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Anisotropic complex structure on the pseudo-Euclidean
Hurwitz pairs

by W. KrROLIKOWSKI (Léd7)

Abstract. The concept of supercomplex structure is introduced in the pseudo-
Euclidean Hurwitz pairs and its basic algebraic and geometric properties are described,
e.g. a necessary and sufficient condition for the existence of such a structure is found.

1. Introduction. In 1923 A. Hurwitz [2] proved that any normed
division algebra over R with unity is isomorphic to either R, C, H or O,
the real, complex, quaternion or octonion number algebras. In particular,
Hurwitz showed that all the positive integers n and all the systems C;?a eR,

J, k, « =1,...,n, such that the collection of bilinear forms n; := :rac;?ayk

satisfies the condition
Sond=(2a2) (X u)
J o k

are restricted to the cases n =1,2,4 or 8.

The results of Hurwitz were the starting point for Lawrynowicz and Rem-
bieliriski to introduce the concept of the so-called Hurwitz pairs. They de-
veloped the theory obtaining many interesting results. Using the geometric
concept of pseudo-Fuclidean Hurwitz pairs, they gave their systematic clas-
sification in connection with real Clifford algebras. Moreover, they showed
that the theory of Hurwitz pairs provided a convenient framework for some
problems in mathematical physics (e.g. Dirac equation, Katuza—Klein theo-
ries, spontaneous symmetry breaking and others).

We generalize the concept of supercomplex structure introduced by Law-
rynowicz and Rembielinski [3] to pseudo-Euclidean Hurwitz pairs. We de-
scribe the basic algebraic and geometric properties of supercomplex struc-
tures and find a necessary and sufficient condition for their existence. This
is the main result of our paper. We prove that if O(n, k) denotes the or-
thogonal group preserving the norm z7 + ...+ 22 — a2, —... — xiJrk then
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a complex structure J (J € O(n, k), J?> = —I,, 41, where I,,, stands for the
identity (n + k) x (n + k)-matrix) exists if and only if n and k are even.

The concept of a supercomplex structure for Hurwitz pairs is strongly
motivated by possible quantum-mechanical applications of anisotropic Hil-
bert spaces (see e.g. [5]).

2. Pseudo-Euclidean Hurwitz pairs and Clifford algebras. Let
us recall fundamental notions and basic results from the theory of pseudo-
Euclidean Hurwitz pairs. More details can be found in [3-5].

Consider two real vector spaces S and V', equipped with non-degenerate
pseudo-Euclidean real scalar products (,)s and (,)y with standard prop-
erties (see e.g. [3]). For f,g,h € V, a,b,c € S and «, € R we assume
that

(a,b)s € R, (f,9)v €R,

1) (b,a)s = (a,b)s, (9, f)v =6(f.q)y, d=1or —1,
(aa,b)s = a(a,b)s, (af,9)v =a(f,9)v,
(a,b+c)s = (a,b)s + (a,c)s, (frg+h)v=(f,9)v+(fh)v.

In S and V we choose some bases (o) and (e;), respectively, with a =
1,...,dimS=p;j=1,...,dimV = n. We assume that p < n. Set

(2) N = [Mapl = [(€arep)s], K = [Kj] = [(ej,ex)v]-
By (1), we immediately get

detn#0, n'=0", 7" =n,
detk #0, w'=[K"*, kT =06k.

Now, without any loss of generality, we can choose the bases (g4) in S
and (e;) in V so that

n=diag(l,...,1,—1,...,—1), r+s=p,
——— N—— —
3 T S
®) k = diag(1,...,1,—-1,...,—-1), k+l=n,
—_—— ——
k l
and hence ™! =17, k! = k.

Next, multiplication of elements of S by elements of V is defined as a
mapping F': S x V — V with the properties
(i) F(a+b,f) = F(a, f) + F(b, f) and F(a, f + g) = F(a, f) + F(a,g)
for f,g €V and a,b € S,
(i) (a,a)s(f,9)v = (F(a, f),F(a,g))v, the generalized Hurwitz condi-
tion,
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(iii) there exists a unit element ¢p in S for multiplication; F(eq, f)

= ffor feV.

The product a- f := F(a, f) is uniquely determined by the multiplication
scheme for base vectors:

(4) F(ea,ej)ZC]’?aek, a=1,....,p; j,k=1,...,n.

Hereafter we shall require the irreducibility of the multiplication F' :
S x V — V, which means that it does not leave invariant proper subspaces
of V. In such a case we shall call (V,5) a pseudo-Euclidean Hurwitz pair.

It turns out that the generalized Hurwitz condition is equivalent to the
relations

(5) C’an—l—CgC';L =2apln, o, B=1,...,p,
where we use matrix notation

(6) Cy = [C’fa] . O i=grCI™t,

and I,, stands for the identity n x n-matrix. On setting

(7) Co =17.Cy, thixed,a=1,...,p, a#t,

where i denotes the imaginary unit, we arrive at the following system equiv-
alent to (5):

thj:ntt]—na tﬁxed,
(8) rygz—:_’)/a) Re’ya:07a:17"')p7a#t7
'Ya'.)/ﬁ"‘V"Y/B’YQZQﬁaﬁIn, Oé,,B:L...,p, O‘aﬁ#ta

where

(9) ﬁa,@ = naﬂ/ntt )

[Nap] is the matrix (3). Clearly ny =1 or —1.

From (8) it follows that {7,} are generators of a real Clifford algebra
Crs=1 or C(r=1%) with (r, s—1) and (r—1, s) determined by the signature of
7N := [Nap] and by r+ s = p. Thus, following Lawrynowicz and Rembielinski
[3] we have

THEOREM 1. The problem of classifying pseudo-FEuclidean Hurwitz pairs
(V,S) is equivalent to the classification problem for real Clifford algebras
C("9) with generators {Ya} imaginary and antisymmetric or symmetric ac-
cording as o <1 or a > r, given by the formulae

17aCt = Cq, a=1,...,r+s, a#t,

CtC;r = nttIn y t ﬁxed,
the matrices C,, being determined by (2), (5) and (6). The relationship is
given by the formulae (8).
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COROLLARY 1. Without any loss of generality, in Theorem 1 we may set
Cy =1, and t =r, so that . =1 and Nag = Nap for o, B #t.

LEMMA 1. Pseudo-FEuclidean Hurwitz pairs are of bidimension (n,p),
n=dmV,p=dimS =r"+s" +1,

2212 oy —
"= alp/2+1/2] forr' — s

6,7,0 (mod8),
1,2,3,4,5 (mod8),

where [ | stands for the function “entier”.

3. Supercomplex structure: an anisotropic complex struc-
ture involving a real Clifford algebra connected with the pseudo-
Euclidean Hurwitz pairs

DEFINITION. A Hurwitz type vector space E on (V| k) is the p-dimensional
subspace of the space End(V, k) (dim End V' = dim V') of endomorphisms of
(V, k), which consists of all endomorphisms E not leaving invariant proper
subspaces of V', with the property

(10) (Ef,Ef)v = |E|*(f.f)v  for f€V,E€E,

where ||E|| := (Tr ETE)Y?, ETE being considered in an arbitrary matrix
representation of F in an orthonormal basis (e;) of V. We assume that E
contains the identity endomorphism Fj.

Consider next a system (7,) of p—1 imaginary n x n matrices determined
by the formulae

’ya’}/ﬁ—‘—’y/ﬁ/'}/a:Q”/’/\aBIn, a?/B:]"“"p’ a?/B#t7

fyi:—’}/a’ Re’ya:0,0ézl,...,p,Oé#t,

+ . T,.-1
704 T ’L{‘;’Ya’% )

where I, is the identity n X n-matrix and 7,3 is determined by (9). Then the
matrices 7, generate a real Clifford algebra. Choose the basic endomorphism
(Fo,Ey), a=1,...,p, a # tin E so that

(11) Epe; = ey, Eaej:i*yfaek, a=1,...,p, a#t, jk=1,...,n,
where ¢ denotes the imaginary unit. The choice (11) is motivated by
LEMMA 2. The endomorphisms Eqy, E,, satisfy the relations
(12) Ey=Er, E.e;= C]’-‘Zaek, E; the identity endomorphism in E ,
fora=1,... pa#t jk=1,...,n, where C’fa can be chosen as
Co=1Va, a=1,....p, a#t C,=1,.
Proof. The lemma follows directly from (8) and Corollary 1.



Hurwitz pairs 229

Consider a fixed direction in E determined by the endomorphisms F,,
a=1,...,p, a#t. Define

p p
(13) A=Y Een®, > fagn™n’ =1,
a=1 a,f=1
aFt o, Bt

where (n®) is a system of p — 1 real numbers. Then we have

LEMMA 3. The endomorphisms Ey and n replace 1 and i of C in the
field of “numbers” qEq + sn, where ¢q,s € R:

(14) E?=F, Em=nEy=n, n’=-E.
Proof. We only prove the third equality. Notice that
n%(e;) = n(ne;) = Egn®(Eqn®)e;
= —no‘nﬁ'yfa’y,%em = —nanﬁ[’ya’y,g]gnem.
On the other hand, we have
ﬁz(ej) = —nfpo [’yg'ya];nem.
Using the above equalities we obtain
2%2(6]-) = —nan’g[’yavg +V8%al} €m = —2n°‘nﬁﬁa5 [Ln]} em
= —2(no‘n5ﬁa,g)6;”em = —2¢; = —2Ey(e;) .
Hence n? = —E), as required. m
The endomorphism 7 is represented in the basis (e;) by the matrix
J =in%y, .
Now, we shall show some important properties of this matrix.
REMARK 1. J?=—1I,.
Proof. On the one hand, by the definition we have
J? = (in"ya)(in"y5) = —nn’ya7p .
On the other hand, changing the indices we get J? = —n/ n*ygYa- Thus,
2J% = —nnPlyavs + V870) = =200 Tapl, = =21, . =

Denote by O(k,l) the group of orthogonal transformations of the space
(V,k) (k = diag(1,...,1, —1,...,—1)). It is well-known that a matrix B
—_——— — ———

k l
belongs to O(k, 1) if and only if

(15) BTkB=#Kk or BsBT =k.
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By the definition of the conjugation “+”, given in (6), the above condition
is equivalent to

Bt*B=1, or BBT=1,.
REMARK 2. J € O(k,1).
Proof. Directly by the definition of J we have
JeJT = —nanﬁfya/vyg.

By (8) (v = —7a) we get kyj K" = —v3. Thus

JrJT = nanﬂ%ﬁgfs.
On the other hand, changing the indices we obtain
JrJT = nﬁna’yﬁ'yaﬁ.
Thus
2767 = n°nPyavs + V5Yalk = 201  Haslnk = 26 . m

The standard complex structure in the Euclidean space F,, is the endo-
morphism represented by the matrix

(0 I
JO_<—In/z 0>'

It is clear that Jy € O(n).

REMARK 3. For each pair (k,l) of positive integers such that k +1 =n,
we have Jo & O(k,1).

Proof. It suffices to show that Jyx # kJy. Otherwise, we would have
JokJ& = kJoJ& = K and Jy would belong to O(k,1).

We divide our proof into 3 parts.

I. k =1=mn/2. In this case we have

(0 —ILys (0 I
JOH_<—In/2 0 ) KJO_(Wz 0 )’

so Jok # KkJy.
II. k < n/2. Then
I 0 Ly
Jok = ( IO [76/2> ( —1 ! ) = | Ik )
—In/2 0 ‘_In/2 I 0

I,
I‘LJOZ < 0 —I) s
In/z 0

where I denotes I, /5_j, so in this case Jor # KJo as well.
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III. & > n/2. Then

I, 0 I
e (0 L /2 [ o s
T\ Ly 0 )0 - o
—Il _n/2‘ 0
0 | Ly

ko= | — ,

0 I 0

I

where I denotes I,/5_;. Again Jok # kJo. This completes the proof. m
The following problem arises:

PROBLEM 1. For which pairs (k,[) of positive integers does there exist a
matrix J € O(k, 1) satisfying J?> = —I,, n=k+17?

We are looking for a matrix J € M (n) which satisfies

(16) (a) JThJ =r, (b) J*=—I,.
Notice that the above conditions are equivalent to
(17) (a) (kJ)'' =—kJ, (b)J*=—1I,.

LEMMA 4. Let

(I, 0
(5 2. ks
If B € O(k,1), then

1) B is of the form

(18) B:<é %),

where A € M(k), A#0; Be M(l), B#0; C, € M(Il xk), Cy € M(k x1I)
and the following conditions are satisfied:

(a) ATA-clc,=1,, (b)ATC,-CIB=0,
(ccfA-BTCy=0, (d)B'B-cCfC,=1,.

2) det B = +1.

(19)

Proof. The condition 2) is a straightforward consequence of (15). To
prove 1) assume that B is of the form (18). Then

AT cT
T 2
(20) B = (C’lT BT) '

By (15), we have, say,

AT CEN (L. © A G
cr B")\o -)\c, B
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(ATA-CTCy ATC,-CTBY (I, O
—\ctA-BTc, ctc,-BT™B) \ 0 -I,)°

This is nothing but (19).

Assume that A = 0. Then by (19a) we would have CTCy = —1Ij. If
(ai,...,a;) is the first column of Cy, then we would get af + ... +a] = —1,
which is impossible. Thus A # 0. Analogously, we show that B # 0. =

THEOREM 2. Let k be as in Lemma 4. If J € O(k,l) and J satisfies
J?=—I,, n=k+1, then

1) J has the form

@ 1= 5)-

where A € M(k), A # 0, AT = —A; B € M(l), B # 0, Bl = -B;
C € M(l x k), and the matrices A, B, C satisfy (19) with C; = Cy = C.

2) The integers k and | are even.

Proof. By the assumptions, J satisfies (17a) so we have

(k) = —(KJ)7, Z%TmJ?Z—Z/{‘Z}J;” forr,s=1,...,n.
m=1 w=1

Since  is a diagonal matrix, the above equality is equivalent to

(22) kodi =—k3J:  forr,s=1,...,n.
By the assumption x = diag(1,...,1,—1,...,—1), so by (22) we get the
—— —— ——
k !
following:

LIfr<k,s<k, then J, = —J:.
II. If » > k, s > k, then J] = —J;.
IL. If r <k, s > k, then J! = J?.
IV.Ifr >k, s <k, then J, = J3.

We conclude that J has the form (21). Thus
-A C
T _
(g 5)-
Using (17) we get

Jrg_ (—A*-CCT —AC-CB
“\cTA+BCT CTC + B?
and
72 A2+ CCT  AC+CB
“\CTA+BCT CTC+ B?
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Thus A, B, C satisfy (19) with C; = Cy = C. Analogously to Lemma 4, we
prove that A, B # 0.

In order to prove the second assertion of our theorem we assume that k
and [ are odd (k 4+ = n, and by Lemma 1, n is always even). Since A and
B are antisymmetric, we then have
(23) det A=det B=0.

We now show that (23) contradicts (19). Indeed, to the matrix A% we can
associate a quadratic form F42 defined by Fyz(z,z) := (x, A%x), where { , )
denotes the usual scalar product. By (19a) we have

Faz(z,z) = (2, (=1 — CCx) = (x, —x — CCTx)
= (z,—x) — (2,CCTz) = —||z||* — (CT2,CT2)
= —|lz* = [CT=]* <0

for # # 0. The form Fj» is thus negative definite, so det A?> < 0, which
contradicts (23). m

REMARK 4. If k and [ are even integers (k 4+ [ = n, k,l # 0), then the
matrix J € O(k,l) satisfying J? = —I,, can be chosen as follows:

O L o of..| o
0 01 Lol o
(24) J=J% = -1 0
0 1
0 0 |0 o

Of course, (J°)T = —JO.
Denote by F' the family of all matrices A € M (n) satisfying one of the
equivalent conditions

At =—A, kAT =—A, (4Ar)T = —(4k),

1

T:H:H_ .

where K
REMARK 5. Any A € F satisfies
(25) TrA=0.

Proof. Indeed,
(AR); = D Awy = Ajw]
m=1

because k is diagonal. Now, since Ak is antisymmetric, we get
0=(Ar)} = Ajr; = A} =0. =
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COROLLARY 2. The matrices Vo, a = 1,...,p, a # t, determined by
(7)~9), belong to F.

COROLLARY 3. If 74, a = 1,...,p, a # t, are the matrices described

by (7)—(9) and (n%) is an arbitrary system of p — 1 real numbers satisfying

> f=1.a,et Tapn®n? =1, then

(26) Tr(in%y,) =0.
Here the following problem arises:
PROBLEM 2. Determine all matrices C,,, « = 1,...,p, satisfying (5).
LEMMA 5. The general formula describing the admissible matrices C.,
satisfying (5) is
(27) C,,=> OSRCsR™,
B
where O € O(N), R € O(k).

Proof. The matrices C, only depend on the choice of the bases in S
and V. We shall show how the matrices C, transform with the change of
the bases. Let

e, =085, €, =Rfex, ReO(r), 0€0(®),
and

F(e,,¢€}) = C&’; ey, -

Then
F(Odes, Riex) = Coff Ril'em,
O RV F(eg,e) = CLY Ri'em
OLRECY e = CLY Rien, .
Since R € O(k), it follows that kRTxk™1 = R~!, k=1 =k, and
R™M(kRTK)Y = 6.
Thus,
OLRSChyer = Col ROLen,
OSRNCl, = Clk R}
Now, we multiply both sides by (kRTk)}:
OZR;Chy (kR )] = Cofy Ri(RT k)] = O 6; = CLj
OPIRCskR K]} = CL5
O°RCsR™' =C!,
as required. It is easy to see that if the matrices (C,) satisfy (5) then so do
the (C/,). =
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COROLLARY 4. The general formula describing the admissible matrices
vl satisfying (8) is
(28) Yo = OaRysR™,
where R € O(k), O € O(7).

COROLLARY 5. If (n®) is an arbitrary system of numbers satisfying (13)
and ya, a=1,...,p, a #t, is an arbitrary system of matrices determined by
(7)-(9) then, changing the base in the space (V, k) by means of an orthogonal
transformation R € O(k), we have the following formula for the admissible
matrices J' € O(k,1) satisfying (J')? = —I,, n =k + I:

J =RJR™!,
where J = in“y,.

Now, fix matrices v,, « = 1,...,p, @ # t, and a system of p — 1 real
numbers (n®) satisfying (13). Denote by Or(J%) := {M € M(n); M =
RJ°R™', R € O(k)} the O(k)-orbit of the matrix J°. Further, let Or(.J)

denote the O(k)-orbit of J = in®y,. Let us compute the moments of J°
and J. We have

Tr J?* = Te(J?)F = Tr(~1,)" = (-1)F Tr I, = n(-1)F,

Tr(J%)?* = Tr(J9%)F = Tr(~1,)" = n(-1)F, fork=1,...,n/2.
Analogously, by Corollary 3, we have

Tr J2RH = Tr(J%% . J) = Tr(—J) = 0
and, since J? is antisymmetric,
Tr(J%)? ! = Tr(—J°%) = 0.
The matrices J and J° have the same moments so they belong to the same
orbit of O(k):
Or(J%) = Or(J).

LEMMA 6. Let n and p be positive integers determined by Lemma 1,

n > 1. Then, to any system (n®) of p — 1 real numbers satisfying (13) we

can associate a system Yo, a = 1,...,p, a # t, of imaginary n X n-matrices
satisfying (8) so that
(29) in%yq = JO.

Proof. By the considerations preceding Lemma 6, for any system (n®)
of p — 1 real numbers satisfying (13) and for any system =, of imaginary
n X n-matrices satisfying (8) the matrices J = in%y, and J° belong to the
same O(k)-orbit. Consequently, by the transitivity of the action of O(k)
in this orbit, for each system (n®) in question there exists an orthogonal
transformation of one matrix to the other and so the proof is complete. m
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Let us pose the following problem:
PROBLEM 3. Describe the orbit O(x) - J°.

Let 2 and §2' belong to O(k) - J°. Then 2 = AJ°A~! ' = BJ'B~},
where A, B € O(k). Notice that

(=02 [(A'B)J°(A'B) = J°.
Introduce the following relation in O(k):
(A~B) = [(A'B)J(A'B)~ = J9].

It is clear that this is an equivalence relation. Then the set of different
matrices {2 in the orbit O(k) - J? is isomorphic to the group O(k)/ ~=
O(k)/S(J°), where S(J°) := {A € O(x) : AJ°A~t = JO} is the stability
group of JY.

Let us recall that the endomorphism 7 is represented in the basis (e;)
by the matrix

(30) J =1in%y, ,
where
(31) J=RJ'R™

for some R € O(k).

DEFINITION. The endomorphism n described by (4), (8), (12) and (13)
will be called a supercomplex structure on (V, k).

This definition is motivated by

LEMMA 7. If a supercomplex structure n exists, then
(32) (Re)2; = J(Re)zj-1 = ﬁ(Rf)%—l :
(Re)2j—1 = —J(Re)z; = —ni(Re)ay

for some R € O(k).

Proof. This is a straightforward consequence of Corollaries 4 and 5,
Lemma 6, and (11), (13), (30). =

DEFINITION. [(V,k),J,n,-, E] is a complex vector space [(V,k),J," |
equipped with a supercomplex structure (J,n) and a Hurwitz type vector
space E of endomorphisms FE : V' — V satisfying
(33) (g+is)-f=fq+(Jf)s for feV andq,secR.
(By the definition it has to satisfy also the relations (32), (11), (13), and
(14).)

THEOREM 3. Consider a pseudo-Euclidean Hurwitz pair (V(k), S(n)) of

bidimension (n,p), n > 1, and some orthonormal bases (e;) in V and (g4)
in S. Let (n®) be an arbitrary system of real numbers (13) and (v,) a system
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of imaginary n X n-matrices (8)—(9) with the property (29), which is possi-
ble under the assumption that k = diag(1,...,1,—-1,...,—=1), ¥',I' # 0.
—_—— ——
k=2k =21
Suppose that f is an arbitrary vector in 'V and let 2?21 e; f# be its decom-
position (in V). Then this decomposition can be rearranged into the form

n/2

(34) f= Z(Re)gj_lf%*l, where f271 = Eofﬂ?_1 + ﬁfﬂ? ,
j=1

or
n/2

(35) = (Re)yf*, where f7 = Eofg? —nfa ",
j=1

for some R € O(k), where n =320 _, ., n*Eq.

Proof. The problem whose solution is formulated in Theorem 3 is well-
posed by Lemma 1, (11), (13), Theorem 2 and Lemma 6. By (11) and
(13),

nej = no‘(i'y]kaek) = (ino‘va)?ek = erk.
By Lemma 6, n(Re); = (Jo)ﬁek. Using Lemma 7, we get
(36) n(Re)zj—1 = (J°)5;_ 1 (Re)rp = (Re)a;
(Re)z; = (J°)5;(Re)x = —(Re)aj—1 -

Thus, for every f = Z?Zl(Re) j f]fé we get

n/2
[ = Z[(Re)%‘flf]ﬁj—l + (Re)2; f27]
j=1
n/2 ‘ A n/2
= [(Re)oj—1 £ + A(Re)ojp1 f27] = D (Re)ajoa f571
=1 =

where f2-1 .= Eofﬂij_1 + ﬁfﬁj.
Analogously, we obtain (35). The uniqueness of these decompositions is
a clear consequence of the uniqueness of f = Z?Zl e;fa.

From (34) and (35) we also deduce
LEMMA 8. If k = diag(1,...,1,—1,...,—1), where k',I" # 0, then by
—— —— ——

k=2k’ =2l
Theorem 3 the decompositions (34) and (35) for f € V' generate the decom-
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positions
n/2

(37) V=5 C;(Eo, i, J)
j=1

or
n/2

(38) V= Ci(Eo,7,J),
j=1

where Cj(Eoy,n,J) and éj (Eo,n,J) are complex one-dimensional subspaces
of V., generated by esj_1 and eyj, respectively, for j = 1,...,n/2. Their
dependence on Ey, n and J is determined by (11), (13), and (29).

On the other hand, with the help of the complex structure J we can
introduce the complex scalar product (,):V x V — C as follows:

(39) (f?g):(fag)R+Z(Jfag)R for f)gev

(provided k, the metric of V', satisfies the assumption of Lemma 8), where
(,)r denotes the usual (real) scalar product in V' : (f,g)r := > i, fg" for
f = f'ei, g = g'e;. Then we have

PROPOSITION 1. The complex scalar product (,) has the properties

40)  (fr9)=(9.f), (frg+h)=(f,9)+(f;h) Jforf.g,heV,
(41) (f.29)==2(f,9), (£,f)=fII® for f,g€Vandz€C,

n/2

(42) (f,9) = flgk for f.geV,
=1

where the bar denotes complex conjugation and
(43)  fA=f27 iy, gl=gd ' wigd,  j=1,...n/2

Proof. (40) and (41) follow from (30) and (31) and from the definition
of (,)and (, )r. Indeed,

(g7f) = (gaf)R+Z(Jgaf)R - (f? ) (ngaf) = (f,g)R—na(’yag,f)

n

=(f,9r =1 >_(Ya@)ifr = (f.9) R—TZQZ(Z’VZZQm)fk
k=1 m=1

k=1

= (R =1 D> gm(—Vhmfr)

m=1 k=1

= (£, )R +7" > gn(Vaf)m = (f.9)r + (9. Yaf)r

m=1

= (f?g)R - ina<gaEO¢f)R = (fvg)R - Z(g7ﬁf)R
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= (f?g)R_q’(gan)R = (fvg)R_Z(‘]fvg)R = (fvg)

In particular,

(faf):(faf)R—i_Z(vaf)R:(faf):(faf)R_Z(Jf7f)R

Hence (Jf, f)r = 0 and (f, f) = (f, f)r = ||f]|>. The remaining equalities
in (40) and (41) are obvious.

To prove (42) we take (36):

(f,9) = (f,9r+i(Jf,9)= =Y f*d" +i(nf 9)=
k=1
n n n/2
= SO+ i), g)r) = S Fog 43 (P Vieas )
k=1 k=1 j=1
n n/2
+ f77(e25), 9)r = Z frg* +iZ(f2j_1€2j — [Pezj1,9)r
k=1 j=1
n n/
= frg* +ii(f2jlg2j — f7g¥7h
k=1 Jj=1
n/2
_ Z[fQj—l(QQj—l +i92j) —|—f2j(92j _,L'g2j—1)]
j=1
n/2 n/2__
= S i) g = Y sl
j=1 j=1

where fé and g% are defined by (43). =

(4]
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