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Abstract. Four theorems of Ahmad [1] on absolute Nörlund summability factors of
power series and Fourier series are proved under weaker conditions.

1. Introduction. Let
∑
an be a given infinite series with the sequence

of partial sums (sn) and wn = nan. By uαn and tαn we denote the nth Cesàro
means of order α (α > −1) of the sequences (sn) and (wn), respectively.
The series

∑
an is said to be summable |C,α| if (see [3])

(1.1)
∞∑
n=1

|uαn − uαn−1| <∞ .

Since tαn = n(uαn − uαn−1) (see [5]) condition (1.1) can also be written as

(1.2)
∞∑
n=1

1
n
|tαn| <∞ .

Let (pn) be a sequence of constants, real or complex, and let us write

(1.3) Pn = p0 + p1 + p2 + . . .+ pn 6= 0 (n ≥ 0) .

The sequence-to-sequence transformation

(1.4) zn =
1
Pn

n∑
ν=0

pn−νsν (Pn 6= 0)

defines the sequence (zn) of Nörlund means of the sequence (sn), generated
by the sequence of coefficients (pn). The series

∑
an is said to be summable

|N, pn| if (see [6])

(1.5)
∞∑
n=1

|zn − zn−1| <∞ .
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In the special case where

(1.6) pn =
Γ (n+ α)

Γ (α)Γ (n+ 1)
, α ≥ 0 ,

the Nörlund mean reduces to the (C,α) mean and |N, pn| summability be-
comes |C,α| summability. For pn = 1 and Pn = n, we get the (C, 1) mean
and then |N, pn| summability becomes |C, 1| summability.

The series
∑
an is said to be bounded [C, 1] if

(1.7)
n∑
ν=1

|sν | = O(n) as n→∞ ,

and it is said to be bounded [R, log n, 1] if (see [8])

(1.8)
n∑
ν=1

1
ν
|sν | = O(log n) as n→∞.

Let f(t) be a periodic function, with period 2π, Lebesgue integrable over
(−π, π), and let

(1.9)
1
2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt) =
1
2
a0 +

∞∑
n=1

Bn(t).

For any sequence Xn we write ∆Xn = Xn −Xn+1, ∆
2Xn = ∆(∆Xn).

2. Concerning |C, 1| and |N, pn| summability Kishore [4] proved the
following theorem.

Theorem A. Let p0 > 0, pn ≥ 0 and let (pn) be a non-increasing se-
quence. If

∑
an is summable |C, 1|, then the series

∑
anPn(n + 1)−1 is

summable |N, pn|.
Later Ahmad [1] proved the following theorems related to the absolute

Nörlund summability factors of power series and Fourier series.

Theorem B. Let (pn) be as in Theorem A. If

(2.1)
n∑
ν=1

1
ν
|tν | = O(Xn) as n→∞ ,

where (Xn) is a positive non-decreasing sequence, and if the sequence (λn)
is such that

(2.2) Xnλn = O(1) ,
(2.3) n∆Xn = O(Xn) ,

(2.4)
∑

nXn|∆2λn| <∞ ,

then
∑
anPnλn(n+ 1)−1 is summable |N, pn|.
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Theorem C. Let (pn) be as in Theorem A. If

(2.5) λn log n = O(1) ,

(2.6)
∑

n log n|∆2λn| <∞ ,

then
∑
Bn(x)Pnλn(n+ 1)−1 is summable |N, pn| for almost all x.

Theorem D. Let (pn) be as in Theorem A. If F is even, F ∈ L2(−π, π),

(2.7)
t∫

0

|F (x)|2 dx = O(t) as t→ +0 ,

and if (λn) satisfies the same conditions as in Theorem C, then the sequence
(An) of Fourier coefficients of F has the property that

∑
AnPnλn(n+ 1)−1

is summable |N, pn|.

Theorem E. If f(z) =
∑
cnz

n is a power series of complex class L such
that

(2.8)
t∫

0

|f(eiθ)| dθ = O(|t|) as t→ +0,

and if (λn) satisfies the same conditions as in Theorem C, then∑
cnPnλn(n+ 1)−1 is summable |N, pn|.

3. The aim of this paper is to prove Theorems B–E under weaker con-
ditions. Also our proofs are shorter and different from Ahmad’s [1].

Now, we shall prove the following theorems.

Theorem 1. Let (pn) be as in Theorem A. Let (Xn) be a positive non-
decreasing sequence. If conditions (2.1) and (2.2) of Theorem B are satisfied
and the sequences (λn) and (βn) are such that

(3.1) |∆λn| ≤ βn ,
(3.2) βn → 0 ,

(3.3)
∑

nXn|∆βn| <∞ ,

then
∑
anPnλn(n+ 1)−1 is summable |N, pn|.

R e m a r k. We note that it may be possible to choose (βn) satisfying (3.1)
so that ∆βn is much smaller than |∆2λn|: roughly speaking, when (∆λn)
oscillates it may be possible to choose (βn) so that |∆βn| is significantly
smaller than |∆2λn| so that

∑
nXn|∆βn| < ∞ is a weaker requirement

than
∑
nXn|∆2λn| <∞. This fact can be verified by the following example.
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Take

∆λn =


1

n(n+ 1)
(n even),

0 (n odd).
Then

∆2λn =


1

n(n+ 1)
(n even),

−1
(n+ 1)(n+ 2)

(n odd).

But we can take βn = 1/(n(n + 1)), so that ∆βn = 2/(n(n + 1)(n + 2)).
Thus the condition (2.4) of Ahmad [1] is stronger than the condition (3.3)
of our theorem.

Theorem 2. Let (pn) be as in Theorem A. Suppose that (λn) and (βn)
satisfy conditions (3.1)–(3.2) of Theorem 1 and

(3.4) λn log n = O(1) ,

(3.5)
∑

n log n|∆βn| <∞ .

Then
∑
Bn(x) Pnλn(n+ 1)−1 is summable |N, pn| for almost all x.

Theorem 3. Let (pn) be as in Theorem A. If F is even, F ∈ L2(−π, π),

(3.6)
t∫

0

|F (x)|2 dx = O(t) as t→ +0,

and if (λn) and (βn) satisfy the same conditions as in Theorem 2, then
the sequence (An) of Fourier coefficients of F has the property that∑
AnPnλn(n+ 1)−1 is summable |N, pn|.
Theorem 4. If f(z) =

∑
cnz

n is a power series of complex class L such
that

(3.7)
t∫

0

|f(eiθ)| dθ = O(|t|) as t→ +0 ,

and if (λn) and (βn) satisfy the same conditions as in Theorem 2, then∑
cnPnλn(n+ 1)−1 is summable |N, pn|.

4. We need the following lemmas for the proof of our theorems.

Lemma 1 ([7]). Let (Xn) be a positive non-decreasing sequence and sup-
pose that (λn) and (βn) satisfy conditions (3.1)–(3.2) of Theorem 1. Then

(4.1) nXnβn = o(1) as n→∞ ,

(4.2)
∑

Xnβn <∞ .
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Lemma 2 ([1]). Let

(4.3) tn(x) =
1

n+ 1

n∑
ν=1

νBν(x) .

Then

(4.4)
n∑
ν=1

1
ν
|tν(x)| = o(log n) as n→∞ ,

for almost all x.

Lemma 3 ([9]). Let F be even, F ∈ L2(−π, π), and let Sn denote the
n-th partial sum of its Fourier series at the origin. If

(4.5)
θ∫

0

|F (x)|2 dx = O(θ) as θ → +0 ,

then (Sn) is bounded [C, 1].

Lemma 4 ([1]). If
∑
an is bounded [C, 1], it is bounded [R, log n, 1].

Lemma 5 ([8]). If
∑
an is bounded [R, log n, 1], then

(4.6)
n∑
ν=1

1
ν
|tν | = O(log n) as n→∞ .

Lemma 6 ([9]). If f(z) =
∑
cnz

n is a power series of complex class L
such that

(4.7)
t∫

0

|f(eiθ)|dθ = O(|t|) as t→ +0 ,

then
∑
cn is bounded [R, log n, 1].

5. Proof of Theorem 1. We need only consider the special case where
(N, pn) is (C, 1), that is, we shall prove that

∑
anλn is summable |C, 1|.

Theorem 1 will then follow from Theorem A.
Let Tn be the nth (C, 1) mean of the sequence (nanλn), that is,

(5.1) Tn =
1

n+ 1

n∑
ν=1

νaνλν .

Applying Abel’s transformation, we get

Tn =
1

n+ 1

n∑
ν=1

νaνλν =
1

n+ 1

n−1∑
ν=1

∆λν(ν + 1)tν + tnλn

= Tn,1 + Tn,2 , say.
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By (1.2), to complete the proof of Theorem 1, it is sufficient to show that

(5.2)
∞∑
n=1

1
n
|Tn,r| <∞ for r = 1, 2 .

Now, we have
m+1∑
n=2

1
n
|Tn,1| ≤

m+1∑
n=2

1
n(n+ 1)

{n−1∑
ν=1

ν + 1
ν

ν|∆λν | |tν |
}

= O(1)
m+1∑
n=2

1
n2

{n−1∑
ν=1

νβν |tν |
}

= O(1)
m∑
ν=1

νβν |tν |
m+1∑
n=ν+1

1
n2

= O(1)
m∑
ν=1

νβνν
−1|tν |

= O(1)
m−1∑
ν=1

∆(νβν)
ν∑
r=1

r−1|tr|+O(1)mβm
m∑
ν=1

ν−1|tν |

= O(1)
m−1∑
ν=1

|∆(νβν)|Xν +O(1)mβmXm

= O(1)
m−1∑
ν=1

νXν |∆βν |+O(1)
m−1∑
ν=1

|βν+1|Xν+1 +O(1)mβmXm

= O(1) as m→∞ ,

by (2.1), (3.1), (3.3), (4.1) and (4.2). Also,
m∑
n=1

1
n
|Tn,2| =

m∑
n=1

|λn|n−1|tn|

=
m−1∑
n=1

∆|λn|
n∑
ν=1

ν−1|tν |+ |λm|
m∑
n=1

n−1|tn|

= O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm = O(1) as m→∞

by (2.1), (2.2), (3.1) and (4.2). This completes the proof of Theorem 1.

6. Proof of Theorems 2–4. We obtain Theorem 2 from Theorem
1, with Xn = log n, by an appeal to Lemma 2. Theorem 3 can be easily
obtained from Theorem 1, with Xn = log n, by successive application of
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Lemmas 3, 4, and 5. Finally, we obtain Theorem 4 from Theorem 1, with
Xn = log n, by appealing to Lemmas 6 and 5.
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