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Injective endomorphisms
of algebraic and analytic sets

by S lawomir Cynk and Kamil Rusek (Kraków)

Abstract. We prove that every injective endomorphism of an affine algebraic vari-
ety over an algebraically closed field of characteristic zero is an automorphism. We also
construct an analytic curve in C6 and its holomorphic bijection which is not a biholomor-
phism.

Introduction. The Zariski Main Theorem (see e.g. [4]) asserts that
every injective morphism of normal algebraic varieties over an algebraically
closed field of characteristic zero is an automorphism onto its open image.
For arbitrary complex algebraic varieties regularity of the inverse of a regular
biholomorphic bijection is ensured by the Serre Theorem [7, 9]. The simple
example C 3 t → (t2, t3) ∈ {x3 − y2 = 0} shows that in general, bijective
morphisms are not isomorphisms. From the example {xy−1 = 0} 3 (u, v)→
(u, 0) ∈ {y = 0} we see that an injective morphism of non-singular algebraic
sets may not be surjective.

Grothendieck proved in [5, Prop. 17.9.6] a counterpart of the Zariski
Main Theorem for the category of S-preschemes, where S is a fixed pre-
scheme. His theorem says that every injective S-endomorphism of an S-
prescheme of finite presentation is an automorphism. Note that his theorem
is unapplicable to endomorphisms of algebraic sets.

Our main result gives a geometric counterpart of the Grothendieck result;
Theorem 2.2 says that every injective endomorphism of an affine algebraic
variety over an algebraically closed field k of characteristic zero is an auto-
morphism. This generalizes the well-known result of Bia lynicki-Birula and
Rosenlicht [2] saying that every injective polynomial transformation of kn

is a polynomial automorphism.
Note that surjectivity of an injective endomorphism of an affine algebraic

variety was earlier proved by Ax [1]. In the proof Ax applied the so-called
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“transfer principle” and the metamathematical notion of an “elementary
formula”. A topological proof of Ax’s Theorem was given by Borel in his
unpublished paper [3].

One can also consider Theorem 2.2 as an analogue of the Clements–
Osgood Theorem on analyticity of the inverse of a holomorphic bijection of
a complex manifold. In Section 3 we show that there is no counterpart of
Theorem 2.2 for the category of analytic sets. In order to obtain a suitable
counterexample we construct an irreducible one-dimensional complex ana-
lytic space and its holomorphic but not biholomorphic bijection and next
we prove that this analytic space is biholomorphic with an analytic curve
in C6.

1. Dominating regular mappings with finite fibres. Let F : V →
W be a regular dominating mapping of irreducible affine algebraic varieties
over k, i.e. F (V ) = W . Then the induced homomorphism F∗ : k[W ]→ k[V ]
of rings of regular functions is injective, so it has a unique extension to a
monomorphism of fields of rational functions, also denoted by F∗ : k(W )→
k(V ). If we assume additionally that dimV = dimW then the field k(V ) is
a finite extension of the field F∗(k(W )); we put d(F ) = [k(V ) : F∗(k(W ))].
It is well known that d(F ) is equal to the number of points in the generic
fibre of F (see e.g. [4]).

In some cases we have more precise information about the number d(F ):

Theorem 1.1. Let V and W be normal affine varieties and dimV =
dimW . If F : V → W is a regular dominating mapping with finite fibres
then d(F ) = max{#F−1(y) : y ∈W}.

For the proof we need the following

Lemma 1.2. Let V and W be irreducible affine algebraic varieties such
that dimV = dimW and V is normal. Assume that F : V → W is a
regular dominating mapping with finite fibres. Then, for every y ∈ W with
F−1(y) = {x1, . . . , xm} ⊂ V , there exists a function f ∈ k[V ] which is
integral over F∗(k[W ]) and f(xi) 6= f(xj) for i 6= j.

P r o o f. By [4, Corollary 1, p. 136] we can find a normal affine algebraic
variety W ′, a regular injective mapping F ′ : V → W ′ and a regular finite
mapping G : W ′ →W such that F = G ◦ F ′.

Then the points {F ′(xj) : j = 1, . . . ,m} ⊂ W ′ are pairwise different,
so there exists g ∈ k[W ′] such that g(F ′(xi)) 6= g(F ′(xj)) for i 6= j. Since
G is finite, the ring k[W ′] is integral over the ring G∗ (k[W ]). Therefore
f = g ◦ F ′ = F ′∗(g) has all desired properties.

P r o o f o f T h e o r e m 1.1. Take a y ∈ W and the function f ∈ k[V ]
from Lemma 1.2 which is integral over the ring F∗(k[W ]) and separates the
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points in the fibre F−1(y) = {x1, . . . , xm} ⊂ V .
In the extension of integral rings F∗(k[W ]) ⊂ k[V ] the ring F∗(k[W ]) is

normal. One can easily verify that f ∈ k[V ] is algebraic over the field
F∗(k(W )) and the coefficients of its minimal equation of degree d over
F∗(k(W )) lie in F∗(k[W ]). Since all functions from F∗(k[W ]) are constant on
the set F−1(y) whose elements are separated by f , we have m ≤ d ≤ d(F ).
Hence d(F ) = max{#F−1(y) : y ∈W}.

2. Bijectivity implies biregularity. Assume that all varieties oc-
curring in this section are defined over a field k (algebraically closed of
characteristic zero).

Lemma 2.1. Let V be an affine algebraic variety and let V = V1∪ . . .∪Vs
be its decomposition into irreducible components. Denote by πi : V̂i → Vi a
normalization of Vi for i = 1, . . . , s. Then

MV = {f : V → k : f ◦ πi ∈ k[V̂i] for i = 1, . . . , s}

is a noetherian k[V ]-module (under the standard operations).

P r o o f. Since k[V̂i] is a noetherian k[Vi]-module, it is also a noetherian
k[V ]-module for every i = 1, . . . , s (under the multiplication rf = (r ◦ πi)f
for r ∈ k[V ], f ∈ k[V̂i].) The mapping

MV 3 f → (f ◦ π1, . . . , f ◦ πs) ∈
s⊕
i=1

k[V̂i]

is a monomorphism of k[V ]-modules. Therefore MV is a noetherian k[V ]-
module.

Let V be an irreducible affine algebraic variety over k and let V̂ together
with a finite surjective regular and birational mapping π : V̂ → V be a
normalization of V . By the universal property of normalization, for a given
regular endomorphism F : V → V there exists a unique endomorphism
F̂ : V̂ → V̂ such that π ◦ F̂ = F ◦ π. We have

Lemma 2.2. (i) If F is injective then F̂ is injective.
(ii) If F̂ is surjective then F is surjective.

P r o o f. (i) Assume that F is injective. First observe that F̂ is dom-
inating. Since F is dominating and π : V̂ → V̂ is surjective, we see that
F ◦ π : V̂ → V is dominating. Since π is closed, π(F̂ (V̂ )) = π(F̂ (V̂ )) =

F (π(V̂ )) = V . If F̂ (V̂ )  V̂ then by irreducibility of V̂ we would have

dimV = dimπ(F̂ (V̂ )) ≤ dim F̂ (V̂ ) < dim V̂ , a contradiction.
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Therefore F̂ (V̂ ) = V̂ . Moreover, 1 = d(F )d(π) = d(F ◦ π) = d(π ◦ F̂ ) =
d(F̂ ). Since all fibres of π are finite, the same holds for F̂ . By Theorem 1.1,
{y ∈ V̂ : #F̂−1(y) 6= 1} = {y ∈ V̂ : F̂−1(y) = ∅}, which means that F̂ is
injective.

(ii) If F̂ is surjective then π ◦ F̂ = F ◦ π is also surjective, and hence so
is F .

Our main result is

Theorem 2.2. Let V be an affine algebraic variety and let F : V → V
be a regular mapping. Then the following statements are equivalent :

(i) F is injective.
(ii) F is a bijection of V .
(iii) F is an automorphism of V .

P r o o f. The implication (i)⇒(ii) is true by the Ax Theorem and (iii)
implies (i).

(ii)⇒(iii). Assume that V is an algebraic subset of kn for some n ∈ N and
V = V1 ∪ . . . ∪ Vs is the decomposition of V into irreducible components.
Denote by πi : V̂i → Vi a normalization of Vi for i = 1, . . . , s. Then, by
Lemma 2.1,

Mn
V =

n⊕
1

MV = {G : V → kn :

G ◦ πi : V̂i → kn is regular for i = 1, . . . , s}
is a noetherian k[V ]-module.

Without loss of generality we can assume that F (Vi) ⊂ Vi for i = 1, . . . , s.
Let Fi denote the restriction of F to Vi. By Lemma 2.2, the Ax Theorem
and Zariski’s Main Theorem, every mapping F̂i is an automorphism of V̂i.
Therefore, for every ν ∈ N and every i ∈ {1, . . . , s}, the mapping F−ν ◦πi =
πi ◦ (F̂i)−ν is regular, so F−ν ∈Mn

V .
For every m ∈ N we put Sm = k[V ]F−1 + . . .+k[V ]F−m. Then the Sm

are submodules of the noetherian k[V ]-module Mn
V and S1 ⊂ S2 ⊂ S3 ⊂ . . .

Therefore there exists an l ∈ N such that Sl = Sl+1 and we can write

F−(l+1) =
l∑

j=1

rjF
−j for some r1, . . . , rl ∈ k[V ].

Thus the mapping

F−1 = F−(l+1) ◦ F l =
l∑

j=1

(rj ◦ F l)F l−j

is regular and the proof is complete.
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R e m a r k. Note that in [8] Matsumura and Monsky gave examples of
hypersurfaces in Cn having no automorphisms (hence no regular injective
endomorphisms) apart from the identity.

3. Counterexample in the analytic case. We first construct an
analytic space and a holomorphic bijection of this space onto itself which is
not a biholomorphism.

Example 3.1. Let X denote the topological space obtained from Y =
C\ (Z\N) by gluing every pair of points l and l+ 1/2 into one point al ∈ X
for l ∈ N. Let π : Y → X denote the canonical mapping defining this
quotient Hausdorff space.

We have X = X0 ∪ {a0, a1, . . .}, where X0 = C \ (Z∪ {k+ 1/2 : k ∈ N})
is an open subset of X. Moreover,

Ul = {al} ∪ (B(l, 1/5) \ {l}) ∪ (B(l + 1/2, 1/5) \ {l + 1/2})

is a neighbourhood of al in X. (B(z, r) denotes the open ball with centre
z ∈ C and radius r > 0.)

We define a complex structure on X by the family of homeomorphisms:

idX0 : X0 → X0,
φl : Ul → (B(0, 1/5)× {0}) ∪ ({0} ×B(0, 1/5)), l ∈ N,

where

φl(z) =


0 if z = al,
(z − l, 0) if z ∈ B(l, 1/5) \ {l},
(0, z − l − 1/2) if z ∈ B(l + 1/2, 1/5) \ {l + 1/2}.

They define on X the structure of a one-dimensional irreducible complex
space with singularities exactly at the points al; we write SingX = {al :
l ∈ N}.

Define the mapping Φ : X → X by the formula

Φ(x) =

x+ 1 if x ∈ X0 \ {−1/2},
al+1 if x = al, l ∈ N,
a0, if x = −1/2.

Then Φ is a holomorphic bijection of X onto X but not an open mapping
(it is not open at the point −1/2). Therefore Φ−1 : X → X is not holomor-
phic.

The complex space X constructed above can be “well” embedded in C6 :

Proposition 3.2. There exists a biholomorphic mapping of X onto an
irreducible analytic curve V ⊂ C6.
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P r o o f. Since X is one-dimensional, it is a Stein space (see [6, Theorem
IX.B.10]). Therefore there exists a holomorphic homeomorphism θ of X
onto an irreducible analytic curve in C4 (see [6, Theorem VII.C.10]).

Observe that the set {x ∈ X : rankx θ < dimtxX} is contained in
π({x ∈ X0 : dx(θ ◦ π) = 0} ∪ SingX, so it is at most countable. (Following
[6], dimtxX denotes the tangential dimension of X at x; rankx θ denotes
the rank of the induced linear mapping of Zariski tangent spaces.)

Since dimtxX ≤ 2 for every x ∈ X, applying at most twice Lemma
VII.C.11 of [6] we can find a holomorphic homeomorphism Ψ of X onto an
irreducible analytic curve V in C6 such that rankx Ψ = dimtxX for every
x ∈ X.

We claim that Ψ is a biholomorphism of X onto V . Indeed, take an
x0 ∈ X and a complex manifold M of dimension dimtx0 X such that M ∩X
is a neighbourhood of x0 in X. Let Ψ̃ be a holomorphic extension of Ψ to
M . Then rankx0 Ψ̃ = dimtx0 X. Since the function M 3 x → rankx Ψ̃ ∈ N
is lower semicontinuous, shrinking M if necessary we conclude by the con-
stant rank theorem that Ψ̃ : M → C6 is a biholomorphism onto its image
N = Ψ̃(M). Then Ψ̃−1(N∩Ψ(X)) = M∩X, i.e. Ψ̃−1 = Ψ−1 in a neighbour-
hood of Ψ(x0) in V = Ψ(X). Therefore Ψ−1 is holomorphic at Ψ(x0) ∈ V ,
and this proves that Ψ is a biholomorphic mapping of X onto V , as desired.

The above constructions give

Example 3.3. The mapping F = Ψ ◦ θ ◦ Ψ−1 : V → V is a holomorphic
homeomorphic bijection of the irreducible analytic curve V ⊂ C6 onto itself
with F−1 not holomorphic.

In this context the following question seems to be interesting:

Problem. Is each holomorphic bijective self-transformation of an alge-
braic set necessarily biholomorphic?
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