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Absolute Norlund summability factors
of power series and Fourier series

by HUSEYIN BOr (Kayseri)

Abstract. Four theorems of Ahmad [1] on absolute Norlund summability factors of
power series and Fourier series are proved under weaker conditions.

1. Introduction. Let > a, be a given infinite series with the sequence
of partial sums (s, ) and w, = na,. By u& and t% we denote the nth Cesaro
means of order a (o > —1) of the sequences (s,) and (w,,), respectively.
The series > a,, is said to be summable |C, ol if (see [3])

o
(1.1) D fug —ug_ | < oo,
n=1
Since t& = n(ul —ud_;) (see [5]) condition (1.1) can also be written as
— 1
(1.2) Zg“m < 0.
n=1

Let (p,) be a sequence of constants, real or complex, and let us write
(1.3) Po=po+pr+pat...+pn 0 (n>0).

The sequence-to-sequence transformation
1 n

(1.4) =5 > pnvsy  (Pa#0)
" y=0

defines the sequence (z,) of Norlund means of the sequence (s, ), generated
by the sequence of coefficients (p,,). The series > a,, is said to be summable
[N, pnl if (see [6])

oo

(1.5) Z|zn—zn_1| < 00.

n=1

1991 Mathematics Subject Classification: 40G05, 42A28, 42A24, 42A45.



12 H. Bor

In the special case where

I
(1.6) py = L+ ) a0,

Ia)'(n+1)’ -
the Norlund mean reduces to the (C, «) mean and |N, p,| summability be-
comes |C, a| summability. For p,, = 1 and P, = n, we get the (C,1) mean
and then |N, p,| summability becomes |C, 1| summability.

The series ) a,, is said to be bounded [C, 1] if

(1.7) Z|s,,] =0(n) asn— oo,
v=1
and it is said to be bounded [R,logn, 1] if (see [8])
1
1. —|ls,| = O(l .
(1.8) ;V]s\ O(logn) asn — oo

Let f(t) be a periodic function, with period 27, Lebesgue integrable over
(—m,m), and let

(1.9) §a0+ Z(an cosnt + by, sinnt) = 2@0"‘;Bn(t)~

n=1

For any sequence X,, we write AX,, = X,, — X,,11, A%X,, = A(AX,,).

2. Concerning |C,1| and |N,p,| summability Kishore [4] proved the
following theorem.

THEOREM A. Let pg > 0, p, > 0 and let (p,) be a non-increasing se-
quence. If Y a, is summable |C, 1|, then the series Y anPy(n + 1)71 is
summable | N, py|.

Later Ahmad [1] proved the following theorems related to the absolute
Norlund summability factors of power series and Fourier series.

THEOREM B. Let (p,) be as in Theorem A. If
1
(2.1) Z_:l ;|tyy =0(X,) asn— oo,
where (X,,) is a positive non-decreasing sequence, and if the sequence (\y)
1s such that

(2.2) XnAn = O(l) )
(2.3) nAX, =0(X,),
(2.4) D nXn|A%A,| < oo,

then Y anPon(n + 1)~ is summable | N, p,|.
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THEOREM C. Let (p,) be as in Theorem A. If
(2.5) Anlogn = 0O(1),
(2.6) anogn|A2)\n\ < o0,
then Y By (2)Pun(n + 1)~ is summable | N, p,| for almost all x.

THEOREM D. Let (p,,) be as in Theorem A. If F is even, F € L*(—m,m),
t
(2.7) [1F@)?dz=0(t) ast— +0,
0

and if (A,) satisfies the same conditions as in Theorem C, then the sequence
(A,) of Fourier coefficients of F has the property that > A, Py, (n+ 1)1
is summable |N, py,|.

THEOREM E. If f(2) = Y_ ¢,2™ is a power series of complex class L such
that

(2.8) [1f(e)]do = O([t])  ast— +0,

and if (\,) satisfies the same conditions as in Theorem C, then
S enPadn(n+1)71 is summable | N, p,|.

3. The aim of this paper is to prove Theorems B-E under weaker con-
ditions. Also our proofs are shorter and different from Ahmad’s [1].
Now, we shall prove the following theorems.

THEOREM 1. Let (p,,) be as in Theorem A. Let (X,,) be a positive non-
decreasing sequence. If conditions (2.1) and (2.2) of Theorem B are satisfied
and the sequences (\,) and (3,) are such that

(3.1) |AXL| < B,
(3.2) Gn — 0,
(3.3) D nX,|AB| < 0o,

then > anPun(n + 1)~ is summable | N, p,|.

Remark. We note that it may be possible to choose (3,,) satisfying (3.1)
so that AB, is much smaller than |A%),|: roughly speaking, when (A\,)
oscillates it may be possible to choose (8,) so that |Af,| is significantly
smaller than |A2)\,| so that Y nX,|AB,| < o is a weaker requirement
than Y nX,|A%\,| < co. This fact can be verified by the following example.
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Take
L (n even)
- ven
AN, =< n(n+1) T eV,
0 (n odd).
Then
: (n even)
S n even),
A2\ — n(n+1)
no -1
(n odd).

(n+1)(n+2)
But we can take 3, = 1/(n(n + 1)), so that AB, = 2/(n(n + 1)(n + 2)).
Thus the condition (2.4) of Ahmad [1] is stronger than the condition (3.3)
of our theorem.

THEOREM 2. Let (p,,) be as in Theorem A. Suppose that (\,) and (3,)
satisfy conditions (3.1)—(3.2) of Theorem 1 and

(3.4) Anlogn =0(1),

(3.5) anog n|ABy| < 00.

Then >~ By (z) Pun(n+ 1)t is summable |N, p,| for almost all x.
THEOREM 3. Let (p,) be as in Theorem A. If F is even, F € L*(—m, ),

(3.6) [1F@) dz=0(t) ast— +0,
0

and if (\,) and (B,) satisfy the same conditions as in Theorem 2, then
the sequence (Ay) of Fourier coefficients of F has the property that
S ApPodn(n+ 1)1 is summable |N,py|.

THEOREM 4. If f(2) = > cp2™ is a power series of complex class L such
that

(3.7) [1£(e9)]d0=0(t)) ast—+0,
0

and if (An) and (B,) satisfy the same conditions as in Theorem 2, then
ST enPudn(n+ 1)~ is summable |N, py|.

4. We need the following lemmas for the proof of our theorems.

LEMMA 1 ([7]). Let (X,,) be a positive non-decreasing sequence and sup-
pose that (A\,) and (B,) satisfy conditions (3.1)—(3.2) of Theorem 1. Then

(4.1) nX,0n =o0(1) asn— oo,
(4.2) D Xnfn < 0.
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LEMMA 2 ([1]). Let

(4.3) ta(2) = —— S "B, (2)

n+1y:1

Then
"1
4.4 — o(1
(4.4) ZZ:V (logn) asn — oo,

for almost all x.

LEMMA 3 ([9]). Let F be even, F € L*(—m,n), and let S, denote the
n-th partial sum of its Fourier series at the origin. If

(4.5) f\F )2de=0(0) ash — 40,

then (Sy) is bounded [C,1].
LeMMA 4 ([1]). If >_ ay is bounded [C, 1], it is bounded [R,logn, 1].
LEMMA 5 ([8]). If > ay, is bounded [R,logn, 1], then

n

(4.6) Z %|t,,| =O(logn) asn — oco.

v=1

LEMMA 6 ([9]). If f(z) = D> cn2" is a power series of complex class L
such that

t
(4.7) J1sE@las=o(t)  ast— +o0.
0
then > ¢, is bounded [R,logn,1].
5. Proof of Theorem 1. We need only consider the special case where
(N,pyn) is (C,1), that is, we shall prove that > a,A, is summable |C,1]|.

Theorem 1 will then follow from Theorem A.
Let T,, be the nth (C,1) mean of the sequence (na,\,), that is,

1 n
5.1 Tn: 1/)\11
(5.1) n“;m

Applying Abel’s transformation, we get

1 n 1 n—1
T, = vA, = —— AN, Dit, +t, Ay
1 2V = T L AN Dl

= 1n,1 + Tn,2 , say.
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By (1.2), to complete the proof of Theorem 1, it is sufficient to show that
1
(5.2) Z:l E!Tn,r| <oo forr=1,2.

Now, we have

m+11 m—+1 v+1
>t Y ey {Z vian e}

n=2 o 1

=om 3, {va 1}
m m—+1 1

=0(1)) _vBlt| Z ZVﬁu A
v=1 n= 1/—|—1
m—1 v

DY AWB) Y r e + O(1)mB, Zy—l\m

v=1 r=1 v=1
m—1

=0(1) ) [AWS)IXy + O(1)mfBm X
Tl:zz—ll m—1

=0(1) Y vX,[AB+0(1) Y Bs1|Xps1 + O()mBn X
v=1 v=1

=0(1) asm — oo,
by (2.1), (3.1), (3.3), (4.1) and (4.2). Also,

S Tal= 3 Paln il
n=1
N anu—lrt \+1Am\2n—1rt |

Z | AN | X, + O(1)| A | X,
=1

m—1
=0(1) ) BuXpn + O Am| X =0(1)  asm — o0
n=1
by (2.1), (2.2), (3.1) and (4.2). This completes the proof of Theorem 1.
6. Proof of Theorems 2—4. We obtain Theorem 2 from Theorem

1, with X,, = logn, by an appeal to Lemma 2. Theorem 3 can be easily
obtained from Theorem 1, with X,, = logn, by successive application of
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Lemmas 3, 4, and 5. Finally, we obtain Theorem 4 from Theorem 1, with
X, =logn, by appealing to Lemmas 6 and 5.

References

Z. U. Ahmad, Absolute Norlund summability factors of power series and Fourier
series, Ann. Polon. Math. 27 (1972), 9-20.

H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc.
16 (1941), 215-220.

M. Fekete, Zur Theorie der divergenten Reihen, Math. és Termes Ersito (Budapest)
29 (1911), 719-726.

N. Kishore, On the absolute Norlund summability factors, Riv. Mat. Univ. Parma
(2) 6 (1965), 129-134.

E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyen-
nes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.

F. M. Mears, Some multiplication theorems for the Nérlund mean, Bull. Amer.
Math. Soc. 41 (1935), 875-880.

K. N. Mishra, On the absolute Norlund summability factors of infinite series, Indian
J. Pure Appl. Math. 14 (1983), 40-43.

T. Pati, Absolute Cesaro summability factors of infinite series, Math. Z. 78 (1962),
293-297.

C. T. Rajagopal, On |C, 1| summability factors of power series and Fourier series,
ibid. 80 (1963), 265-268.

DEPARTMENT OF MATHEMATICS
ERCIYES UNIVERSITY
KAYSERI 38039, TURKEY

Recu par la Rédaction le 10.8.1989
Révisé le 11.12.1989



