ANNALES POLONICI MATHEMATICI LVI.1 (1991)

Absolute Nörlund summability factors of power series and Fourier series

by HÜSEYİN BOR (Kayseri)

Abstract. Four theorems of Ahmad [1] on absolute Nörlund summability factors of power series and Fourier series are proved under weaker conditions.

1. Introduction. Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) and $w_n = na_n$. By u_n^{α} and t_n^{α} we denote the *n*th Cesàro means of order α ($\alpha > -1$) of the sequences (s_n) and (w_n) , respectively. The series $\sum a_n$ is said to be summable $|C, \alpha|$ if (see [3])

(1.1)
$$\sum_{n=1}^{\infty} |u_n^{\alpha} - u_{n-1}^{\alpha}| < \infty.$$

Since $t_n^{\alpha} = n(u_n^{\alpha} - u_{n-1}^{\alpha})$ (see [5]) condition (1.1) can also be written as

(1.2)
$$\sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}| < \infty.$$

Let (p_n) be a sequence of constants, real or complex, and let us write

(1.3)
$$P_n = p_0 + p_1 + p_2 + \ldots + p_n \neq 0 \quad (n \ge 0).$$

The sequence-to-sequence transformation

(1.4)
$$z_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu} \quad (P_n \neq 0)$$

defines the sequence (z_n) of Nörlund means of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|N, p_n|$ if (see [6])

(1.5)
$$\sum_{n=1}^{\infty} |z_n - z_{n-1}| < \infty.$$

¹⁹⁹¹ Mathematics Subject Classification: 40G05, 42A28, 42A24, 42A45.

In the special case where

(1.6)
$$p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}, \quad \alpha \ge 0,$$

the Nörlund mean reduces to the (C, α) mean and $|N, p_n|$ summability becomes $|C, \alpha|$ summability. For $p_n = 1$ and $P_n = n$, we get the (C, 1) mean and then $|N, p_n|$ summability becomes |C, 1| summability.

The series $\sum a_n$ is said to be bounded [C, 1] if

(1.7)
$$\sum_{\nu=1}^{n} |s_{\nu}| = O(n) \quad \text{as } n \to \infty,$$

and it is said to be bounded $[R, \log n, 1]$ if (see [8])

(1.8)
$$\sum_{\nu=1}^{n} \frac{1}{\nu} |s_{\nu}| = O(\log n) \quad \text{as } n \to \infty.$$

Let f(t) be a periodic function, with period 2π , Lebesgue integrable over $(-\pi, \pi)$, and let

(1.9)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} B_n(t).$$

For any sequence X_n we write $\Delta X_n = X_n - X_{n+1}, \Delta^2 X_n = \Delta(\Delta X_n).$

2. Concerning |C,1| and $|N,p_n|$ summability Kishore [4] proved the following theorem.

THEOREM A. Let $p_0 > 0$, $p_n \ge 0$ and let (p_n) be a non-increasing sequence. If $\sum a_n$ is summable |C,1|, then the series $\sum a_n P_n(n+1)^{-1}$ is summable $|N, p_n|$.

Later Ahmad [1] proved the following theorems related to the absolute Nörlund summability factors of power series and Fourier series.

THEOREM B. Let (p_n) be as in Theorem A. If

(2.1)
$$\sum_{\nu=1}^{n} \frac{1}{\nu} |t_{\nu}| = O(X_n) \quad \text{as } n \to \infty,$$

where (X_n) is a positive non-decreasing sequence, and if the sequence (λ_n) is such that

(2.2)
$$X_n \lambda_n = O(1) \,,$$

(2.3)
$$n\Delta X_n = O(X_n),$$

(2.4)
$$\sum n X_n |\Delta^2 \lambda_n| < \infty \,,$$

then $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

THEOREM C. Let (p_n) be as in Theorem A. If

(2.5)
$$\lambda_n \log n = O(1) \,,$$

(2.6)
$$\sum n \log n |\Delta^2 \lambda_n| < \infty \,,$$

then $\sum B_n(x)P_n\lambda_n(n+1)^{-1}$ is summable $|N, p_n|$ for almost all x.

THEOREM D. Let (p_n) be as in Theorem A. If F is even, $F \in L^2(-\pi, \pi)$,

(2.7)
$$\int_{0}^{t} |F(x)|^{2} dx = O(t) \quad as \ t \to +0,$$

and if (λ_n) satisfies the same conditions as in Theorem C, then the sequence (A_n) of Fourier coefficients of F has the property that $\sum A_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

THEOREM E. If $f(z) = \sum c_n z^n$ is a power series of complex class L such that

(2.8)
$$\int_{0}^{t} |f(e^{i\theta})| d\theta = O(|t|) \quad as \ t \to +0,$$

and if (λ_n) satisfies the same conditions as in Theorem C, then $\sum c_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

3. The aim of this paper is to prove Theorems B–E under weaker conditions. Also our proofs are shorter and different from Ahmad's [1].

Now, we shall prove the following theorems.

THEOREM 1. Let (p_n) be as in Theorem A. Let (X_n) be a positive nondecreasing sequence. If conditions (2.1) and (2.2) of Theorem B are satisfied and the sequences (λ_n) and (β_n) are such that

$$(3.1) \qquad \qquad |\Delta\lambda_n| \le \beta_n \,,$$

$$(3.2) \qquad \qquad \beta_n \to 0\,,$$

(3.3)
$$\sum nX_n |\Delta\beta_n| < \infty \,,$$

then $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

R e m a r k. We note that it may be possible to choose (β_n) satisfying (3.1) so that $\Delta\beta_n$ is much smaller than $|\Delta^2\lambda_n|$: roughly speaking, when $(\Delta\lambda_n)$ oscillates it may be possible to choose (β_n) so that $|\Delta\beta_n|$ is significantly smaller than $|\Delta^2\lambda_n|$ so that $\sum nX_n|\Delta\beta_n| < \infty$ is a weaker requirement than $\sum nX_n|\Delta^2\lambda_n| < \infty$. This fact can be verified by the following example. Take

$$\label{eq:lambda} \varDelta \lambda_n = \begin{cases} \frac{1}{n(n+1)} & (n \text{ even}), \\ 0 & (n \text{ odd}). \end{cases}$$

Then

$$\Delta^2 \lambda_n = \begin{cases} \frac{1}{n(n+1)} & (n \text{ even}),\\ \frac{-1}{(n+1)(n+2)} & (n \text{ odd}). \end{cases}$$

But we can take $\beta_n = 1/(n(n+1))$, so that $\Delta\beta_n = 2/(n(n+1)(n+2))$. Thus the condition (2.4) of Ahmad [1] is stronger than the condition (3.3) of our theorem.

THEOREM 2. Let (p_n) be as in Theorem A. Suppose that (λ_n) and (β_n) satisfy conditions (3.1)–(3.2) of Theorem 1 and

(3.4)
$$\lambda_n \log n = O(1) \,,$$

(3.5)
$$\sum n \log n |\Delta \beta_n| < \infty$$

Then $\sum B_n(x) P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$ for almost all x.

THEOREM 3. Let (p_n) be as in Theorem A. If F is even, $F \in L^2(-\pi, \pi)$,

(3.6)
$$\int_{0}^{t} |F(x)|^{2} dx = O(t) \quad as \ t \to +0.$$

and if (λ_n) and (β_n) satisfy the same conditions as in Theorem 2, then the sequence (A_n) of Fourier coefficients of F has the property that $\sum A_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

THEOREM 4. If $f(z) = \sum c_n z^n$ is a power series of complex class L such that

(3.7)
$$\int_{0}^{t} |f(e^{i\theta})| d\theta = O(|t|) \quad as \ t \to +0,$$

and if (λ_n) and (β_n) satisfy the same conditions as in Theorem 2, then $\sum c_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

4. We need the following lemmas for the proof of our theorems.

LEMMA 1 ([7]). Let (X_n) be a positive non-decreasing sequence and suppose that (λ_n) and (β_n) satisfy conditions (3.1)–(3.2) of Theorem 1. Then

(4.1)
$$nX_n\beta_n = o(1) \quad as \ n \to \infty,$$

(4.2)
$$\sum X_n \beta_n < \infty \,.$$

14

LEMMA 2 ([1]). Let

(4.3)
$$t_n(x) = \frac{1}{n+1} \sum_{\nu=1}^n \nu B_\nu(x) \,.$$

Then

(4.4)
$$\sum_{\nu=1}^{n} \frac{1}{\nu} |t_{\nu}(x)| = o(\log n) \quad \text{as } n \to \infty,$$

for almost all x.

LEMMA 3 ([9]). Let F be even, $F \in L^2(-\pi,\pi)$, and let S_n denote the n-th partial sum of its Fourier series at the origin. If

(4.5)
$$\int_{0}^{\theta} |F(x)|^2 dx = O(\theta) \quad as \ \theta \to +0,$$

then (S_n) is bounded [C, 1].

LEMMA 4 ([1]). If $\sum a_n$ is bounded [C, 1], it is bounded [R, log n, 1].

LEMMA 5 ([8]). If $\sum a_n$ is bounded $[R, \log n, 1]$, then

(4.6)
$$\sum_{\nu=1}^{n} \frac{1}{\nu} |t_{\nu}| = O(\log n) \quad \text{as } n \to \infty.$$

LEMMA 6 ([9]). If $f(z) = \sum c_n z^n$ is a power series of complex class L such that

(4.7)
$$\int_{0}^{t} |f(e^{i\theta})| d\theta = O(|t|) \quad \text{as } t \to +0,$$

then $\sum c_n$ is bounded $[R, \log n, 1]$.

5. Proof of Theorem 1. We need only consider the special case where (N, p_n) is (C, 1), that is, we shall prove that $\sum a_n \lambda_n$ is summable |C, 1|. Theorem 1 will then follow from Theorem A.

Let T_n be the *n*th (C, 1) mean of the sequence $(na_n\lambda_n)$, that is,

(5.1)
$$T_n = \frac{1}{n+1} \sum_{\nu=1}^n \nu a_{\nu} \lambda_{\nu} \,.$$

Applying Abel's transformation, we get

$$T_n = \frac{1}{n+1} \sum_{\nu=1}^n \nu a_\nu \lambda_\nu = \frac{1}{n+1} \sum_{\nu=1}^{n-1} \Delta \lambda_\nu (\nu+1) t_\nu + t_n \lambda_n$$

= $T_{n,1} + T_{n,2}$, say.

By (1.2), to complete the proof of Theorem 1, it is sufficient to show that

(5.2)
$$\sum_{n=1}^{\infty} \frac{1}{n} |T_{n,r}| < \infty \quad \text{for } r = 1, 2.$$

Now, we have

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n} |T_{n,1}| &\leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)} \left\{ \sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \nu |\Delta \lambda_{\nu}| \, |t_{\nu}| \right\} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \left\{ \sum_{\nu=1}^{n-1} \nu \beta_{\nu} |t_{\nu}| \right\} \\ &= O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu} |t_{\nu}| \sum_{n=\nu+1}^{m+1} \frac{1}{n^2} = O(1) \sum_{\nu=1}^{m} \nu \beta_{\nu} \nu^{-1} |t_{\nu}| \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta(\nu \beta_{\nu}) \sum_{r=1}^{\nu} r^{-1} |t_{r}| + O(1) m \beta_{m} \sum_{\nu=1}^{m} \nu^{-1} |t_{\nu}| \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta(\nu \beta_{\nu})| X_{\nu} + O(1) m \beta_{m} X_{m} \\ &= O(1) \sum_{\nu=1}^{m-1} \nu X_{\nu} |\Delta \beta_{\nu}| + O(1) \sum_{\nu=1}^{m-1} |\beta_{\nu+1}| X_{\nu+1} + O(1) m \beta_{m} X_{m} \\ &= O(1) \text{ as } m \to \infty \,, \end{split}$$

by (2.1), (3.1), (3.3), (4.1) and (4.2). Also,

$$\sum_{n=1}^{m} \frac{1}{n} |T_{n,2}| = \sum_{n=1}^{m} |\lambda_n| n^{-1} |t_n|$$

=
$$\sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{\nu=1}^{n} \nu^{-1} |t_\nu| + |\lambda_m| \sum_{n=1}^{m} n^{-1} |t_n|$$

=
$$O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m$$

=
$$O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \to \infty$$

by (2.1), (2.2), (3.1) and (4.2). This completes the proof of Theorem 1.

6. Proof of Theorems 2–4. We obtain Theorem 2 from Theorem 1, with $X_n = \log n$, by an appeal to Lemma 2. Theorem 3 can be easily obtained from Theorem 1, with $X_n = \log n$, by successive application of

Lemmas 3, 4, and 5. Finally, we obtain Theorem 4 from Theorem 1, with $X_n = \log n$, by appealing to Lemmas 6 and 5.

References

- Z. U. Ahmad, Absolute Nörlund summability factors of power series and Fourier series, Ann. Polon. Math. 27 (1972), 9–20.
- [2] H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 16 (1941), 215–220.
- [3] M. Fekete, Zur Theorie der divergenten Reihen, Math. és Termes Ersitö (Budapest) 29 (1911), 719–726.
- [4] N. Kishore, On the absolute Nörlund summability factors, Riv. Mat. Univ. Parma (2) 6 (1965), 129–134.
- [5] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.
- [6] F. M. Mears, Some multiplication theorems for the Nörlund mean, Bull. Amer. Math. Soc. 41 (1935), 875–880.
- K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. 14 (1983), 40–43.
- [8] T. Pati, Absolute Cesàro summability factors of infinite series, Math. Z. 78 (1962), 293–297.
- C. T. Rajagopal, On |C, 1| summability factors of power series and Fourier series, ibid. 80 (1963), 265-268.

DEPARTMENT OF MATHEMATICS ERCIYES UNIVERSITY KAYSERI 38039, TURKEY

> Reçu par la Rédaction le 10.8.1989 Révisé le 11.12.1989