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The homogeneous transfinite diameter
of a compact subset of CN

by Mieczys law Jdrzejowski (Kraków)

Abstract. Let K be a compact subset of CN . A sequence of nonnegative numbers
defined by means of extremal points of K with respect to homogeneous polynomials is
proved to be convergent. Its limit is called the homogeneous transfinite diameter of K.
A few properties of this diameter are given and its value for some compact subsets of CN
is computed.

1. Introduction. Let K be a compact subset of CN . For a nonnegative
integer s let

hs :=
(
s+N − 1
N − 1

)
.

Let es,1(z), . . . , es,hs
(z) be all monomials zα := zα1

1 . . . zαN

N of degree s
ordered lexicographically.

For an integer k (1 ≤ k ≤ hs) let x(k) = {x1, . . . , xk} be a system of k
points in CN . Define the “homogeneous Vandermondian” Ws(x(k)) of the
system x(k) by

Ws(x(k)) := det[es,i(xj)]i,j=1,...,k.

Then Ws(x(k)) is a polynomial in x1, . . . , xk of degree sk. Let

Ws,k := sup{|Ws(x(k))| : x(k) ⊂ K}.
A system x(k) of k points in K is called a system of extremal points of K
with respect to homogeneous polynomials if

|Ws(x(k))| = Ws,k.

In this paper we prove that for every compact subset K of CN the limit

D(K) := lim
s→∞

(Ws,hs
)1/(shs)

exists. We call it the homogeneous transfinite diameter of K.
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This result gives a positive answer to a question put in [11] (see also
[12], p. 93). It is obvious that the limit exists for N = 1. For N = 2 the
convergence was proved by Leja [4] (see also [5], p. 261). The limit is then
equal to

√
2∆(K), where ∆(K) is the triangular ecart of K.

We also prove a few properties of D(K) (e.g. comparison of D(K) with
some other constants connected with K). Using a characterization of D(K)
in terms of directional Chebyshev constants, we compute D(K) for

K := {(z1, . . . , zN ) ∈ CN : |z1|p1 + . . .+ |zN |pN ≤M},

where M,p1, . . . , pN are real positive constants.
We also indicate another method for computing D(K) without calculat-

ing Ws,hs
.

2. Preliminaries. Let K be a compact subset of CN . Let ‖f‖K denote
the supremum norm of a function f : K → C.

Definition 2.1. K is called unisolvent with respect to homogeneous
polynomials if no nonzero homogeneous polynomial vanishes identically on
K.

Definition 2.2. K is called circled if

{(eiθz1, . . . , e
iθzN ) : (z1, . . . , zN ) ∈ K, θ ∈ R} ⊂ K.

Definition 2.3. K is called N -circular if

{(eiθ1z1, . . . , e
iθN zN ) : (z1, . . . , zN ) ∈ K, θ1, . . . , θN ∈ R} ⊂ K.

Definition 2.4. Let µ be a nonnegative Borel measure with suppµ ⊂
K. The pair (K,µ) is said to satisfy the Bernstein–Markov property if for
every λ > 1 there exists an M > 0 such that for all polynomials p

‖p‖K ≤Mλdeg p‖p‖2, where ‖p‖2 :=
( ∫
K

|p|2 dµ
)1/2

.

R e m a r k. A few examples of pairs satisfying the Bernstein–Markov
property can be found e.g. in [2], [7], [9], [13].

Let δ denote the Lebesgue surface area measure on the unit sphere

S := {z ∈ CN : |z1|2 + . . .+ |zN |2 = 1},

normalized so that
∫
S
dδ = 1.

Definition 2.5 (see [1]). The Alexander constant γ(K) is

γ(K) := inf
s∈N

(γs(K))1/s = lim
s→∞

(γs(K))1/s,
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where γs(K) := inf{‖Q‖K}, the infimum being taken over all homogeneous
polynomials Q of N complex variables of degree s, normalized so that∫

S

log |Q|1/s dδ = κN :=
∫
S

log |zN | dδ.

It is known that

κN = −1
2

(
1 +

1
2

+ . . .+
1

N − 1

)
.

Definition 2.6 (see [12]). The Chebyshev constant %(K) is

%(K) := inf
s∈N

(%s(K))1/s = lim
s→∞

(%s(K))1/s,

where %s(K) := inf{‖Q‖K}, the infimum being taken over all homoge-
neous polynomials Q of N complex variables of degree s, normalized so
that ‖Q‖S = 1.

3. The transfinite diameter of a compact subset K of CN . For a
nonnegative integer s put

ms :=
(
s+N

N

)
.

Let e1(z), e2(z), . . . be all monomials zα := zα1
1 . . . zαN

N ordered so that
the degrees of the ej(z) are nondecreasing and the monomials of a fixed
degree are ordered lexicographically. It is easy to check that es+1,k = ems+k.

For an integer k let x(k) = {x1, . . . , xk} be a system of k points in CN .
Define the “Vandermondian” V (x(k)) of the system x(k) by

V (x(k)) := det[ei(xj)]i,j=1,...,k.

Then V (x(ms)) is a polynomial in x1, . . . , xms of degree

ls :=
ms∑
j=1

deg ej =
s∑

k=0

khk.

It is easy to prove that ls = N
(
s+N
N+1

)
. Put

Vk := sup{|V (x(k))| : x(k) ⊂ K}.

Zakharyuta proved in [14] that for every compact subset K of CN the
limit

d(K) := lim
s→∞

(Vms)1/ls

exists; it is called the transfinite diameter of K. This result gave a positive
answer to a question put in [6]. For N = 1 the convergence was proved by
Fekete [3] (see also [5]).
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Zakharyuta also computed d(K) in terms of the directional Chebyshev
constants. Put

Σ = ΣN−1 :=
{
θ = (θ1, . . . , θN ) ∈ RN :

N∑
j=1

θj = 1, θj ≥ 0
}
,

Σ0 = ΣN−1
0 :=

{
θ ∈ ΣN−1 : θj > 0 for j = 1, . . . , N

}
.

For an integer j ≥ 1 let α(j) := (α1, . . . , αN ), where zα1
1 . . . zαN

N = ej(z).
Let

Mj := inf
{∥∥∥ej(z) +

∑
i<j

ciei(z)
∥∥∥
K

: ci ∈ C
}

denote the Chebyshev constant of K associated to the monomial ej(z) and
the given ordering. It is known that the infimum is attained for at least
one polynomial tj(z) = ej(z) +

∑
i<j ciei(z). It is called the Chebyshev

polynomial of K. Put

τj := M
1/|α(j)|
j ,

where, as usual, |α(j)| = α1 + . . .+αN is the length of the multiindex α(j).
For θ ∈ Σ let τ(K, θ) and τ−(K, θ) denote the “Chebyshev constants in

the direction θ”, i.e.

τ(K, θ) := lim sup{τj : j →∞, α(j)/|α(j)| → θ},
τ−(K, θ) := lim inf{τj : j →∞, α(j)/|α(j)| → θ}.

Zakharyuta proved that τ(K, θ) = τ−(K, θ) for each θ ∈ Σ0 and that
log τ(K, θ) is a convex function on Σ0. Let

τ(K) := exp
{

1
mesΣ

∫
Σ

log τ(K, θ) dω(θ)
}
,

where mesΣ :=
∫
Σ
dω(θ) and ω denotes the Lebesgue surface area measure

on the hyperplane {θ1 + . . . + θN = 1} in RN . Zakharyuta proved that
d(K) = τ(K).

4. The homogeneous transfinite diameter. For two integers s, k
(s ≥ 0, 1 ≤ k ≤ hs) put

Ms,k := inf
{∥∥∥es,k(z) +

∑
i<k

cies,i(z)
∥∥∥
K

: ci ∈ C
}
.

It is easy to check that there exists at least one homogeneous polynomial
ts,k(z) = es,k(z) +

∑
i<k cies,i(z) attaining the infimum. It is called the

Chebyshev polynomial of K.
Let β(s, k) := α(ms−1 + k), where m−1 := 0. Hence β(s, k) =

(β1, . . . , βN ), where zβ1
1 . . . zβN

N = es,k(z). It is obvious that |β(s, k)| = s.
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Put
τs,k := M

1/s
s,k .

For θ ∈ Σ let
τ̃(K, θ) := lim sup{τs,k : s→∞, β(s, k)/s→ θ},
τ̃−(K, θ) := lim inf{τs,k : s→∞, β(s, k)/s→ θ}.

It is clear that τ̃(K, θ) ≤ C if

K ⊂ {z ∈ CN : |z1| ≤ C, . . . , |zN | ≤ C}.
The following lemmas can be proved in the same manner as the similar

results in [14] (it suffices to replace the polynomials ej(z) +
∑
i<j ciei(z) by

es,k(z) +
∑
i<k bies,i(z), where es,k = ej):

Lemma 4.1. For each θ ∈ Σ0, τ̃(K, θ) = τ̃−(K, θ).

Lemma 4.2. The function log τ̃(K, θ) is convex in Σ0.

Corollary 4.3. If τ̃(K, θ′) = 0 for some θ′ ∈ Σ0, then τ̃(K, θ) ≡ 0
in Σ0.

Corollary 4.4. The function log τ̃(K, θ) is continuous in Σ0.

Lemma 4.5. If θ ∈ Σ \Σ0, then

τ̃−(K, θ) = lim inf{τ̃(K, θ′) : θ′ → θ, θ′ ∈ Σ0} .

Corollary 4.6.
lim sup
s→∞

τs,k = sup{τ̃(K, θ) : θ ∈ Σ},

lim inf
s→∞

τs,k = inf{τ̃(K, θ) : θ ∈ Σ}

= inf{τ̃(K, θ) : θ ∈ Σ0} = inf{τ̃−(K, θ) : θ ∈ Σ}.

Corollary 4.7. If τ̃(K, θ) 6≡ 0 in Σ0, then inf{τ̃(K, θ) : θ ∈ Σ} > 0.

Definition 4.8. The Chebyshev constant τ̃(K) is

τ̃(K) := exp
{

1
mesΣ

∫
Σ

log τ̃(K, θ) dω(θ)
}
.

If τ̃(K, θ) ≡ 0 in Σ0, then τ̃(K) = 0. Assume that τ̃(K, θ) 6≡ 0 in Σ0.
Then log τ̃(K, θ) is continuous in Σ0 and bounded on Σ (see Corollaries
4.4 and 4.7). Therefore the integral above exists and is finite. Hence 0 <
τ̃(K) <∞ in this case.

Lemma 4.9. lims→∞ τ̃0
s (K) = τ̃(K), where

τ̃0
s (K) :=

( hs∏
k=1

τs,k

)1/hs

.
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Lemma 4.10. Let s, k be nonnegative integers such that 1 ≤ k ≤ hs.
Then

τss,kWs,k−1 ≤Ws,k ≤ kτ ss,kWs,k−1,

where Ws,0 := 1.

Corollary 4.11. If Ws,k > 0 for each k ∈ {1, . . . , hs}, then

(τ̃0
s (K))shs ≤Ws,hs ≤ hs!(τ̃0

s (K))shs .

Theorem 4.12. For every compact subset K of CN the limit

D(K) := lim
s→∞

(Ws,hs
)1/(shs)

exists and is equal to τ̃(K).

We call this limit the homogeneous transfinite diameter of K.

P r o o f. If K is not unisolvent with respect to homogeneous polynomials
then Q ≡ 0 on K, where Q = es,k +

∑
i<k cies,i. Hence for each positive

integer j

zj1 . . . z
j
NQ(z1, . . . , zN ) ≡ 0 on K.

Letting j → ∞ we obtain τ̃(K, θ′) = 0, where θ′ = (1/N, . . . , 1/N). By
Corollary 4.3, τ̃(K, θ) ≡ 0 on Σ0. On the other hand, one sees immediately
that Wr,hr

= 0 for r ≥ s, which completes the proof in this case.
Assume now that K is unisolvent with respect to homogeneous polyno-

mials. Then τs,k > 0 for s ≥ 0 and 1 ≤ k ≤ hs. So Ws,k > 0 by Lemma 4.10.
Applying Lemma 4.9 and Corollary 4.11 we get the desired conclusion.

Corollary 4.13. If K is not unisolvent with respect to homogeneous
polynomials, then D(K) = 0.

5. Properties of the constant D(K)

Lemma 5.1. For every compact subset K of CN , d(K) ≤ D(K). If K is
circled , then d(K) = D(K).

P r o o f. It is obvious that ‖tj‖K ≤ ‖ts,k‖K if β(s, k) = α(j), i.e. es,k =
ej . By Theorem 4.12 and the equality d(K) = τ(K), it suffices to show that
‖ts,k‖K ≤ ‖tj‖K if K is circled. By the Cauchy inequalities ‖tj‖K ≥ ‖qj‖K ,
where tj = qj + pj , qj is homogeneous and deg pj < deg tj (or pj ≡ 0).
Obviously, ‖qj‖K ≥ ‖ts,k‖K , which proves the lemma.

Lemma 5.2. If K is N-circular and θ ∈ Σ0, then

τ(K, θ) = τ̃(K, θ) = sup{|z1|θ1 . . . |zN |θN : (z1, . . . , zN ) ∈ K}.
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P r o o f. Clearly, ‖tj‖K ≤ ‖ts,k‖K ≤ ‖ej‖K , where es,k = ej . Since K is
N -circular, by the Cauchy inequalities ‖ej‖K ≤ ‖tj‖K . Hence for θ ∈ Σ0

τ(K, θ) = τ̃(K, θ) = lim{‖ej‖1/|α(j)|
K : j →∞, α(j)/|α(j)| → θ}

= sup{|z1|θ1 . . . |zN |θN : (z1, . . . , zN ) ∈ K}.
which is the desired conclusion.

Lemma 5.3. D(K) = D(K̂), where K̂ is the convex hull of K with respect
to homogeneous polynomials, i.e.

K̂ := {z ∈ CN : |Q(z)| ≤ ‖Q‖K for all homogeneous polynomials Q}.
P r o o f. It suffices to use Theorem 4.12 together with the obvious equal-

ity τ̃(K, θ) = τ̃(K̂, θ).

Lemma 5.4. Let K1 = F (K2), where F (z1, . . . , zN ) := (c1z1, . . . , cNzN )
for (z1, . . . , zN ) ∈ CN and c1, . . . , cN ∈ C. Then

D(K1) = |c1 . . . cN |1/ND(K2).

P r o o f. It is sufficient to compare the constants Ws,hs for K1 with those
for K2. The details are left to the reader.

Lemma 5.5. If U : CN→CN is a unitary transformation, then D(U(K))
= D(K).

P r o o f. The lemma can be proved in the same way as the similar result
d(U(K)) = d(K) (see [8]).

Corollary 5.6. If A : CN → CN is a linear mapping , then

D(A(K)) = |detA|1/ND(K).

P r o o f. Combine Lemmas 5.4 and 5.5.

Theorem 5.7. If K is compact and R is a positive constant such that

K ⊂ BR := {(z1, . . . , zN ) ∈ CN : |z1|2 + . . .+ |zN |2 ≤ R2},
then

%(K)/
√
N ≤ D(K) ≤ R1−1/N%(K)1/N .

P r o o f. The theorem can be proved in the same manner as Theorem 3
in [8] (it suffices to replace ej(z) +

∑
i<j ciei(z) by es,k(z) +

∑
i<k bies,i(z),

where es,k = ej).

Corollary 5.8. If K is compact and R is a positive constant such that
K ⊂ BR, then

γ(K)/
√
N ≤ D(K) ≤ R1−1/N exp(−κN/N)γ(K)1/N .

P r o o f. It is known that γ(K) ≤ %(K) ≤ γ(K) exp(−κN ) (see [12],
Proposition 12.1). Now apply Theorem 5.7.
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Theorem 5.9. Let K be a compact subset of CN . Let µ be a nonnegative
Borel measure with suppµ ⊂ K. If the pair (K,µ) satisfies the Bernstein–
Markov property and µ(K) <∞, then

D(K) = lim
s→∞

(Gs,hs
)1/(2shs),

where

Gs,k := det
{[ ∫

K

es,i(z)es,j(z) dµ(z)
]
i,j=1,...,k

}
,

for nonnegative integers s, k (k ∈ {1, . . . , hs}).

P r o o f. If K is not unisolvent with respect to homogeneous polynomials
then D(K) = 0 (see Corollary 4.13). On the other hand, for all but a finite
number of integers r there exists a nonzero homogeneous polynomial Qr of
degree r that vanishes identically on K, say

Qr =
hr∑
j=1

djer,j (dj ∈ C).

Obviously, ‖Qr‖K = 0 implies ‖Qr‖2 = 0. Therefore Gr,hr
= 0 for such r.

Assume that K is unisolvent with respect to homogeneous polynomials.
Then none of the Gram determinants Gs,k is zero. Indeed, if Gs,k = 0 for
some s and k, we should have ‖Q‖2 = 0, where Q =

∑k
j=1 djes,j (dj ∈

C) and Q 6≡ 0. By the Bernstein–Markov property, ‖Q‖K = 0, which is
impossible.

Analysis similar to that in the proof of Theorem 3.3 in [2] now yields
our statement (upon replacing again ej(z) +

∑
i<j ciei(z) by es,k(z) +∑

i<k bies,i(z), where es,k = ej). Lemma 4.9 and Theorem 4.12 are used
in the proof.

6. The value of D(K) and d(K) for some compact sets K. Con-
sider the following compact N -circular set K = K(p1, . . . , pN ,M):

K := {(z1, . . . , zN ) ∈ CN : |z1|p1 + . . .+ |zN |pN ≤M},

where M , p1, . . ., pN are real positive constants.

Theorem 6.1. If K = K(p1, . . . , pN ,M) and aj = 1/pj for j = 1, . . . , N ,
then

D(K)=d(K)=exp
{

1
N

( N∑
j=1

aj log(Maj)−
1

2πi

∫
C

zN Log z dz
(z − a1) . . . (z − aN )

)}
,

where C is any contour in the right half-plane {z ∈ C : Re z > 0} enclosing
all the points a1, . . . , aN and Log z is the principal branch of the logarithm.



Homogeneous transfinite diameter 199

In particular , if pj 6= pk for j 6= k, then

D(K) = d(K) = exp
{

1
N

( N∑
j=1

aj log(Maj)−
N∑
j=1

aNj log aj∏N
k=1
k 6=j

(aj − ak)

)}
.

If p1 = . . . = pN = p and M = Rp (R > 0), then

D(K) = d(K) = R exp
(
−1
p

N∑
k=2

1
k

)
.

We first prove two lemmas.

Lemma 6.2. If f(θ1, . . . , θN ) is a continuous function on ΣN−1, then

1
mesΣN−1

∫
ΣN−1

f(θ1, . . . , θN ) dω(θ) = (N − 1)
1∫

0

xN−2H(x) dx,

where

H(x) :=
1

mesΣN−2

∫
ΣN−2

f(ξ1x, ξ2x, . . . , ξN−1x, 1− x) dω(ξ).

P r o o f. Obviously,

1
mesΣN−1

∫
ΣN−1

f(θ1, . . . , θN ) dω(θ)

=
1

mesΣN−1
∗

∫
ΣN−1
∗

f
(
θ1, . . . , θN−1, 1−

N−1∑
j=1

θj

)
dθ1 . . . dθN−1,

where ΣN−1
∗ := {(θ1, . . . , θN−1) ∈ RN−1 :

∑N−1
j=1 θj ≤ 1, θj ≥ 0}. We

change the variables:

θj = ξjx for j = 1, . . . , N − 2,

θN−1 =
(

1−
N−2∑
j=1

ξj

)
x,

where 0 ≤ x ≤ 1 and (ξ1, . . . , ξN−2) ∈ ΣN−2
∗ . It is obvious that

dθ1 . . . dθN−1 = xN−2 dx dξ1 . . . dξN−2 and that

mesΣN−2
∗ /mesΣN−1

∗ = N − 1.

This proves the lemma (the details are left to the reader).
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Lemma 6.3. If aj 6= ak for j 6= k, then
N∑
j=1

1∏N
k=1
k 6=j

(aj − ak)
= 0,(6.1)

N∑
j=1

aNj∏N
k=1
k 6=j

(aj − ak)
=

N∑
j=1

aj .(6.2)

P r o o f. Consider the polynomial

P (x) =
N−1∑
m=0

bmx
m := −1 +

N∑
j=1

Pj(x),

where

Pj(x) :=
N∏
k=1
k 6=j

x− ak
aj − ak

.

It is clear that degP ≤ N−1 and P (aj) = 0 for j = 1, . . . , N , which implies
P ≡ 0. So bN−1 = 0, and (6.1) follows.

To prove (6.2), let

Q(x) = −xN +
N−1∑
m=0

cmx
m := −xN +

N∑
j=1

aNj Pj(x).

Since degQ = N and Q(aj) = 0 for j = 1, . . . , N , we have

Q(x) = −(x− a1)(x− a2) . . . (x− aN ).

Therefore cN−1 =
∑N
j=1 aj , which completes the proof.

P r o o f o f T h e o r e m 6.1. It is easy to check, applying Lemma 5.2,
that for K = K(p1, . . . , pN ,M) and θ ∈ Σ0

log τ(K, θ) = log τ̃(K, θ)

=
N∑
j=1

ajθj log(Maj) +
N∑
j=1

ajθj log θj

−
N∑
j=1

ajθj log(a1θ1 + . . .+ aNθN ).

Since D(K) = d(K) = τ̃(K), it is sufficient to prove the following three
formulas (j = 1, . . . , N):

1
mesΣN−1

∫
ΣN−1

θj dω(θ) =
1
N
,(6.3)
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1
mesΣN−1

∫
ΣN−1

θj log θj dω(θ) = − 1
N

N∑
k=2

1
k
,(6.4)

1
mesΣN−1

∫
ΣN−1

( N∑
j=1

ajθj

)
log
( N∑
j=1

ajθj

)
dω(θ)(6.5)

= − 1
N

( N∑
k=2

1
k

)( N∑
j=1

aj

)
+

1
N
· 1

2πi

∫
C

zN Log z dz
(z − a1) . . . (z − aN )

.

Observe that the particular cases

pj 6= pk for j 6= k

and

p1 = . . . = pN = p, M = Rp

can be obtained from the main formula (it suffices to apply the Residue
Theorem and observe that f (N−1)(z) = N !z(Log z + 1

2 + 1
3 + . . . + 1

N ) if
f(z) = zN Log z).

It suffices to prove (6.3) and (6.4) for j = N−1. Obviously mesΣN−1
∗ =

1/(N − 1)! and

1
mesΣN−1

∫
ΣN−1

θN−1 dω(θ) =
1

mesΣN−1
∗

∫
ΣN−1
∗

θN−1 dθ1 . . . dθN−1.

So (6.3) follows immediately if we change the variables:

θ1 = (1− v1)v2 . . . vN−1,

θ2 = (1− v2)v3 . . . vN−1,

...
θN−2 = (1− vN−2)vN−1,

θN−1 = 1− vN−1,

where 0 ≤ vj ≤ 1 for j = 1, . . . , N − 1.
Apply the same change of variables to compute

1
mesΣN−1

∗

∫
ΣN−1
∗

θN−1 log θN−1 dθ1 . . . dθN−1.

Then it is sufficient to check that
1∫

0

xN−2(1− x) log(1− x) dx = − 1
N(N − 1)

N∑
k=2

1
k
.



202 M. J drzejowski

Let x = 1− e−t. We obtain

−
∞∫

0

te−2t(1− e−t)N−2 dt

= −
N−2∑
j=0

(
N − 2
j

)
(−1)j

∞∫
0

te−(j+2)t dt

= −
N−2∑
j=0

(
N − 2
j

)
(−1)j

1
(j + 2)2

= − 1
N(N − 1)

N−2∑
j=0

(−1)j
(

N

j + 2

)(
1− 1

j + 2

)

= − 1
N(N − 1)

( N∑
k=2

(−1)k
(
N

k

)
+

N∑
k=2

(−1)k+1

(
N

k

)
1
k

)
= − 1

N(N − 1)

(
1
2

+
1
3

+ . . .+
1
N

)
.

We have applied the well-known formula

N∑
k=1

(−1)k+1

(
N

k

)
1
k

=
N∑
j=1

1
j

and the obvious equality

0 = (1− 1)N = 1−N +
N∑
k=2

(−1)k
(
N

k

)
.

Let us prove (6.5). Both its sides are continuous functions of the param-
eters aj . Therefore it suffices to show that the formula is true if aj 6= ak for
j 6= k. So we have to check that

1
mesΣN−1

∫
ΣN−1

( N∑
j=1

ajθj

)
log
( N∑
j=1

ajθj

)
dω(θ)(6.6)

= − 1
N

( N∑
k=2

1
k

)( N∑
j=1

aj

)
+

1
N

N∑
j=1

aNj log aj∏N
k=1
k 6=j

(aj − ak)
.

The proof is by induction onN . It is easy to check the caseN = 2. Assuming
(6.6) to hold for N − 1 (N ≥ 3), we will prove it for N . We are going to
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apply Lemma 6.2. We first compute

mesΣN−2 ·H(x)

=
∫

ΣN−2

{
aN (1− x) +

N−1∑
j=1

ajξjx
}

log
{
aN (1− x) +

N−1∑
j=1

ajξjx
}
dω(ξ).

We have aN (1 − x) ≡ aN (1 − x)
∑N−1
j=1 ξj on ΣN−2 := {

∑N−1
j=1 ξj = 1}.

Therefore

mesΣN−2 ·H(x) =
∫

ΣN−2

(N−1∑
j=1

Ajξj

)
log
(N−1∑
j=1

Ajξj

)
dω(ξ),

where Aj = Aj(x) := aN + (aj −aN )x for j = 1, . . . , N − 1. By assumption,

H(x) = − 1
N − 1

(N−1∑
k=2

1
k

)(N−1∑
j=1

Aj

)
+

1
N − 1

N−1∑
j=1

AN−1
j logAj∏N−1

k=1
k 6=j

(Aj −Ak)

= − 1
N − 1

(N−1∑
k=2

1
k

){
(N − 1)aN +

(N−1∑
j=1

aj − (N − 1)aN
)
x
}

+
1

N − 1

N−1∑
j=1

(aN + (aj − aN )x)N−1 log(aN + (aj − aN )x)∏N−1
k=1
k 6=j

(aj − ak)x
.

Applying Lemma 6.2 we obtain

1
mesΣN−1

∫
ΣN−1

( N∑
j=1

ajθj

)
log
( N∑
j=1

ajθj

)
dω(θ)

= (N − 1)
1∫

0

xN−2H(x) dx = B1 +B2 +B3,

where

B1 = −(N − 1)
(N−1∑
k=2

1
k

)
aN

1∫
0

xN−2 dx,

B2 = −
(N−1∑
k=2

1
k

)(N−1∑
j=1

aj − (N − 1)aN
) 1∫

0

xN−1 dx,

B3 =
N−1∑
j=1

∫ 1

0
(aN + (aj − aN )x)N−1 log(aN + (aj − aN )x) dx∏N−1

k=1
k 6=j

(aj − ak)
.
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It is easy to check that

B1 +B2 = − 1
N

(N−1∑
k=2

1
k

)( N∑
j=1

aj

)
.

Integrating by parts the integral in B3, we obtain B3 = C1 + C2, where

C1 = − 1
N2

N−1∑
j=1

aNj − aNN∏N
k=1
k 6=j

(aj − ak)
,

C2 =
1
N

N−1∑
j=1

aNj log aj − aNN log aN∏N
k=1
k 6=j

(aj − ak)
.

Applying (6.1) and (6.2) we get

C1 = − 1
N2

(N−1∑
j=1

aNj∏N
k=1
k 6=j

(aj − ak)
+

aNN∏N−1
k=1 (aN − ak)

)
= − 1

N2

N∑
j=1

aj .

Therefore

B1 +B2 + C1 = − 1
N

( N∑
k=2

1
k

)( N∑
j=1

aj

)
.

By (6.1),

C2 =
1
N

(N−1∑
j=1

aNj log aj∏N
k=1
k 6=j

(aj − ak)
− aNN log aN

N−1∑
j=1

1∏N
k=1
k 6=j

(aj − ak)

)

=
1
N

N∑
j=1

aNj log aj∏N
k=1
k 6=j

(aj − ak)
.

Thus B1 +B2 +C1 +C2 is equal to the right-hand side of (6.6), which proves
the theorem.

Corollary 6.4 (see [10]). If

K := {(z1, . . . , zN ) ∈ CN : |z1| ≤ R1, . . . , |zN | ≤ RN},

where Rj > 0 for j = 1, . . . , N , then

D(K) = d(K) =
( N∏
j=1

Rj

)1/N

.
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P r o o f. It is easy to check, applying Lemma 5.2, that for θ ∈ Σ0

log τ(K, θ) = log τ̃(K, θ) =
N∑
j=1

θj logRj .

Applying Theorem 4.12 and (6.3) we obtain the desired conclusion.
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