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Representing measures for the disc algebra
and for the ball algebra

by Raymond Brummelhuis (Madrid)
and Jan Wiegerinck* (Amsterdam)

Abstract. We consider the set of representing measures at 0 for the disc and the
ball algebra. The structure of the extreme elements of these sets is investigated. We give
particular attention to representing measures for the 2-ball algebra which arise by lifting
representing measures for the disc algebra.

Introduction. Let X be a compact Hausdorff space, C(X) the algebra
of continuous functions on X with the supremum norm, A a function algebra
on X and Φ a multiplicative linear functional on A. The set of all probability
measures on X which represent Φ is denoted by MΦ. As is well known,
MΦ is a nonempty, weak∗-compact, convex subset of the set of all regular
Borel measures, M(X), which is viewed as the dual space of C(X). For a
compact X ⊂ Cn, the function algebra P (X) is defined as the closure of the
holomorphic polynomials in C(X).

Let B = Bn be the unit ball in Cn, n ≥ 2, S its boundary. Next, D is the
open unit disc in C, D its closure and T its boundary. Traditionally P (D)
is called the disc algebra and denoted by A(D) while P (S) is called the ball
algebra and denoted by A(B). Note that by our definition a representing
measure for A(D) will be defined on D, while a representing measure for
A(B) will be defined on S. The motivation is that in this way we obtain
an interesting set of representing measures for A(D), all of which can be
“lifted”, to furnish representing measures on the sphere. From now on Φ
will be point evaluation at a point a, usually 0, of the unit ball or disc and
we will write MaS, respectively MaD, or when no confusion is possible Ma,
instead of MΦ.

1991 Mathematics Subject Classification: 30H05, 32E25, 46J10, 46J15.
Key words and phrases: ball algebra, disc algebra, extreme point, representing mea-

sure.
*Supported by a fellowship of the Royal Netherlands’ Academy of Arts and Sciences.



20 R. Brummelhuis and J. Wiegerinck

In this paper we are mainly interested in the extreme points of M0 in
the case of the ball algebra or the disc algebra. In Section 2 we study M0D.
A complete description of its extreme points would be very interesting. We
have some positive results in this direction. We prove among other things
that extreme elements ofM0D which have a real-analytic, nontrivial trace on
the unit circle, have finite support in D. It is observed that this situation can
really occur. This answers a question in [Ry] negatively. Various examples
of extremal representing measures are given.

Sections 3 and 4 are devoted to M0S. This is the case in which we are
interested mostly. One reason for this is the Fatou problem for the unit ball,
which reads as follows: Let f be a bounded holomorphic function on B and
µ ∈ M0S; does f has radial limits a.e. [µ]? We are far from solving this,
but we wish to point out that by Choquet’s theorem it suffices to solve this
problem for extremal elements of M0S. Section 3 deals with representing
measures for A(B2) which arise from lifting elements of M0D. We give a
necessary and sufficient condition under which a lifted measure is extreme.
In Section 4 we investigate representing measures on S which arise from
embedded discs and prove a density result.

We wish to express our gratitude to John Ryff, who provided us with
some useful references, and in particular to Peter de Paepe, who greatly
influenced this paper. By our standards he should have been coauthor, but
we failed to convince him.

2. Extreme elements of M0D

2.1. We shall denote the unit point mass (“Dirac measure”) at a point
x ∈ D by δx. The representing measures M0D were studied by J. Ryff. He
obtained the following result.

Theorem [Ry]. Let µ ∈M0D, µ 6= δ0. Then there is a simply connected
domain Ω ⊂ D that contains the origin, such that ∂Ω ⊂ Suppµ ⊂ Ω where
∂Ω is the boundary of Ω. In fact , Ω is the component of the origin of the
interior of the polynomially convex hull of Suppµ.

He also observed that with Ω ⊂ D as above, harmonic measure on ∂Ω
evaluated at 0 is an extreme element of M0D and asked whether these are
the only extreme elements of M0D. We shall see shortly that there are much
more.

In view of the above result and the Riemann mapping theorem we shall
restrict ourselves to the case where Ω = D.

2.2. Definition. Let µ be a finite real measure on D. The Poisson
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transform of µ is defined by

Pµ(ζ) =
1

2π

∫ ∫ |ζ|2 − |z|2
|z − ζ|2

dµ(z) =
1

2π

∫ ∫
Re

ζ + z

ζ − z
dµ(z) .

It is easy to see that Pµ is a harmonic function on the complement of the
support of µ. Using Fubini’s Theorem one shows easily that Pµ

∣∣
T
∈ L1(T )

(compare [K], p. 336]. If µ is positive, then so is Pµ on the complement of
D. If the support of µ is a compact subset K of D, then Pµ is a real analytic
function on T .

2.3. Lemma. Let f 6≡ 0 be a nonnegative real-analytic function on the
unit circle T and let µ be a positive finite measure on D such that Suppµ∩D
is infinite. Then there exists a simple function g 6≡ 0 supported on a compact
subset K of D such that |Pgµ| ≤ f .

P r o o f. Real-analytic functions on T have only finitely many zeros and
these are of finite multiplicity. Let a1, . . . , ak be the zeros of f , with mul-
tiplicities l1, . . . , lk respectively. Let n = 1 +

∑k
j=1 lj . We can find disjoint

compact subsetsK1, . . . ,Kn of Suppµ∩D such that µ(Kj) > 0, j = 1, . . . , n.
Let µj = χjµ, where χj is the characteristic function of Kj and let Fj = Pµj

.
By linear algebra there exist nontrivial λ1, . . . , λn which solve the following
system of n− 1 equations:

(1)
n∑
l=1

λlF
(q)
l (ap) = 0, 1 ≤ p ≤ k, 0 ≤ q ≤ lp − 1 .

Let

(2) gε(z) = ε

n∑
l=1

λlχl(z) .

Note that Pgεµ = ε
∑n
j=1 λlFl. By compactness of T and because Pgεµ

is a real-analytic function on T which by (1) has at least the same zeros as f
(counting multiplicities), there exists a small ε such that |Pgεµ| ≤ f , which
proves the lemma.

We shall now study M0 = M0D. First recall that the rotation invariant
probability measure |dζ|/2π is the unique representing measure for 0 which
is supported on T .

2.4. Lemma. Let µ ∈M0. Write µ = µ1 + µ2, where µ1 is concentrated
on D and µ2 is concentrated on T . Then

(3) µ2 = (1/2π − Pµ1(ζ)) |dζ| .
In particular , we have µ2 = s(ζ) |dζ| with s ∈ L∞(T ), 0 ≤ s ≤ 1/2π. On
the other hand , if µ1 is any positive finite measure and if µ2 defined by (3)
is nonnegative, then µ = µ1 + µ2 ∈M0.
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P r o o f. Using Fubini’s theorem we find, for harmonic polynomials h,

h(0) =
∫
h dµ =

∫
T

h dµ2 +
∫
D

h dµ1(4)

=
∫
T

h dµ2 +
∫
D

1
2π

∫
T

1− |z|2

|z − ζ|2
h(ζ) |dζ| dµ1

=
∫
T

h dµ2 +
∫
T

h(ζ)Pµ1(ζ) |dζ| .

The right hand side apparently defines a representing measure for 0
concentrated on T , which equals |dζ|/2π, because of uniqueness. This yields
(3). From (3) and the positivity of µ2 and Pµ1 we conclude that s, which is
in L1(T ) to begin with, has its values in [0, 1/2π].

For the last part of the lemma, we compute
∫
h dµ as in (4). Combining

with (3) we see that µ ∈M0.

We shall call the function s(ζ) the trace of µ on T .

2.5. We shall make use of the following criterion for extremality, which
is a special case of Theorem 1 in [D], although the idea seems to go back to
Naimark. For convenience of the reader we include the short proof.

Theorem (Douglas’ Criterion). Let A be a function algebra on a compact
Hausdorff space X, and Φ a multiplicative continuous linear functional on
A. Then

(5) µ ∈MΦ is an extreme point⇔ ReA is dense in L1
Re(µ) .

P r o o f. Suppose that µ ∈MΦ is not extreme and has nontrivial decom-
position µ = (µ1 +µ2)/2, µi ∈MΦ. Then the µi are positive and absolutely
continuous with respect to µ. Hence there exist nonnegative hi ∈ L1(µ)
with µi = hiµ, so that h1 + h2 = 2, hi 6≡ 1. In particular, hi ∈ L∞(µ). Now
1 − h1 is a nontrivial element of L∞(µ) ∼= L1(µ)∗ which annihilates ReA.
Therefore ReA is not dense in L1

Re(µ). On the other hand, if ReA is not
dense in L1

Re(µ), then there exists a nontrivial h ∈ L∞(µ) which annihilates
ReA. We can assume that h is real-valued and |h| < 1. Now we can write
µ = ((1 + h)µ+ (1− h)µ)/2, which shows that µ is not extreme.

R e m a r k. Sometimes it will be convenient to complexify the right hand
side of (5): Abusing the notation, ReA will then stand for ReA ⊕ iReA,
and (5) is equivalent to “ReA is dense in L1(µ)”.

2.6. Theorem. Let µ be an extreme element in M0 and suppose that the
trace of µ on T is real-analytic and not identically equal to 0. Then there is
a finite subset K of D such that Suppµ = T ∪K.
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P r o o f. Let K = Suppµ ∩D. Suppose K is infinite. Let µ1 = µ
∣∣
K

and
let f be the trace of µ on T . By Lemma 2.4, f = 1/2π−Pµ1 . By Lemma 2.3
there exists a simple function g 6≡ 0 on K such that |Pgµ1 | ≤ f .

Choose a simple function κ(z) on K such that
∫
K
κ(z)g(z) dµ = 1. We

extend κ by 0 outside K; then κ ∈ L1(µ). By Douglas’ criterion we can
approximate κ with harmonic polynomials h in L1(µ). Let ε > 0 and let∫
|h−κ| dµ < ε; then also

∫
K
|h−κ| dµ < ε and

∫
T
|h(ζ)|f(ζ) d|ζ| < ε. This

implies

1 =
∣∣∣ ∫
K

κg dµ
∣∣∣ ≤ ∣∣∣ ∫

K

hg dµ
∣∣∣+ ‖g‖∞

∫
K

|h− κ| dµ

≤
∣∣∣ ∫
T

hPgµ

∣∣∣+ ε‖g‖∞ ≤
∫
T

|h(z)f(z)| |dz|+ ε‖g‖∞ ≤ ε+ ε‖g‖∞ ,

which is a contradiction.

2.7. Corollary. Let µ be an extreme element in M0 and suppose that
Suppµ = T ∪K, where K is compact in D. Then K is finite.

P r o o f. Let χ be the characteristic function of K. Since Pχµ is real-
analytic on T , so is the trace of µ on T which equals 1/2π − Pχµ, and
Theorem 2.6 applies.

R e m a r k. It follows from the proof that an upper bound for the number
of points in the intersection of D and the support of µ can be read off from
the number of zeros of the trace of µ on T . This leads to:

2.8. Example. Suppose µ is an extreme element of M0. If Suppµ ⊂
{T ∩ [ε, 1−ε]}, then there exists an x ∈ [ε, 1−ε] such that Suppµ ⊂ T ∪{x}.

P r o o f. Easy estimates of the Poisson kernel show that the trace of µ
on T has at most a zero of order 2 at 1. Also for every subset K of [ε, 1− ε]
with µ(K) 6= 0 and putting χ = χK , Pχµ will have a maximum at 1, and an
inequality like the one in Lemma 2.3 can be obtained using only two subsets
of [ε, 1− ε]. Now one copies the proof of Theorem 2.6.

Next we shall give some examples of more or less pathological represent-
ing measures. The first one answers Ryff’s question negatively:

2.9. Example. Let x ∈ D, x 6= 0. There exists an extreme element of
M0 with support equal to T ∪ {x}.

P r o o f. Obviously, if µ ∈ M0 is supported on T ∪ {x}, then µ = εδx +
(trace of µ)d|ζ|/2π. Hence by Lemma 2.4, for small enough ε > 0, µε =
d|ζ|/2π − εPδx

(ζ) d|ζ| + εδx will be a representing measure with support
T ∪ {x}. Applying the Krein–Milman theorem to the set of representing
measures supported on T ∪ {x}, we can find an extreme element of M0
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with support containing x. In fact, this extreme element is µε0 , where
ε0 = maxε>0{ε : 1/2π − εPδx

≥ 0}. One can check Douglas’ criterion
explicitly for µε0 . Note that the measures µε are representing measures
which are not Jensen measures: log |x| >

∫
log |z − x| dµε.

2.10. The following example shows that there are extreme elements of
M0 of quite different nature. At least part of it, if not all, has been known.
We could not find a reference for the observation about extreme elements
in this example.

Recall that since C(X) is separable, the unit ball in C(X)∗ is metrizable
and so is M0. Hence we may apply Choquet’s theorem (cf. [A] or [P]) which
reads as follows.

Theorem (Choquet). Every point q in a metrizable compact convex set
K can be represented as q =

∫
Id(x) dτ(x), where Id is the identity mapping

on K and τ is a probability measure concentrated on the Gδ-set consisting
of the extreme points of K.

Thus, for every affine continuous function f on K, we have f(q) =
∫
f dτ .

In fact, it is another theorem of Choquet that the latter statement is also
true if f is only an affine function of the first Baire class, that is, a pointwise
limit of continuous functions, on X (cf. [P, p. 100]).

Example. Let A = {an} be a sequence of distinct points in D without
interior limit points. Suppose that almost every point of T is a nontangential
limit point of A. Theorem 4 of [BSZ] states that for every z ∈ D there
exists a (complex) representing measure µ ∈ Mz which is concentrated on
A. Next by Theorem 2.2 in [G, Ch. 2] (see also [HR]) there exists a positive
f ∈ L1(|µ|) with f |µ| ∈ M0. Obviously, f |µ| =

∑
cjδaj , where cj ≥ 0.

Selecting a subsequence A′ we may asume cj > 0, while still T ⊂ A′, since
otherwise 0 would not be in the polynomially convex hull of A′. Now we
use Choquet’s theorem. This gives for f |µ| the existence of a probability
measure τ = τf |µ| which is concentrated on the set of extreme points E
of M0, and for all affine functions g of the first Baire class on M0 the
representation

g(f |µ|) =
∫
M0

g dτ .

Let χ denote the characteristic function of A′. This gives rise to an affine
function χ∗ on M0, defined by χ∗(ν) =

∫
D
χdν. It is easily seen that χ∗ is

a pointwise limit of continuous functions on M0. Thus we obtain

1 = χ∗(f |µ|) =
∫
E

χ∗ dτ .
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Since χ∗ ≤ 1 on M0, it follows that χ∗(ν) = 1 a.e. τ , in other words, since τ
is concentrated on E,

∫
D
χdν = 1 a.e. τ . We infer that there exist extreme

elements of M0 concentrated on A′.

Example. There exist representing measures in M0 which are concen-
trated on a countable dense subset of D.

P r o o f. Pick a countable dense sequence of circles {Tj}, all centered
at 0, and a sequence {bj} such that bj > 0 and

∑
bj = 1. By scaling the

previous example, there exists µj ∈ M0 concentrated on a countable set
with limit points Tj . Now

∑
bjµj is the required measure.

The above results lead us to

2.11. Conjecture. Let µ ∈ M0 be extreme and T ⊂ Suppµ. Then
Suppµ ∩D is a discrete subset of D.

Some additional support for this conjecture is given by the following.

2.12. Proposition. If µ is extreme, with Lebesgue decomposition µ =
fλ+ ν with respect to Lebesgue measure λ, then f ≥ c > 0 is impossible on
an open set.

P r o o f. Indeed, if not, then f would be positive on two tiny, concentric
annuli A1, A2. It is easy to see that µ is a convex combination of µ1, µ2,
where µi is obtained by replacing f by f ± εχ1 ∓ δχ2, and ε and δ are
suitably chosen positive numbers, while χi is the characteristic function of
Ai.

2.13. Recall that µ ∈ M0 has minimal support if ν ∈ M0, Supp ν ⊆
Suppµ ⇒ Supp ν = Suppµ. At first glance one might think that minimal
support and extremality are connected. Indeed, for the disc algebra it follows
from Ryff’s theorem that a representing measure with minimal support is
harmonic measure for some domain and therefore extreme. On the other
hand, Example 2.9 also provides an example of an extreme element of M0

which does not have minimal support. For other algebras an example of a
representing measure with minimal support but not extreme is quite easy.

Example. Let A0(D) be the function algebra on T spanned by {z2, z3}.
For f ∈ A0(D), we have∫

T

f(z)
dz

2πiz
= f(0) ,

∫
T

f(z) dz = 0 ,
∫
T

f(z)
dz

2πiz2
= 0 .

On parametrizing T with eiθ, the last two equations give
π∫
−π

f(eiθ) cos θ dθ = 0 .
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The conclusion is that for −1 ≤ α ≤ 1, (1 + α cos θ)dθ/2π is a representing
measure with minimal support. It is, however, not an extreme element for
−1 < α < 1.

This example will be modified in the sequel to provide a similar example
for A(B).

3. Circular representing measures

3.1. There is a natural way to pass from representing measures for
A(D) to representing measures for A(B) and vice versa (cf. [R]). In fact, let
m ∈M0D. We consider D as B ∩ {z2 = 0, . . . , zn = 0} and define mC on S
as follows. For any continuous v on S,∫

S

v dmC :=
∫
D

dm(z1)
∫
S′

v(z1,
√

1− |z1|2ζ ′) dσ(ζ ′) ,

where σ(z′) denotes the rotation invariant probability measure on the sphere
S′ in the z′ = (z2, . . . , zn) space. This process will be called lifting m and
mC will be called a circular measure.

On the other hand, if mC ∈M0S, then we define m ∈M0D by∫
D

v dm :=
∫
S

v dmC

for all v ∈ C(D) (on the right hand side v is considered as a function on S,
only depending on the first variable). This will be called projecting mC .

Of course we have a similar lifting procedure relating representing mea-
sures supported on a (full) ball in Ck to representing measures supported
on the sphere in Ck+j . In the sequel we shall mainly study the case where
B = B2 is the unit ball in C2. What happens if one circles an extreme
element of M0D?

3.2. Theorem. Let µ ∈ M0D and S the unit sphere in C2, put r(z) =√
1− |z|2. The measure µC obtained by lifting µ is extreme in M0S if and

only if µ is extreme in M0D and the holomorphic polynomials are dense in
L1(D, r(z)µ(z)).

P r o o f. Let z, w be the coordinates in C2 and view D as B ∩ {w = 0}.
Suppose µC is extreme. If µ = 1

2µ1 + 1
2µ2, µi ∈ M0D, then µC =

1
2µ

C
1 + 1

2µ
C
2 , hence µCi = µC , therefore, µi = µ and µ is extreme. Next we

apply Douglas’ criterion. If f ∈ L1(D, r(z)µ(z)), then fw ∈ L1(S, µC), so
for every ε > 0 there exists a pluriharmonic polynomial P (z, w) (which may
be complex-valued!) with

∫
|f(z)w − P (z, w)| dµC < ε. Expand

P (z, w) = P0(z) +
N∑
j=1

Pj(z)wj +
−1∑

j=−N
Pj(z)wj ,
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where P0 is a harmonic polynomial and Pj are holomorphic polynomials if
j 6= 0. Now, with w = |w|eiφ = r(z)eiφ on S, we have∫

|f − P1|r(z) dµ(z) =
∫ ∫

|f(z)− P1(z)|dφ
2π

r(z) dµ(z)

=
∫ ∣∣∣∣ ∫ f(z)w − P (z, w)

w

dφ

2π

∣∣∣∣ r(z) dµ(z)

≤
∫ ∫

|f(z)w − P (z, w)|dφ
2π

dµ(z)

=
∫
|f(z)w − P (z, w)| dµC < ε .

For the converse implication, again by Douglas’ criterion, it suffices to
show that continuous functions can be approximated by pluriharmonic poly-
nomials in L1(S, µC). Let f be continuous on S and ε > 0. Let

f1 =
{
f on S \ {|z| = 1},
0 on |z| = 1.

The function f − f1 is independent of w and can be viewed as a function on
D, supported on T , which is in L1(µ). There exists a harmonic polynomial
P1 ∈ ReA(D) with∫

D

|f − f1 − P1| dµ =
∫
S

|f − f1 − P1| dµC < ε .

Take δ > 0 so small that∫
1−δ<|z|≤1

|f1| dµC =
∫

1−δ<|z|<1

|f | dµC < ε

and let χ ∈ C∞0 (D) with 0 ≤ χ ≤ 1, χ ≡ 1 if |z| < 1− δ. Put g = χf . Let
FN be the Fejér kernel of order N . For large enough N we have on D

‖g(z, r(z)eiφ)− g ∗ FN (z, r(z)eiφ)‖∞ < ε .

Here we convolve with respect to φ. With

ĝN (z, k) = (1− |k|/N)
∫
g(z, r(z)eiφ)e−ikφ

dφ

2π
,

and observing that r(z)|k|eikφ is just the restriction to S of wk if k > 0, and
of w|k| if k < 0, we have

g ∗ FN (z, r(z)eiφ) =
∑
|k|≤N

ĝN (z, k)eikφ =
∑ ĝN (z, k)

r(z)|k|
r(z)|k|eikφ

= c0(z) +
N∑
k=1

ck(z)wk +
−1∑

k=−N

ck(z)w|k| .



28 R. Brummelhuis and J. Wiegerinck

Here the ck are defined by the last equality. As ĝN ≡ 0 if r(z) is small
enough, it follows that the ck are continuous and that Supp ck b D. Now
there exists a harmonic polynomial Q0(z, z) with

∫
|c0 −Q0| dµ(z) < ε and

for k 6= 0, ck can be approximated in L1(D, r(z)µ) by holomorphic polyno-
mials. Thus there exist holomorphic polynomials Qk(z) with∫

|ck −Qk|r dµ < ε/2|k| .

But then∫
|ckw|k|−Qkw|k|| dµC =

∫
|ck−Qk|r|k| dµ ≤

∫
|ck−Qk|r dµ < ε/2|k|.

We put

P2(z, w) = Q0(z) +
N∑
k=1

Qk(z)wk +
−1∑

k=−N

Qk(z)w|k|

and conclude that P2 ∈ ReP (S) such that
∫
S
|χf ∗FN −P2|dµC < 3ε. Now∫

|f − P1 − P2| dµC ≤
∫
|f − f1 − P1| dµC +

∫
|f1 − χf | dµC

+
∫
|χf − χf ∗ FN | dµC +

∫
|g ∗ FN − P2| dµC

≤ 6ε.

3.3. Remarks. A typical situation of the theorem arises as follows.
Consider the curve Γ = Γ1 ∪ Γ2 in C defined by

Γ1 = {z ∈ C : |z|2 = 1, Re z ≤ 1/2} ,

Γ2 = {z = x+ iy ∈ C : x = 1/2, −
√

3/4 ≤ y ≤
√

3/4} .
Let µ0 be harmonic measure with respect to 0 on Γ . As is well known, µ0 is
absolutely continuous with respect to arc length. Let µC be the measure on
S obtained by lifting µ0. Since the polynomials on Γ generate a Dirichlet
algebra, that is, ReP (Γ ) is dense in C(Γ ), µ0 is the unique representing
measure on Γ and therefore extreme. From the Weierstrass approximation
theorem we conclude that the polynomials are dense in L1(Γ2, µ0) so it
follows from Theorem 3.2 that µC is extreme in M0S.

Note that the support of µC is equal to K = K1 ∪K2, where

K1 = Γ1 × {0} ,

K2 = {(1/2 + iy,R(y)eiφ) : 0 ≤ φ ≤ 2π , −
√

3/4 ≤ y ≤
√

3/4}

and R(y) =
√

3/4− y2. Thus the support of µC is a set of positive 2-
dimensional Hausdorff measure m2 and moreover µC is not singular with
respect to m2.

Instead of the interval Γ2 and the arc Γ1 we can take any Jordan arc
γ2 ⊂ D, 0 6∈ γ2, with different end points on T , together with a subarc γ1

of T which connects the endpoints of γ2, such that 0 lies in the bounded
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component of the complement of the closed Jordan curve γ = γ1 ∪ γ2. We
consider harmonic measure µ0 with respect to 0 on γ. Lifting in the same
way as above we find a compact K ⊂ S and µC ∈M0 with support K. Using
Walsh’ theorem instead of Weierstrass’, we find again that µC is extreme.

In particular, we can take for γ2 an arc of positive 2-dimensional measure.
Then σ(K) > 0, so we have obtained an extreme representing measure whose
support has positive invariant measure. However, in view of the sequel we
remark that by a theorem in [Ø] µ0⊥ Lebesgue measure in the plane and
hence µ⊥σ. In fact, it was shown recently in [JW] that, under much more
general conditions, µ0⊥md, where md (d > 1) is d-dimensional Hausdorff
measure.

Theorem 3.2 also readily gives an explicit µC ∈ M0S which is extreme
and not Jensen: Take µ as in Example 2.9 and lift.

In addition we mention the following result:

3.4. Theorem. Let µ ∈ M0D be extreme and K = SuppµC . If F =
Suppµ ∩D is polynomially convex and has empty interior , then P(K ) is a
Dirichlet algebra.

I n d i c a t i o n o f p r o o f . Mergelyan’s theorem gives that P (F ) =
C(F ). Now one can repeat the converse part of the proof of Theorem 3.2
with uniform instead of L1 estimates.

The situation where µ is harmonic measure on a smooth curve can be
handled very well. The next theorem states roughly that µC is extreme if
and only if the curve has points of extremely high contact with T , say like
e−1/|x| touches the x-axis. The fact that (ii) and (iii) in the next theorem
are equivalent is a direct consequence of harmonic measure and arc length
being comparable. This result is well known in a much more general setting.
We include the proof for convenience of the reader.

3.5. Theorem. Let Γ be a C2 Jordan curve around 0 in D which bounds
a domain Ω and let µ be harmonic measure with respect to 0 for Ω. Then
the following are equivalent :

(i) µC is extreme.
(ii) log r(z) 6∈ L1(µ).
(iii) log r(z) 6∈ L1(Γ, ds), where ds denotes arc length on Γ .

P r o o f. Let F denote a conformal map from D to Ω such that F (0) =
0. As is well known, F extends to diffeomorphism from D to Ω, and by
invariance of harmonic measure under F , |dζ|/2π = F ∗µ, the pull-back
of µ under F , and also µ(z) = |(f−1)′(z)| ds, therefore (ii) and (iii) are
equivalent.
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Now to show that (i) and (ii) are equivalent, first note that µ is ex-
treme in M0D. By Theorem 3.2, (i) is then equivalent to the holomorphic
polynomials being dense in L1(r(z)µ). Suppose that this were not the case.
Then:

The holomorphic polynomials P are not dense in L1(r(z)µ)⇔
∃h ∈ L∞(r(z)µ), h 6≡ 0, such that

0 =
∫
Γ

P (z)h(z)r(z) dµ(z) =
∫
T

P ◦ F (ζ)h ◦ F (ζ)r ◦ F (ζ)
|dζ|
2π

, ∀P .

Observe that ζn is a uniform limit on T of functions of the form P ◦ F (ζ)
and vice versa. Hence the last statement is equivalent to

∃h′ ∈ L∞(T ) such that
∫
ζnh′(ζ)r ◦ F (ζ)

|dζ|
2π

= 0, n ≥ 0 .

As is well known (see e.g. [Gar]), this is equivalent to

∃h′ ∈ L∞(T ) such that h′ r ◦ F ∈ H∞ ,

and by a theorem of F. Riesz (cf. [G]) this is the case if and only if ∃h′ ∈
L∞(T ) such that log |h′r ◦ F | is integrable. Since h′ must be bounded and
r < 1, this reduces to

∫
log r ◦ F |dζ|/2π > −∞ or log r(z) ∈ L1(µ). Hence

we have shown that (i) and (ii) are equivalent.

In general, the condition that the polynomials be dense in L1(D, r(z)µ)
seems only poorly understood. This motivates the following result.

3.6. Theorem. Let µ ∈M0D. Suppose that there exists F ∈ A(D) such
that

|F (z)| = O(
√

1− |z|2) , z ∈ Suppµ, |z| → 1 .

Then µC is not extremal.

P r o o f. Let

h(z, w) = Re
(
zF (z)w
1− |z|2

)
,

F as in the theorem. We claim that h ⊥ ReA(D) in L2(µC). Since h is
real, it suffices to show that h ⊥ A(D). For this one just notes that, for all
k, l ∈ N, ∫ (

zF (z)w
1− |z|2

)
zkwl dµC = 0
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and, again with r(z) = (1− |z|2)1/2,∫ (
zF (z)w
1− |z|2

)
zkwl dµC =

∫
dµ(z)

zk+1F (z)
r(z)2

r(z)l+1
2π∫
0

ei(l−1)θ dθ

2π

=
{

0 if l 6= 1,∫
zk+1F (z) dµ(z) = 0 if l = 1, since µ is representing.

Finally, |h(z, r(z)eiφ)| ≤ |F (z)|/
√

1− |z|2, which is bounded on Suppµ by
the assumptions. So h ∈ L∞Re(µC) and h annihilates ReA(D) with respect
to µC . Hence ReA(D) is not dense in L1(µC). By Douglas’ criterion we are
done.

We now return to Cn. Again σ is normalized rotation invariant measure
on S. In view of Proposition 2.2 we see that if µC = fσ+ν, ν⊥σ, is extreme,
then f cannot be bigger than a positive constant on an open set. This is
true for all extreme elements of M0S.

3.7. Theorem. Let µ ∈M0A(B). Suppose that µ = fσ+ ν, where ν⊥σ
and f ∈ L1(σ), f ≥ c > 0 on an open subset of S. Then µ is not extreme
in M0.

P r o o f. We will apply Douglas’ criterion. Let E ⊂ S be open and such
that f ≥ c > 0 on E. Then we have, for every g ∈ C(S), P ∈ ReA(B),∫

S

|g − P | dµ ≥ 1
c

∫
E

|g − P | dσ .

Hence it suffices to prove that ReA(B) is not dense in L1(χEσ).
We may assume that (0, . . . , 0, 1) ∈ E. Let Λ = Λε,δ denote the family

of complex lines L of the form

L = {(a1, . . . , an−1, ε)z + (0, . . . , 0, 1− δ) : z ∈ C} ,
where

∑
|ai|2 + ε2 = 1. There exist ε0, δ > 0 such that for 0 < ε < ε0,

if L ∈ Λ, then the intersection L ∩ S ⊂ E. Note that any two of these
lines have only (0, 0, . . . , 1 − δ) in common. This is the centre of all circles
obtained by intersecting S and L. Now take Λ1 and Λ2 to be disjoint subsets
of Λ such that Ei =

⋃
L∈Λi

L ∩ E is open for i = 1, 2 and dist(E1, E2) > 0.
Take g ∈ C(S) such that g = 1 on E1 and g = 0 on E2. Using the mean
value property we obtain for pluriharmonic polynomials P∫

E

|g − P | dσ ≥
∫
E1

. . . +
∫
E2

. . . ≥
∣∣∣ ∫
E1

(g − P ) dσ
∣∣∣+
∣∣∣ ∫
E2

(g − P ) dσ
∣∣∣

= |σ(E1)− c1P (0, . . . , 0, 1− δ)|+ |c2P (0, . . . , 0, 1− δ)| .
Here c1, c2 > 0 depend only on E1 and E2 respectively, and not on P .

For the right hand side to be small, P (0, . . . , 0, 1 − δ) will have to be close
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to σ(L(E1))/c1 as well as to 0, which is impossible.

Note that one could also give a proof like the one of Proposition 2.12,
with Ei for Ai. Also a proof can be given based on the fact that plurihar-
monic polynomials are solutions of a system of tangential partial differential
equations (cf. [R], Chap. 18). Then the same would be true for a limit in
distribution sense on an open set, and a fortiori for a limit in L1(σ) sense,
which would lead to a contradiction.

Conjecture. If µ is an extreme element in M0A(B), then µ⊥σ.

Theorem 3.7 gives some support for this conjecture, while 3.3 shows that
extreme measures can be concentrated on fairly large sets.

3.8. It is easy to see that a limit point of extreme points of a compact
convex set need not be an extreme point. One can find an example in R3,
namely, the convex hull of the union of a circle and an interval through a
point of the circle, which is perpendicular to it. One might hope that the
situation is better for M0, but it is not, even if we consider convergence in
the variation norm.

Example. There exists a sequence {µCj } in M0S which converges in
variation norm to µC ∈M0S, such that µCj are all extreme but µC is not.

Again we work in C2, with coordinates (z, w). Consider

γj = {z = eiθ : −1/j < θ < 1/j}
∪ {z = e±i/j + t : −1/2 ≤ t ≤ 0, 1/2 ≤ |z| ≤ 1}
∪ {z = eiθ/2 : αj ≤ |θ| ≤ π} ,

where αj ≈ 2/j is such that γj becomes a Jordan curve. Let µj be harmonic
measure with respect to 0 on γj . One can verify immediately that µj tends
to the representing measure µ for 0 on {|z| = 1/2} in variation norm. Then
also µCj tends in variation norm to µC .

4. Push-forward measures. Another way to construct representing
measures is by embedding analytic discs and pushing forward representing
measures of subalgebras of the disc algebra. Consider a holomorphic map
Φ = (Φ1, . . . , Φn) : D → B = Bn, satisfying

(4.1)
(i) Φ(0) = 0 ,

(ii) Φ extends continuously to D and Φ(T ) ⊆ S .
For ν a measure on T the push-forward Φ∗(ν) of ν is defined by

(4.2)
∫
S

f(ζ) dΦ∗(ν) =
∫
T

(f ◦ Φ)(eiθ) dν(eiθ) .
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It is obvious that Φ∗(dθ/2π) is in M0S. It is not true that Φ∗(dθ/2π) is
always extreme (cf. Example 4.3 below), but by a small variation of this
construction one can construct extreme representing measures.

First assume, for simplicity, that Φ
∣∣
T

is injective. Let A[Φ] be the uni-
form subalgebra of A(D) generated by the components Φj of Φ. Then one
easily checks that ν ∈M0A[Φ] implies Φ∗(ν) ∈M0S.

If Φ
∣∣
T

is not injective, A[Φ] fails to separate points. In that case we regard
A[Φ] as a uniform algebra on the compact Hausdorff space TΦ := T/∼, where
z ∼ w iff Φ(z) = Φ(w), and TΦ is provided with the quotient topology. Now
Φ induces a map TΦ → S, and we can define Φ∗(ν) as above, if ν is a measure
on TΦ (e.g., if ν ∈M0A[Φ]).

4.1. Proposition. Let ν ∈ M0A[Φ]. Then Φ∗(ν) ∈ M0S is extreme if
and only if ν is.

P r o o f. We restrict ourselves to the case where Φ
∣∣
T

is injective and
leave the general case to the reader. First note that the map ν → Φ∗(ν) is
one-to-one on M(T ): Suppose Φ∗(ν) = 0. Let g ∈ C(T ) and f ∈ C(S) be
such that f = g ◦Φ−1 on Φ(T ). Then 〈g, ν〉 = 〈Φ∗(ν), f〉 = 0, so that ν = 0.
Hence, if ν ∈M0A[Φ] is a nontrivial convex combination of ν1 and ν2, then
Φ∗(ν) is a nontrivial convex combination of Φ∗(ν1) and Φ∗(ν2).

Conversely, suppose that Φ∗(ν) = λµ1 + (1− λ)µ2, where µ1, µ2 ∈M0S

and 0 < λ < 1. For g ∈ C(T ), let f̃ be any continuous extension to S of the
function f = g ◦ Φ−1 on Φ(T ). Define measures νj ∈M(T ) by∫

T

g dνj :=
∫
S

f̃ dµj .

The right hand side is independent of the choice of the extension f̃ , since
Suppµj ⊆ SuppΦ∗(ν) ⊆ Φ(T ). By definition, Φ∗(νj) = µj . Also νj ∈
M0A[Φ], because elements of A[Φ] can be uniformly approximated by func-
tions P ◦ Φ, P = P (z1, . . . , zn) a holomorphic polynomial. Finally, ν =
λν1 + (1− λ)ν2, since Φ∗ is injective.

4.2. R e m a r k. The proof shows that the map Φ∗ is a bijection ofM0A[Φ]
onto the subset of M0S of representing measures whose support is contained
in Φ(T ).

4.3. Example. We continue Example 2.13. Let Φ = Φ(z) = (1/
√

2) ×
(z2, z3) : D → B2. Then A[Φ] = {f ∈ A(D) : f ′(0) = 0}. Each element
of M0A[Φ] is of the form 1 + Re(ceiθ)dθ/2π, with c ∈ C, 0 ≤ |c| ≤ 1. In
particular, Φ∗(dθ/2π) is not extremal, since dθ/2π is not extremal in A[Φ].
However, Φ∗(dθ/2π) has minimal support.

One could hope that convex combinations of push-forward measures
Φ∗(ν) are weak∗-dense in M0S, but this is probably false. However, one
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has the following weaker result, which identifies the closed linear subspace
SpanM0S ⊆M(S) spanned by M0S.

4.4. Theorem. For k, l ∈ N, let Φk,l : D → B be given by Φk,l(z) =
(1/
√

2)(zk, zl, 0, . . . , 0), and let U(N) be the unitary group. Then

Span{(U ◦ Φk,l)∗(dθ/2π) : k, l ∈ N \ {0}, (k, l) = 1, U ∈ U(n)}
is weak∗-dense in SpanM0S (here, (k, l) = g.c.d.(k, l)).

P r o o f. Note that Φk,l(0) = 0 iff neither k nor l are 0, so then Φk,l
satisfies (4.1). The dual of M(S) (with the weak∗-topology) can be identified
with C(S), if we identify g ∈ C(S) with the linear functional µ → 〈g, µ〉.
Let g ∈ C(S) be such that

(4.3)
∫
S

g(U ◦ Φk,l)∗(dθ/2π) = 0 ,

∀k, l ∈ N \ {0} , (k, l) = 0 and ∀U ∈ U(n) .

We claim that (4.3) implies that g ∈ PH(S), that is, by definition, the
harmonic extension of g is pluriharmonic. This will imply that for all µ ∈
M0S,

∫
g dµ = g(0) = 0, by (4.3), and the theorem follows by Hahn–Banach.

LetΠr,s denote the orthogonal projection onto the spaceH(r, s) of spher-
ical harmonics of bi-degree (r, s) (cf. [R], Chap. 12). Thus, to prove the
claim, it suffices to show that Πr,sg = 0 if rs 6= 0. Let Y be the set of all
g ∈ C(S) satisfying (4.3). Note that Y is a closed, U(n)-invariant subspace
of C(S). In this situation Theorem 12.3.6 in [R] states that Πr,sY 6= {0}
implies H(r, s) ⊆ Y . However, H(r, s) 6⊆ Y if rs 6= 0, since zr1z

s
2 ∈ H(r, s)

and if we take k = s/(r, s), l = r/(r, s), we find∫
S

zr1z
s
2(Φk,l)∗

(
dθ

2π

)
=
∫
T

ζrkζsl
dθ

2π
= 1 .

One of the motivations for studying M0S is the Cole–Range theorem,
which implies that each element in A(S)⊥ is absolutely continuous with
respect to some measure in M0S. We give a description of A(S)⊥ in the
spirit of Theorem 4.4.

4.5. Theorem. Let P0 denote the space of holomorphic polynomials on
C which vanish at the origin. Then

(4.4) Span{(Φk,l ◦ U)∗(P (eiθ) dθ) : k, l ∈ N \ {0} , U ∈ U(n)}
is weak*-dense in A(S)⊥ .

P r o o f. Note that if Φ : D → B is holomorphic and extends continuously
to D, then ν ∈ A(T )⊥ implies Φ∗(ν) ∈ A(S)⊥. Let Y be the subspace of
all g ∈ C(S) which are annihilated by the measures in (4.4). It suffices to
prove that Y ⊆ A(S). As before, Y is U(n)-invariant. Suppose Πr,s 6= 0 for
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some (r, s) with s 6= 0. Then H(r, s) ⊆ Y and in particular, for all m ≥ 1,
and all k, l ∈ N,

0 =
∫
S

zr1z
s
2(Φk,l)∗

(
eimθ

dθ

2π

)
=

2π∫
0

ei(kr+m−ls)θ
dθ

2π
.

The latter expression equals 1 for a suitable choice of m, k, l, which is a
contradiction.

R e m a r k. The same proof shows that Span{(Φ0,1 ◦ U)∗(P (eiθ) dθ)} is
also weak∗-dense in A(S)⊥, but note that Φ0,1(D) does not meet the origin.
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Reçu par la Rédaction le 4.9.1990


