Absolute Nörlund summability factors of power series and Fourier series

by Hüseyin Bor (Kayseri)

Abstract

Four theorems of Ahmad [1] on absolute Nörlund summability factors of power series and Fourier series are proved under weaker conditions.

1. Introduction. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the nth Cesàro means of order $\alpha(\alpha>-1)$ of the sequences $\left(s_{n}\right)$ and $\left(w_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, \alpha|$ if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|<\infty \tag{1.1}
\end{equation*}
$$

Since $t_{n}^{\alpha}=n\left(u_{n}^{\alpha}-u_{n-1}^{\alpha}\right)$ (see [5]) condition (1.1) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|<\infty \tag{1.2}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\ldots+p_{n} \neq 0 \quad(n \geq 0) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
z_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} \quad\left(P_{n} \neq 0\right) \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(z_{n}\right)$ of Nörlund means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$ if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|z_{n}-z_{n-1}\right|<\infty \tag{1.5}
\end{equation*}
$$

In the special case where

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \quad \alpha \geq 0 \tag{1.6}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|$ summability becomes $|C, \alpha|$ summability. For $p_{n}=1$ and $P_{n}=n$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|$ summability becomes $|C, 1|$ summability.

The series $\sum a_{n}$ is said to be bounded $[C, 1]$ if

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|s_{\nu}\right|=O(n) \quad \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

and it is said to be bounded $[R, \log n, 1]$ if (see [8])

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{1}{\nu}\left|s_{\nu}\right|=O(\log n) \quad \text { as } n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

Let $f(t)$ be a periodic function, with period 2π, Lebesgue integrable over $(-\pi, \pi)$, and let

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} B_{n}(t) . \tag{1.9}
\end{equation*}
$$

For any sequence X_{n} we write $\Delta X_{n}=X_{n}-X_{n+1}, \Delta^{2} X_{n}=\Delta\left(\Delta X_{n}\right)$.
2. Concerning $|C, 1|$ and $\left|N, p_{n}\right|$ summability Kishore [4] proved the following theorem.

Theorem A. Let $p_{0}>0, p_{n} \geq 0$ and let $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Later Ahmad [1] proved the following theorems related to the absolute Nörlund summability factors of power series and Fourier series.

Theorem B. Let $\left(p_{n}\right)$ be as in Theorem A. If

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{1}{\nu}\left|t_{\nu}\right|=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

where $\left(X_{n}\right)$ is a positive non-decreasing sequence, and if the sequence $\left(\lambda_{n}\right)$ is such that

$$
\begin{gather*}
X_{n} \lambda_{n}=O(1) \tag{2.2}\\
n \Delta X_{n}=O\left(X_{n}\right) \tag{2.3}\\
\sum n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{2.4}
\end{gather*}
$$

then $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Theorem C. Let $\left(p_{n}\right)$ be as in Theorem A. If

$$
\begin{gather*}
\lambda_{n} \log n=O(1), \tag{2.5}\\
\sum n \log n\left|\Delta^{2} \lambda_{n}\right|<\infty \tag{2.6}
\end{gather*}
$$

then $\sum B_{n}(x) P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$ for almost all x.
Theorem D. Let $\left(p_{n}\right)$ be as in Theorem A. If F is even, $F \in L^{2}(-\pi, \pi)$,

$$
\begin{equation*}
\int_{0}^{t}|F(x)|^{2} d x=O(t) \quad \text { as } t \rightarrow+0 \tag{2.7}
\end{equation*}
$$

and if $\left(\lambda_{n}\right)$ satisfies the same conditions as in Theorem C , then the sequence $\left(A_{n}\right)$ of Fourier coefficients of F has the property that $\sum A_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Theorem E. If $f(z)=\sum c_{n} z^{n}$ is a power series of complex class L such that

$$
\begin{equation*}
\int_{0}^{t}\left|f\left(e^{i \theta}\right)\right| d \theta=O(|t|) \quad \text { as } t \rightarrow+0 \tag{2.8}
\end{equation*}
$$

and if $\left(\lambda_{n}\right)$ satisfies the same conditions as in Theorem C , then $\sum c_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
3. The aim of this paper is to prove Theorems B-E under weaker conditions. Also our proofs are shorter and different from Ahmad's [1].

Now, we shall prove the following theorems.
Theorem 1. Let $\left(p_{n}\right)$ be as in Theorem A. Let $\left(X_{n}\right)$ be a positive nondecreasing sequence. If conditions (2.1) and (2.2) of Theorem B are satisfied and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ are such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{3.1}\\
\beta_{n} \rightarrow 0 \tag{3.2}\\
\sum n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{3.3}
\end{gather*}
$$

then $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Remark. We note that it may be possible to choose $\left(\beta_{n}\right)$ satisfying (3.1) so that $\Delta \beta_{n}$ is much smaller than $\left|\Delta^{2} \lambda_{n}\right|$: roughly speaking, when $\left(\Delta \lambda_{n}\right)$ oscillates it may be possible to choose $\left(\beta_{n}\right)$ so that $\left|\Delta \beta_{n}\right|$ is significantly smaller than $\left|\Delta^{2} \lambda_{n}\right|$ so that $\sum n X_{n}\left|\Delta \beta_{n}\right|<\infty$ is a weaker requirement than $\sum n X_{n}\left|\Delta^{2} \lambda_{n}\right|<\infty$. This fact can be verified by the following example.

Take

$$
\Delta \lambda_{n}= \begin{cases}\frac{1}{n(n+1)} & (n \text { even }) \\ 0 & (n \text { odd })\end{cases}
$$

Then

$$
\Delta^{2} \lambda_{n}= \begin{cases}\frac{1}{n(n+1)} & (n \text { even }) \\ \frac{-1}{(n+1)(n+2)} & (n \text { odd })\end{cases}
$$

But we can take $\beta_{n}=1 /(n(n+1))$, so that $\Delta \beta_{n}=2 /(n(n+1)(n+2))$. Thus the condition (2.4) of Ahmad [1] is stronger than the condition (3.3) of our theorem.

Theorem 2. Let $\left(p_{n}\right)$ be as in Theorem A. Suppose that $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy conditions (3.1)-(3.2) of Theorem 1 and

$$
\begin{gather*}
\lambda_{n} \log n=O(1) \tag{3.4}\\
\sum n \log n\left|\Delta \beta_{n}\right|<\infty \tag{3.5}
\end{gather*}
$$

Then $\sum B_{n}(x) P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$ for almost all x.
Theorem 3. Let $\left(p_{n}\right)$ be as in Theorem A. If F is even, $F \in L^{2}(-\pi, \pi)$,

$$
\begin{equation*}
\int_{0}^{t}|F(x)|^{2} d x=O(t) \quad \text { as } t \rightarrow+0 \tag{3.6}
\end{equation*}
$$

and if $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy the same conditions as in Theorem 2 , then the sequence $\left(A_{n}\right)$ of Fourier coefficients of F has the property that $\sum A_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

Theorem 4. If $f(z)=\sum c_{n} z^{n}$ is a power series of complex class L such that

$$
\begin{equation*}
\int_{0}^{t}\left|f\left(e^{i \theta}\right)\right| d \theta=O(|t|) \quad \text { as } t \rightarrow+0 \tag{3.7}
\end{equation*}
$$

and if $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy the same conditions as in Theorem 2, then $\sum c_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
4. We need the following lemmas for the proof of our theorems.

Lemma 1 ([7]). Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy conditions (3.1)-(3.2) of Theorem 1. Then

$$
\begin{gather*}
n X_{n} \beta_{n}=o(1) \quad \text { as } n \rightarrow \infty \tag{4.1}\\
\sum X_{n} \beta_{n}<\infty \tag{4.2}
\end{gather*}
$$

Lemma 2 ([1]). Let

$$
\begin{equation*}
t_{n}(x)=\frac{1}{n+1} \sum_{\nu=1}^{n} \nu B_{\nu}(x) . \tag{4.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{1}{\nu}\left|t_{\nu}(x)\right|=o(\log n) \quad \text { as } n \rightarrow \infty \tag{4.4}
\end{equation*}
$$

for almost all x.
Lemma 3 ([9]). Let F be even, $F \in L^{2}(-\pi, \pi)$, and let S_{n} denote the n-th partial sum of its Fourier series at the origin. If

$$
\begin{equation*}
\int_{0}^{\theta}|F(x)|^{2} d x=O(\theta) \quad \text { as } \theta \rightarrow+0 \tag{4.5}
\end{equation*}
$$

then $\left(S_{n}\right)$ is bounded $[C, 1]$.
Lemma $4([1])$. If $\sum a_{n}$ is bounded $[C, 1]$, it is bounded $[R, \log n, 1]$.
Lemma 5 ([8]). If $\sum a_{n}$ is bounded $[R, \log n, 1]$, then

$$
\begin{equation*}
\sum_{\nu=1}^{n} \frac{1}{\nu}\left|t_{\nu}\right|=O(\log n) \quad \text { as } n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Lemma 6 ([9]). If $f(z)=\sum c_{n} z^{n}$ is a power series of complex class L such that

$$
\begin{equation*}
\int_{0}^{t}\left|f\left(e^{i \theta}\right)\right| d \theta=O(|t|) \quad \text { as } t \rightarrow+0 \tag{4.7}
\end{equation*}
$$

then $\sum c_{n}$ is bounded $[R, \log n, 1]$.
5. Proof of Theorem 1. We need only consider the special case where $\left(N, p_{n}\right)$ is $(C, 1)$, that is, we shall prove that $\sum a_{n} \lambda_{n}$ is summable $|C, 1|$. Theorem 1 will then follow from Theorem A.

Let T_{n} be the nth $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$, that is,

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{\nu=1}^{n} \nu a_{\nu} \lambda_{\nu} \tag{5.1}
\end{equation*}
$$

Applying Abel's transformation, we get

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{\nu=1}^{n} \nu a_{\nu} \lambda_{\nu}=\frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta \lambda_{\nu}(\nu+1) t_{\nu}+t_{n} \lambda_{n} \\
& =T_{n, 1}+T_{n, 2}, \quad \text { say } .
\end{aligned}
$$

By (1.2), to complete the proof of Theorem 1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|<\infty \quad \text { for } r=1,2 \tag{5.2}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right| & \leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)}\left\{\sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \nu\left|\Delta \lambda_{\nu}\right|\left|t_{\nu}\right|\right\} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}}\left\{\sum_{\nu=1}^{n-1} \nu \beta_{\nu}\left|t_{\nu}\right|\right\} \\
& =O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu}\left|t_{\nu}\right| \sum_{n=\nu+1}^{m+1} \frac{1}{n^{2}}=O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu} \nu^{-1}\left|t_{\nu}\right| \\
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left(\nu \beta_{\nu}\right) \sum_{r=1}^{\nu} r^{-1}\left|t_{r}\right|+O(1) m \beta_{m} \sum_{\nu=1}^{m} \nu^{-1}\left|t_{\nu}\right| \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \beta_{\nu}\right)\right| X_{\nu}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1} \nu X_{\nu}\left|\Delta \beta_{\nu}\right|+O(1) \sum_{\nu=1}^{m-1}\left|\beta_{\nu+1}\right| X_{\nu+1}+O(1) m \beta_{m} X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by $(2.1),(3.1),(3.3),(4.1)$ and (4.2). Also,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right| & =\sum_{n=1}^{m}\left|\lambda_{n}\right| n^{-1}\left|t_{n}\right| \\
& =\sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{\nu=1}^{n} \nu^{-1}\left|t_{\nu}\right|+\left|\lambda_{m}\right| \sum_{n=1}^{m} n^{-1}\left|t_{n}\right| \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by $(2.1),(2.2),(3.1)$ and (4.2). This completes the proof of Theorem 1.
6. Proof of Theorems 2-4. We obtain Theorem 2 from Theorem 1 , with $X_{n}=\log n$, by an appeal to Lemma 2. Theorem 3 can be easily obtained from Theorem 1, with $X_{n}=\log n$, by successive application of

Lemmas 3, 4, and 5. Finally, we obtain Theorem 4 from Theorem 1, with $X_{n}=\log n$, by appealing to Lemmas 6 and 5 .

References

[1] Z. U. Ahmad, Absolute Nörlund summability factors of power series and Fourier series, Ann. Polon. Math. 27 (1972), 9-20.
[2] H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 16 (1941), 215-220.
[3] M. Fekete, Zur Theorie der divergenten Reihen, Math. és Termes Ersitö (Budapest) 29 (1911), 719-726.
[4] N. Kishore, On the absolute Nörlund summability factors, Riv. Mat. Univ. Parma (2) 6 (1965), 129-134.
[5] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.
[6] F. M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc. 41 (1935), 875-880.
[7] K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983), 40-43.
[8] T. Pati, Absolute Cesàro summability factors of infinite series, Math. Z. 78 (1962), 293-297.
[9] C. T. Rajagopal, On $|C, 1|$ summability factors of power series and Fourier series, ibid. 80 (1963), 265-268.

DEPARTMENT OF MATHEMATICS
ERCIYES UNIVERSITY
KAYSERI 38039, TURKEY

