ANNALES POLONICI MATHEMATICI 55 (1991)

Some criteria for the injectivity of holomorphic mappings

by Stanisław Spodzieja (Łódź)

Abstract. We prove some criteria for the injectivity of holomorphic mappings.

Let $K \subset \mathbb{C}^n$ be a bounded and closed domain such that

(1) no closed proper subset of ∂K disconnects \mathbb{C}^n .

THEOREM 1. If a mapping $f : K \to \mathbb{C}^n$ is continuous, the restriction $f_{|\operatorname{Int} K}$ is holomorphic and $f_{|\partial K}$ is injective, then f is injective.

Proof. The proof will be carried out in three steps:

1. $f_{|\operatorname{Int} K}$: $\operatorname{Int} K \to \mathbb{C}^n$ is an open mapping. By the assumption, for any $y \in \mathbb{C}^n$, $f^{-1}(y) \cap \partial K$ has at most one point. Consequently, from the Remmert–Stein theorem on removable singularities, f has isolated fibres. So, by Remmert's theorem on open mappings, $f_{|\operatorname{Int} K}$ is an open mapping.

2. $f(\partial K) \cap f(\operatorname{Int} K) = \emptyset$. It is known (see [1], Cor. in Sec. 12, p. 248) that if $A, B \subset \mathbb{R}^m$ are compact and homeomorphic, and A disconnects \mathbb{R}^m , then so does B. Hence and from (1), $f(\partial K)$ disconnects \mathbb{C}^n , but no closed proper subset of $f(\partial K)$ does. Since $f(\operatorname{Int} K)$ is open, $f(\operatorname{Int} K) \subset$ Int f(K). Consequently, $\partial f(K) \subset f(\partial K)$. Since $\partial f(K)$ disconnects \mathbb{C}^n , we get $\partial f(K) = f(\partial K)$, and so $f(\partial K) \cap f(\operatorname{Int} K) = \emptyset$.

3. f is injective. Let $V = \{(x, y) \in K \times K : f(x) = f(y)\}$. Then each irreducible component of $V \cap \text{Int}(K \times K)$ has a positive dimension. Define

$$g_i: V \ni (x_1, \ldots, x_n, y_1, \ldots, y_n) \mapsto x_i - y_i \in \mathbb{C}, \quad i = 1, \ldots, n.$$

By the maximum principle for holomorphic functions on analytic sets, there exist $(x_0^i, y_0^i) \in \partial(K \times K) \cap V$, $i = 1, \ldots, n$, such that

$$|g_i(x_0^i, y_0^i)| = \max_{(x,y) \in V} |g_i(x,y)|, \quad i = 1, \dots, n.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 32H99.

From the definition of V we have $f(x_0^i) = f(y_0^i)$, thus, by step 2, $x_0^i, y_0^i \in \partial K$. Hence and from the injectivity of $f_{|\partial K}$ we have $x_0^i = y_0^i$, that is, $g_i(x_0^i, y_0^i) = 0$, and thus $g_i \equiv 0$ for $i = 1, \ldots, n$. Hence $V = \{(x, x) : x \in K\}$, therefore f is injective.

The proof is complete.

R e m a r k. In the case n = 1, this theorem is known (see [2], §11, Ch. IV, p. 209).

We shall now give another criterion in which we weaken the assumption on the boundary of the domain at the cost of strengthening the assumption on the mapping.

Let $D \subset \mathbb{C}^n$ be a bounded and closed domain with connected boundary.

THEOREM 2. If $f: D \to \mathbb{C}^n$ is a continuous mapping, $f_{|\operatorname{Int} D}$ is holomorphic, $f_{|\partial D}$ is injective, and

(2) each $x \in \partial D$ has a neighbourhood $U \subset \mathbb{C}$ such that $f_{|U \cap D}$ is injective, then f is injective.

Proof. The proof will be carried out in three steps:

1. $f_{|\operatorname{Int} D}$: Int $D \to \mathbb{C}^n$ is an open mapping. This is proved in the same way as step 1 in the proof of Theorem 1.

2. $f(\partial D) \cap f(\operatorname{Int} D) = \emptyset$. Assume to the contrary that $f(\partial D) \cap f(\operatorname{Int} D) \neq \emptyset$. By step 1, $f(\partial D) \cap f(\operatorname{Int} D)$ is open in $f(\partial D)$. Take any sequence $y_n \in f(\partial D) \cap f(\operatorname{Int} D)$ such that $\lim y_n = y_0$. Then there exist sequences $z_n \in \partial D$, $x_n \in \operatorname{Int} D$ such that $f(z_n) = y_n$, $f(x_n) = y_n$. Passing to subsequences if necessary, we may assume that $\lim x_n = x_0$, $\lim z_n = z_0$. From (2) we have $z_0 \neq x_0$. So, from the injectivity of $f_{|\partial D}$ we get $z_0 \in \partial D$, $x_0 \in \operatorname{Int} D$. In consequence, $y_0 \in f(\partial D) \cap f(\operatorname{Int} D)$. Thus $f(\partial D) \cap f(\operatorname{Int} D)$ is closed in $f(\partial D)$, that is, by the connectedness of ∂D , $f(\partial D) = f(\partial D) \cap f(\operatorname{Int} D)$. To sum up, $f(D) = f(\operatorname{Int} D)$, which is impossible because f(D) is compact and $f(\operatorname{Int} D)$ open.

3. f is injective. This is proved in the same way as step 3 in the proof of Theorem 1.

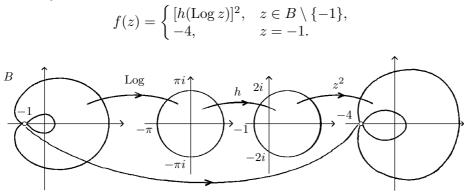
The proof is complete.

COROLLARY. If $f: D \to \mathbb{C}^n$ is a holomorphic mapping such that $f_{|\partial D}$ is injective and the Jacobian of f does not vanish anywhere in D, then f is injective.

We shall now give an example illustrating the fact that the assumptions (1) in Theorem 1 and (2) in Theorem 2 cannot be omitted.

EXAMPLE 1. Let $B = \exp(\{z \in \mathbb{C} : |z| < \pi\})$. Take a homography h such that $h(\pi i) = 2i$, $h(-\pi i) = -2i$, $h(-\pi) = -1$, and a function $f : B \to \mathbb{C}$

defined by



Then f and B have the following properties:

- 1) f is injective on ∂B ,
- 2) ∂B does not satisfy (1),
- 3) f does not satisfy (2) at the point -1,
- 4) f is not injective in B.

It is easy to show, using the Osgood–Brown theorem, that we need not assume the connectedness of the boundary of the domain in Theorem 2 for $n \ge 2$. In the case n = 1, this assumption is essential, which is shown by the following example.

EXAMPLE 2. Let $D = \{z \in \mathbb{C} : 1/5 \le |z| \le 4\}$ and $f : D \to \mathbb{C}$, f(z) = z + 1/z. It is easy to see that $f_{|\partial D}$ is injective. Since f'(z) = 0 for z = 1 and z = -1, condition (2) in Theorem 2 is also satisfied. But f(3) = f(1/3), thus f is not injective.

References

- K. Borsuk, Über Schnitte der n-dimensionalen Euklidischen Räume, Math. Ann. 106 (1932), 239–248.
- [2] S. Saks and A. Zygmund, Analytic Functions, PWN, Warszawa 1965.

INSTITUTE OF MATHEMATICS LÓDŹ UNIVERSITY BANACHA 22 90-238 ŁÓDŹ, POLAND

Reçu par la Rédaction le 12.9.1990