ∈ G. We
say that F has the product property on G1 ×G2 if for any z′j , z

′′
j ∈ Gj

(3.1) FG1×G2((z′1, z
′
2), (z′′1 , z

′′
2 )) = max{FG1(z′1, z

′′
1 ), FG2(z′2, z

′′
2 )} .

We shortly say that F has the product property if (3.1) holds for any
G1, G2 ∈ G and z′j , z

′′
j ∈ Gj .

If δ = (δG)G∈G is a Schwarz–Pick system of pseudometrics (cf. Defini-
tion 1.10) then we say that δ has the product property on G1×G2 if for any
zj ∈ Gj ⊂ Cnj 3 Xj

(3.2) δG1×G2((z1, z2); (X1, X2)) = max{δG1(z1;X1), δG2(z2;X2)}.
δ has the product property if (3.2) is fulfilled for any G1, G2 ∈ G and

zj ∈ Gj ⊂ Cnj 3 Xj .
Note that in (3.1) (resp. (3.2)) the inequality “≥” is always fulfilled.

Moreover, if z′1 = z′′1 or z′2 = z′′2 (resp. X1 = 0 or X2 = 0) then the equality
is trivially satisfied.

The following elementary example shows that in the class of all Schwarz–
Pick systems the product property is very exceptional.
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Example 3.2. Let F (0), F (1) be Schwarz–Pick systems of functions.
Put F (t)

G := (1 − t)F (0)
G + tF

(1)
G , F (t) := (F (t)

G )G∈G, 0 < t < 1. Note that
F (t) is also a Schwarz–Pick system of functions. Suppose that for some
G0 ∈ G, F (0)

G0
6≡ F (1)

G0
(e.g. F (0) = c∗, F (1) = k∗, G0 = P = the annulus—cf.

Example 1.23). Then for every 0 < t < 1, F (t) does not have the product
property on G0 × E.

Notice that similar examples may easily be produced for Schwarz–Pick
systems of pseudodistances and pseudometrics.

The product property is inherited by inner pseudodistances (Proposi-
tion 3.3) and by integrated forms (Proposition 3.5)—cf. Definition 1.2 and
the definition before Theorem 1.19.

Proposition 3.3. Let d = (dG)G∈G be a Schwarz–Pick systems of pseu-
dodistances. If d has the product property on G1 × G2 then so does di =
(diG)G∈G.

For the proof we need the following elementary lemma:

Lemma 3.4. Let G ∈ G and let α : [0, 1]→ G be a continuous curve with
l := ldG

(α) < ∞. Then for every ε > 0 there exists an increasing bijection
p : [0, 1]→ [0, 1] such that

ldG
((α ◦ p)|[t1,t2]) ≤ (l + ε)(t2 − t1) , 0 ≤ t1 < t2 ≤ 1 .

P r o o f. Take p(t) := q−1(t(l + ε)), 0 ≤ t ≤ 1, where q(u) := εu +
ldG

(α|[0,u]), 0 ≤ u ≤ 1.

P r o o f o f P r o p o s i t i o n 3.3. Fix z′j , z
′′
j ∈ Gj , ε > 0 and let αj :

[0, 1] → Gj be a continuous curve such that αj(0) = z′j , αj(1) = z′′j and
lj − diGj

(z′j , z
′′
j ) ≤ ε, where lj := ldGj

(αj). In view of Lemma 3.4, we may
assume that ldGj

(αj |[t1,t2]) ≤ (lj + ε)(t2 − t1), 0 ≤ t1 < t2 ≤ 1.
Suppose that l1 ≥ l2. We only need to show that ldG1×G2

(α1 × α2) ≤
l1 + ε. Take N ∈ N and 0 = t0 < . . . < tN = 1. Then

N∑
j=1

dG1×G2((α1(tj−1), α2(tj−1)), (α1(tj), α2(tj)))

=
N∑
j=1

max{dG1(α1(tj−1), α1(tj)), dG2(α2(tj−1), α2(tj))}

≤
N∑
j=1

max{(l1 + ε)(tj − tj−1), (l2 + ε)(tj − tj−1)} = l1 + ε .

Proposition 3.5. Let δ = (δG)G∈G be a Schwarz–Pick system of pseu-
dometrics. Suppose that for some G1, G2 ∈ G, δ has the product property
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on G1 ×G2 and that δGj
is upper semicontinuous (j = 1, 2) (in particular ,

δG1×G2 is also upper semicontinuous). Then for any z′j , z
′′
j ∈ Gj( ∫

δG1×G2

)
((z′1, z

′
2), (z′′1 , z

′′
2 ))

= max
{( ∫

δG1

)
(z′1, z

′′
1 ),
( ∫

δG2

)
(z′2, z

′′
2 )
}
.

P r o o f. Fix z′j , z
′′
j ∈ Gj , ε > 0 and let αj : [0, 1] → Gj be a C1 curve

with αj(0) = z′j , αj(1) = z′′j and
∫ 1

0
δGj (αj(t); α̇j(t)) dt − lj < ε, where

lj := (
∫
δGj )(z′j , z

′′
j ). Suppose that l1 ≥ l2. Let bj := [0, 1] → R>0 be a

continuous function such that bj ≥ δGj
(αj ; α̇j) (j = 1, 2) and

∫ 1

0
b1(t) dt =∫ 1

0
b2(t) dt ≤ l1 + ε.
Set Bj(s) :=

∫ s
0
bj(t) dt, 0 ≤ s ≤ 1 (j = 1, 2) and B := B−1

2 ◦B1 : [0, 1]→
[0, 1], α̃2 := α2 ◦B. It is enough to prove that

1∫
0

δG1×G2((α1(t), α̃2(t)); (α̇1(t), ˙̃α2(t))) dt ≤ l1 + ε .

We have
1∫

0

δG1×G2((α1(t), α̃2(t)); (α̇1(t), ˙̃α2(t))) dt

=
1∫

0

max{δG1(α1(t); α̇1(t)), B′(t)δG2(α2(B(t)); α̇2(B(t)))} dt

≤
1∫

0

max{b1(t), B′(t)b2(B(t))} dt =
1∫

0

b1(t) dt ≤ l1 + ε ,

which concludes the proof.

Now we are going to discuss the product properties for c, c∗, ci, k, k∗, γ
and κ.

Theorem 3.6 ([45]). κ and k∗ have the product property. In consequence,
in view of Theorem 1.19(a) and Proposition 3.5, k has the product property.

In view of Theorem 1.12, we get the following important

Corollary 3.7. If G1, G2 are biholomorphically equivalent to convex
domains then any Schwarz–Pick system has the product property on G1×G2.

Theorem 3.8 ([24]). c has the product property. In particular ,

c∗ has the product property ,
ci has the product property (Proposition 3.3),
γ has the product property (Example 1.11(a)).
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The question whether the pluri-complex Green function and the Azukawa
pseudometric have the product properties is open (cf. Problem 3.1). We only
have the following partial result.

Theorem 3.9 ([28]). For any domains of holomorphy G1, G2, g has the
product property on G1 × G2. In consequence, in view of Example 1.11(c),
if G1, G2 are domains of holomorphy then A has the product property on
G1 ×G2.

The product property for the Sibony pseudometric is unknown (cf. Prob-
lem 3.2).

We pass to the product properties for m(p) and γ(p), p ≥ 2. By Exam-
ple 1.24, we get

Example 3.10. Let Gj be a complete Reinhardt domain in Cnj with
(|z1|t, . . . , |znj |t) ∈ Gj for (z1, . . . , znj ) ∈ Gj , t > 0, j = 1, 2. Then

m
(p)
G1×G2

((0, 0), (z1, z2))

= max{{[m(k)
G1

(0, z1)]k[m(p−k)
G2

(0, z2)]p−k}1/p : k = 0, . . . , p} ,
(z1, z2) ∈ G1 ×G2

(where m(0) :≡ 1). In particular, m(p) and γ(p) with p ≥ 3 do not have the
product property (take G1 := {(z1, z2) ∈ C2 : |z1z

p−2
2 | < 1}, G2 := E—cf.

[28]).

In view of the above example, we conjectured in [28] that the “correct”
forms of the product properties for m(p) and γ(p) are the following :

m
(p)
G1×G2

((z′1, z
′
2), (z′′1 , z

′′
2 ))

= max{{[m(k)
G1

(z′1, z
′′
1 )]k[m(p−k)

G2
(z′2, z

′′
2 )]p−k}1/p : k = 0, . . . , p} ,

γ
(p)
G1×G2

((z1, z2); (X1, X2))

= max{{[γ(k)
G1

(z1;X1)]k[γ(p−k)
G2

(z2;X2)]p−k}1/p : k = 0, . . . , p} .

Note that the inequalities “≥” are always satisfied and that for p = 1, 2
the above “product properties” coincide with the standard ones.

Unfortunately, for p ≥ 2, even these general product properties are not
true (cf. Problem 3.3), namely:

Example 3.11. Let P = P (R) := {λ ∈ C : 1/R < |λ| < R} (R > 1).
Then for every p ≥ 2 and for any R� 1,

(3.3) γ
(p)
P×E((a, 0); (1, Y ))

> max{{[γ(k)
P (a; 1)]kY p−k}1/p : k = 0, . . . , p} = γ

(p)
P (a; 1) ,

where a = a(R, p) := R(p−1)/(p+1), Y = Y (R, p) := γ
(p)
P (a; 1).
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P r o o f. Fix p ≥ 2. In view of Example 1.23(a),

(3.4) γ
(k)
P (a; 1) =

1
a

ΠR(a, a)
[

1
Ra

f(bk,−a)
]1/k

, 1 ≤ k ≤ p ,

where bk = bk(R, p) := R2k/(p+1)−1 (in particular, bp = a). In view of (3.4),
we get

[max{[γ(k)
P (a; 1)]kY p−k : k = 1, . . . , p− 1}]p

=
[

1
a

ΠR(a, a)
]p2

×max
{[

1
Ra

f(bk,−a)
]p[ 1

Ra
f(a,−a)

]p−k
: k = 1, . . . , p− 1

}
.

Observe that[
1
Ra

f(bk,−a)
]p [ 1

Ra
f(a,−a)

]−k
→ 2−k as R→∞ (1 ≤ k ≤ p− 1) .

Hence

max{{[γ(k)
P (a; 1)]kY p−k}1/p : k = 0, . . . , p} = γ

(p)
P (a; 1) if R� 1 .

For the proof of the strict inequality in (3.3), let

h(λ, ξ) := α1h1(λ)ξp−1 + αphp(λ) , λ ∈ P , ξ ∈ E ,
where

h1(λ) :=
1
Rλ

f(a, λ)f
(

2
R
,−λ

)
, hp(λ) :=

1
Rλ

[f(a, λ)]pf
(
R

2
,−λ

)
,

α1 :=
2

2 +R2/(p+1)
, αp :=

R2/(p+1)

2 +R2/(p+1)
(R > 2(p+1)/2) .

Then ord(a,0) h = p and α1|h1|+ αp|hp| = 1 on ∂P . Consequently,

[γ(p)
P×E((a, 0); (1, Y ))]p

≥
[

1
a

ΠR(a, a)
]p 1
Ra

{
α1f

(
2
R
,−a

)[
1
Ra

f(a,−a)
](p−1)/p

+ αpf

(
R

2
,−a

)}
.

To conclude the proof, it remains to observe that{
α1f

(
2
R
,−a

)[
1
Ra

f(a,−a)
](p−1)/p

+ αpf

(
R

2
,−a

)}
[f(a,−a)]−1

→ 1 + 2(p−1)/p

2
as R→∞ .

Problems. 3.1. Decide whether (gG)G∈G and (AG)G∈G have the prod-
uct properties.
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3.2. Does (SG)G∈G have the product property?
3.3. What are “product properties” for m(p) and γ(p) with p ≥ 2?
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the topology—the case of domains, C. R. Acad. Sci. Paris 312 (1991), 77–79.

[56] M. Jarn ick i and P. Pf lug, The inner Carathéodory distance for the annulus,
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