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Abstract. We determine all natural transformations T 2
1 T

∗ → T ∗T 2
1 where T rkM =

Jr0 (Rk,M). We also give a geometric characterization of the canonical isomorphism ψ2

defined by Cantrijn et al. [1] among such natural transformations.

The spaces T r1M of one-dimensional velocities of order r are used in
the geometric approach to higher-order mechanics. That is why several
authors studied the relations between T r1 T

∗M and T ∗T r1M . For example,
Modugno and Stefani [7] introduced an intrinsic isomorphism s between
the bundles TT ∗M and T ∗TM . Recently Cantrijn, Crampin, Sarlet and
Saunders [1] constructed a canonical isomorphism ψr : T r1 T

∗M → T ∗T r1M ,
which coincides with s for r = 1. From the categorical point of view, ψr is
a natural equivalence between the functors T r1 T

∗ and T ∗T r1 , defined on the
categoryMf m of m-dimensional manifolds and their local diffeomorphisms.
Starting from the isomorphism s, Kolář and Radziszewski [5] determined all
natural transformations of TT ∗ into T ∗T . In the present paper we determine
all natural transformations T 2

1 T
∗ → T ∗T 2

1 and interpret them geometrically.
Further we show that the natural equivalence ψ2 can be distinguished among
all natural transformations by a simple geometric construction.

1. The equations of all natural transformations T 2
1 T

∗ → T ∗T 2
1 .

We shall use the concept of a natural bundle in the sense of Nijenhuis [8].
Denote byMf m the category ofm-dimensional manifolds and their local dif-
feomorphisms, by FM the category of fibred manifolds and by B : FM→
Mf m the base functor. A natural bundle over m-manifolds is a covariant
functor F :Mf m → FM satisfying B ◦ F = id and the localization condi-
tion: for every inclusion of an open subset i : U →M , FU is the restriction
to p−1

M (U) of pM : FM →M over U and Fi is the inclusion p−1
M (U)→ FM .

If we replace the category Mf m by the category Mf of all manifolds and
all smooth maps, we obtain the concept of bundle functor on the category
of all manifolds. A natural bundle F :Mf m → FM is said to be of order r
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if, for any local diffeomorphisms f, g : M → N and any x ∈M , the relation
jrf(x) = jrg(x) implies Ff |FxM = Fg|FxM , where FxM denotes the fibre
of FM over x ∈M .

A k-dimensional velocity of order r on a smooth manifold M is an r-
jet of Rk into M with source 0. The space T rkM = Jr0 (Rk,M) of all such
velocities is a fibred manifold over M . Every smooth map f : M → N
extends to an FM-morphism T rk f : T rkM → T rkN defined by T rk f(jr0g) =
jr0(f ◦ g). Hence T rk : Mf → FM is an rth order bundle functor. The
simplest example is the functor T 1

1 , which coincides with the tangent func-
tor T .

The cotangent bundle T ∗M is a vector bundle over the manifold M .
Having a local diffeomorphism f : M → N , we define T ∗f : T ∗M → T ∗N by
taking pointwise the inverse map to the dual map (Txf)∗ : T ∗f(x)N → T ∗xM ,
x ∈ M . In this way the cotangent functor T ∗ is a natural bundle over
m-manifolds.

We are going to determine all natural transformations T 2
1 T

∗ → T ∗T 2
1 .

The canonical coordinates xi on Rm induce the additional coordinates pi
on T ∗Rm and ξi = dxi/dt, Xi = d2xi/dt2, πi = dpi/dt, Pi = d2pi/dt

2 on
T 2

1 T
∗Rm. Further, if yi=dxi/dt, zi=d2xi/dt2 are the induced coordinates

on T 2
1 Rm, then the expression σi dxi+%i dyi+τi dzi determines the additional

coordinates σi, %i, τi on T ∗T 2
1 Rm. Set

(1) I = piξ
i, J = piX

i + πiξ
i .

Let Grm be the group of all invertible r-jets of Rm into Rm with source and
target 0.

Proposition 1. All natural transformations T 2
1 T

∗ → T ∗T 2
1 are of the

form

(2)

yi = F (I, J)ξi ,

zi = F 2(I, J)Xi +H(I, J)ξi ,
τi = G(I, J)pi ,
%i = 2F (I, J)G(I, J)πi +M(I, J)pi ,

σi = F 2(I, J)G(I, J)Pi + [F (I, J)M(I, J) +H(I, J)G(I, J)]πi
+N(I, J)pi

where F , G, H, M , N are arbitrary smooth functions of two variables and
I, J are given by (1).

In the proof of Proposition 1 we shall need the following result, which
comes from the book [6]. Let V denote the vector space Rm with the stan-
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dard action of the group G1
m and let

Vk,l = V × . . .× V︸ ︷︷ ︸
k times

×V ∗ × . . .× V ∗︸ ︷︷ ︸
l times

.

Let 〈 , 〉 : V × V ∗ → R be the evaluation map 〈x, y〉 = y(x).

Lemma. (a) All G1
m-equivariant maps Vk,l → V are of the form

k∑
β=1

gβ(〈xα, yλ〉)xβ

with any smooth functions gβ : Rkl → R.
(b) All G1

m-equivariant maps Vk,l → V ∗ are of the form
l∑

µ=1

gµ(〈xα, yλ〉)yµ

with any smooth functions gµ : Rkl → R.

P r o o f o f P r o p o s i t i o n 1. According to the general theory [3], if
F and G are two rth order natural bundles, then the natural transforma-
tions F → G are in a canonical bijection with the Grm-equivariant maps
F0Rm → G0Rm. Hence we have to determine all G3

m-equivariant maps of
S = (T 2

1 T
∗Rm)0 into Z = (T ∗T 2

1 Rm)0. Using standard evaluations we find
that the action of G3

m on S is

(3)

ξ
i

= aijξ
j , X

i
= aijkξ

jξk + aijX
j ,

pi = ãjipj , πi = ãjiπj − a
l
jkã

m
l ã

j
ipmξ

k ,

P i = ãjiPj − 2aljkã
m
l ã

j
iπmξ

k − arklj ã
j
i ã
t
rξ
kξlpt

− aljkãml ã
j
ipmX

k + 2ãnl a
l
mkã

m
r a

r
sj ã

j
i ξ
kξspn

where aij , a
i
jk, aijkl are the canonical coordinates on G3

m and ãji is the inverse
matrix of aij . Taking into account the natural equivalence ψ2 : T 2

1 T
∗M →

T ∗T 2
1M of Cantrijn et al. with equations

(4) yi = ξi , zi = Xi , τi = pi , %i = 2πi, σi = Pi ,

we obtain from (3) the action of G3
m on Z. The coordinate form of any map

S → Z is

yi = f i(p, ξ,X, π, P ), zi = gi(p, ξ,X, π, P ), σi = hi(p, ξ,X, π, P ) ,
%i = li(p, ξ,X, π, P ), τi = ti(p, ξ,X, π, P ) .

First we discuss f i. The equivariance of f i with respect to the kernel of
the jet projection G3

m → G2
m leads to

f i(pj , ξj , Xj , πj , Pj) = f i(pj , ξj , Xj , πj , Pj − arkljξkξlpr) .
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This implies that f i is independent of Pi. Now it will be useful to distinguish
two cases according to the dimension m of the manifold M .

Consider first the case m ≥ 2. Taking into account the equivariance of f i

with respect to the linear group G1
m ⊂ G3

m we obtain

aijf
j(pj , ξj , Xj , πj) = f i(ãkj pk, a

j
kξ
k, ajkX

k, ãkjπk) ,

so that f i(p, ξ,X, π) is a G1
m-equivariant map Rm×Rm×Rm∗×Rm∗ → Rm.

By our Lemma,

f i(p, ξ, π,X) = ϕ(pjξj , pjXj , πjξ
j , πjX

j)ξi(5)
+ ψ(pjξj , pjXj , πjξ

j , πjX
j)Xi

where ϕ and ψ are arbitrary two smooth functions of four variables. One
calculates easily that the expressions I and J given by (1) are invariants
with respect to the group G2

m. Replace (5) by

f i = ϕ(I, J, pjXj − πjξj , πjXj)ξi + ψ(I, J, pjXj − πjξj , πjXj)Xi .

Then the equivariance of f i with respect to the kernel of the jet projection
G2
m → G1

m reads

ϕ(I, J, pjXj − πjξj , πjXj)ξi + ψ(I, J, pjXj − πjξj , πjXj)Xi(6)

= ϕ(I, J, pjX
j − πjξj , πjX

j
)ξi + ψ(I, J, pjX

j − πjξj , πjX
j
)X

i

where X
i

= Xi + aijkξ
jξk and πi = πi − ajikpjξk. Setting ξ = (1, 0, . . . , 0),

X = (0, 1, 0, . . . , 0) and i = 1 in (6) we obtain

(7) ϕ(p1, p2 + π1, p2 − π1, π2)

= ϕ(p1, p2 + π1, p2 − π1 + 2aj11pj , π2 − aj21pj + πja
j
11 − ak11a

j
k1pj)

+ ψ(p1, p2 + π1, p2 − π1 + 2aj11pj , π2 − aj21pj + πja
j
11 − ak11a

j
k1pj)a

1
11 .

If all aijk except a2
11 and a1

21 are zero, then (7) reads

(8) ϕ(p1, p2 + π1, p2 − π1, π2)
= ϕ(p1, p2 + π1, p2 − π1 + 2a2

11p2, π2 − a1
21p1 + π2a

2
11 − a2

11a
1
21p1) .

Putting a2
11 = 0 we get

ϕ(p1, p2 + π1, p2 − π1, π2) = ϕ(p1, p2 + π1, p2 − π1, π2 − a1
21p1) .

This implies that ϕ does not depend on the fourth variable . Then (8) with
arbitrary a2

11 gives ϕ = ϕ(I, J).
Further, let a1

11 = 1 and let the other a’s in (7) be zero. Then

(9) 0 = ψ(p1, p2 + π1, p2 − π1 + 2p1, π2 + π1 − p1) .

The components of ψ in (9) are linearly independent functions, so that
ψ = 0. We have thus deduced that

(10) f i = F (I, J)ξi
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with an arbitrary smooth function F : R2 → R.
Quite analogously one can prove that

(11) ti = G(I, J)pi

where G is another smooth function of two variables.
Now write

gi(p, ξ,X, π, P ) = F 2(I, J)Xi + gi(p, ξ,X, π, P )

with F taken from (10). Applying the equivariance of gi with respect to the
whole group G3

m we find

aijkF
2(I, J)ξjξk + aijF

2(I, J)Xj + aijg
j(p, ξ,X, π, P )

= F 2(I, J)(aijkξ
jξk + aijX

j) + gi(p, ξ,X, π, P ) .

We see that gi has the same transformation law as f i, so that gi(p, ξ,X, π, P )
= H(I, J)ξi and

(12) gi = F 2(I, J)Xi +H(I, J)ξi .

Consider now the map li and set

li(p, ξ,X, π, P ) = 2F (I, J)G(I, J)πi + li(p, ξ,X, π, P ) .

Using equivariance we get

2ãjiF (I, J)G(I, J)πj + ãji lj(p, ξ,X, π, P )− 2aljkã
j
i ã
m
l F (I, J)G(I, J)pmξk

= 2F (I, J)G(I, J)(ãjiπj − a
l
jkã

m
l ã

j
ipmξ

k) + li(p, ξ,X, π, P ) .

Quite similarly to (10) and (11) we then deduce li(p, ξ,X, π, P ) = M(I, J)pi,
so that

(13) li = 2F (I, J)G(I, J)πi +M(I, J)pi .

Finally, assume hi has the form

hi(p, ξ,X, π, P ) = F 2(I, J)G(I, J)Pi + [F (I, J)M(I, J)

+H(I, J)G(I, J)]πi + hi(p, ξ,X, π, P ) .

Applying the same procedure as for gi and li we obtain h
i
(p, ξ,X, π, P ) =

N(I, J)pi, i.e.

hi = F 2(I, J)G(I, J)Pi + [F (I, J)M(I, J) +H(I, J)G(I, J)]πi(14)
+N(I, J)pi .

Thus, if the dimension m of the manifold M is ≥ 2, then (10)–(14) prove
our proposition.

It remains to discuss the case of one-dimensional manifolds. The fact
that the map f(p, ξ,X, π, P ) does not depend on P can be derived in the
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same way as above. Denote by (a1, a2, a3) the coordinates on G3
1. We shall

only need the following equations of the action of G3
1 on S and Z:

ξ = a1ξ, p =
1
a1
p, X = a2ξ

2 + a1X, y = a1y ,

π =
1
a1
π − a2

a2
1

pξ .

Take any u ∈ R∗, so that u = 1
a1
u. Then f(p, ξ,X, π)u is a G2

1-invariant
function. Let I = pξ, J = pX + πξ and K = uξ.

For any G2
1-invariant function F (p, ξ, π,X, u) define a smooth function

ψ(x, y, z) = F (x, 1, y, 0, z). We claim that

(15) F (p, ξ, π,X, u) = ψ(I, J,K) .

Indeed, since F (p, ξ, π,X, u) is G2
1-invariant, in the case ξ 6= 0 for a1 = ξ,

a2 = 0 we have

ψ(ξp, ξπ, ξu) = F (ξp, 1, ξπ, 0, ξu) = F (p, ξ, π, 0, u) .

Further, set a2 = −X/ξ2, a1 = 1. Then by invariance F (p, ξ, π,X, u) =
F (p, ξ, π + Xp/ξ, 0, u) = ψ(ξp, ξπ + Xp, ξu) = ψ(I, J,K). Hence we have
proved that (15) holds on the dense subset ξ 6= 0, so by continuity it holds
everywhere.

Now we complete the proof of our proposition. By (15) we have

f(p, ξ, π,X)u = ψ(I, J,K) .

Differentiating this with respect to u we obtain

f(p, ξ, π,X) =
∂ψ(I, J,K)

∂z
· ξ

where z denotes the third variable of ψ(I, J,K). Setting u = 0 on the right
side we get

f(p, ξ, π,X) = ϕ(I, J) · ξ
where ϕ(x, y) = ∂ψ(x, y, 0)/∂z. This implies that for m = 1 the map f is of
the form (10) as well. One finds easily that (11)–(14) are also true in this
case.

2. Geometric interpretation. The canonical isomorphism ψ2 :
T 2

1 T
∗M → T ∗T 2

1M of Cantrijn et al. [1] corresponds to the constant values
F = 1, G = 1, H = 0, M = 0, N = 0 in (2). We first give another simple
geometric construction of this isomorphism. Gollek introduced a canonical
isomorphism κ : T rkT

s
l M → T sl T

r
kM which can be viewed as a generalization

of the canonical involution TTM → TTM [2]. Let q : T ∗M → M be the
bundle projection and let κ2 be the above isomorphism TT 2

1M → T 2
1 TM .

The map κ2 has a simple geometric interpretation. Every C ∈ TT 2
1M
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is of the form C = (∂/∂t)|0j2
0γ(t, τ), where γ is the map R × R → M ,

(t, τ) 7→ γ(t, τ), and j2
0 means the partial jet with respect to the second

variable. Then κ2(C) ∈ T 2
1 TM is defined by taking the partial jets in oppo-

site order, i.e. κ2(C)=j2
0((∂/∂t)|0γ(t, τ)). Every A∈T 2

1 T
∗M is a 2-velocity

of a curve α(t) = (xi(t), ai(t)) in T ∗M . Let v ∈ T 2
1M be the point T 2

1 q(A).
If B ∈ TvT

2
1M , then κ2(B) is a 2-velocity of a curve β(t) = (xi(t), bi(t))

in TM . Hence we can evaluate 〈α(t), β(t)〉 for every t and the expres-
sion

d2

dt2

∣∣∣∣
0

〈α(t), β(t)〉

depends only on A and B. Therefore it determines a linear map TvT 2
1M →

R, i.e. an element of T ∗T 2
1M .

Now we present a geometric interpretation of the result (2). We shall
proceed in four steps.

1. We can define the following multiplication by real numbers on the
bundle T 2

1N :

(16) k · (xα, yα, zα) = (xα, kyα, k2zα) .

There is a canonical inclusion T 2
1N → TTN , (xα, yα, zα) 7→ (xα, yα, yα, zα),

and the space TTN carries two vector bundle structures. Taking any
(xα, yα, yα, zα) ∈ TTN , we can multiply it by k with respect to the first
structure. We obtain

(17) (xα, yα, kyα, kzα) .

Further, multiplying (17) by k with respect to the second structure gives
(xα, kyα, kyα, k2zα). This defines the multiplication (16), which we denote
by A 7→ k ·A. Another way of defining the multiplication (16) on T 2

1N is to
use the reparametrization xi(t) 7→ xi(kt).

Take any element A = (xi, pi, ξi, Xi, πi, Pi) in T 2
1 T

∗M . Evaluating
the result of multiplication of A by F , we get F · A = (xi, pi, F ξi, F 2Xi,
Fπi, F

2Pi). Next, we can transform this into T ∗T 2
1M by means of the

canonical transformation ψ2. The coordinates of ψ2(F ·A) are

yi = Fξi , zi = F 2Xi , τi = pi , %i = 2Fπi , σi = F 2Pi .

Moreover, multiplying ψ2(F · A) by G with respect to the vector bundle
structure of T ∗T 2

1M we obtain an element

(18) Gψ2(F ·A)

of T ∗T 2
1M with coordinates

yi = Fξi , zi = F 2Xi , τi = Gpi , %i = 2FGπi , σi = F 2GPi .
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2. The bundle projection q : T ∗M → M determines the projection
r1 : T 2

1 T
∗M → T 2

1M , r1 = T 2
1 q. Further, let r2 : T 2

1 T
∗M → TT ∗M be the

jet projection and let r3 : T 2
1 T

∗M → T ∗M be the bundle projection.
Denote by s the isomorphism TT ∗M → T ∗TM of Modugno and Ste-

fani [7]. We recall the coordinate expression of s. Having the canonical
coordinates xi, ζi = dxi on TRm, the expression αidx

i + βidζ
i determines

the additional coordinates αi, βi on T ∗TRm. Further, let xi, pi, ξi = dxi,
πi = dpi be the canonical coordinates on TT ∗Rm. Then the equations of
the isomorphism s are [5]

ζi = ξi, αi = πi, βi = pi .

Moreover, there is an inclusion i : T 2
1M ×TM T ∗TM → T ∗T 2

1M ,

(xi, yi, zi, αi, βi) 7→ (xi = xi, yi = yi, zi = zi, σi = αi, %i = βi, τi = 0) .

Having an arbitrary element A = (xi, pi, ξi, Xi, πi, Pi) in T 2
1 T

∗M , we
can evaluate i(r1F ·A, s(r2F ·A)). Next, multiplying this by the function M
on the vector bundle T ∗T 2

1M we obtain an element

(19) Mi(r1F ·A, s(r2F ·A))

of T ∗T 2
1M with coordinates

yi = Fξi , zi = F 2Xi , τi = 0 , %i = Mpi , σi = FMπi .

3. Denote by j the inclusion T 2
1M ×M T ∗M → T ∗T 2

1M ,

(xi, yi, zi, αi) 7→ (xi = xi, yi = yi, zi = zi, σi = αi, %i = 0, τi = 0) .

Applying a similar procedure to step 2, we associate to any A ∈ T 2
1 T

∗M an
element

(20) Nj(r1F ·A, r3F ·A)

of T ∗T 2
1M . The coordinate form of (20) is

yi = Fξi , zi = F 2Xi , τi = 0 , %i = 0 , σi = Npi .

4. It is well known that T 2
1M → TM is an affine bundle associated to

the pullback p∗MTM of TM → M over pM : TM → M . In particular,
T 2

1 T
∗M → TT ∗M is an affine bundle whose associated vector bundle is the

pullback of TT ∗M → T ∗M over pT∗M : TT ∗M → T ∗M . Hence we have
defined the addition of vectors in TT ∗M to points in T 2

1 T
∗M :

(xi, ξi, Xi, pi, πi, Pi) + (xi, pi, vi, ui) = (xi, ξi, Xi + vi, pi, πi, Pi + ui) .

Using the canonical isomorphism ψ2 : T 2
1 T

∗M → T ∗T 2
1M we can transform

this addition in the affine bundle T 2
1 T

∗M to an addition ⊕ in the bundle
T ∗T 2

1M :

(xi, yi, zi, τi, %i, σi)⊕ (xi, vi, τi, ui) = (xi, yi, zi + vi, τi, %i, σi + ui) .
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Now we can complete the geometric interpretation of (2). Given an arbi-
trary A = (xi, pi, ξi, Xi, πi, Pi) ∈ T 2

1 T
∗M we have constructed geometrically

three elements (18), (19) and (20) in T ∗T 2
1M . Then their sum

B = Gψ2(F ·A) +Mi(r1F ·A, s(r2F ·A)) +Nj(r1F ·A, r3F ·A)

with respect to the vector bundle structure of T ∗T 2
1M has coordinates

xi = xi , yi = Fξi , zi = F 2Xi , τi = Gpi ,

%i = 2FGπi +Mpi , σi = F 2GPi + FMπi +Npi .

Taking further the vector (xi, ξi, pi, πi) ∈ TT ∗M and multiplying byG in the
vector bundle structure TT ∗M → TM we get (xi, ξi, Gpi, Gπi). Moreover,
multiplying this by H in TT ∗M → T ∗M we obtain C = (xi, Hξi, Gpi,
HGπi). Finally, the sum B ⊕ C gives (xi, F ξi, F 2Xi + Hξi, Gpi, 2FGπi +
Mpi, F

2Gpi + FMπi +Npi +HGπi). This corresponds to (2).

3. A geometric characterization of the isomorphism ψ2. The
natural equivalence s : TT ∗M → T ∗TM of Modugno and Stefani can be
distinguished among all natural transformations by an explicit geometric
construction [5]. We show that a similar result is true for the natural equiv-
alence ψ2 : T 2

1 T
∗M → T ∗T 2

1M of Cantrijn et al.
Every vector field ξ on the manifold M induces the flow prolongation

T 2
1 ξ =

∂

∂t

∣∣∣∣
0

(T 2
1 exp tξ)

on T 2
1M . Further, if ω : M → T ∗M is any 1-form onM , then 〈ω, ξ〉 : M → R

and we can construct T 2
1 〈ω, ξ〉 : T 2

1M → T 2
1 R. Let δ1〈ω, ξ〉 or δ2〈ω, ξ〉 be

the second and third component of the map T 2
1 〈ω, ξ〉, respectively. We have

T 2
1 ω : T 2

1M → T 2
1 T

∗M , so that ψ2T
2
1 ω : T 2

1M → T ∗T 2
1M is a 1-form

on T 2
1M . Hence we can evaluate 〈ψ2T

2
1 ω, T 2

1 ξ〉 : T 2
1M → R.

Proposition 2. ψ2 is the only natural transformation T 2
1 T

∗ → T ∗T 2
1

over the identity transformation of T 2
1 satisfying

(21) 〈ψ2T
2
1 ω, T 2

1 ξ〉 = δ2〈ω, ξ〉

for every vector field ξ and every 1-form ω.

P r o o f. Let xi = xi, pi = ai(x) be the coordinate expression of ω. Then
the coordinate expression of T 2

1 ω is

xi = xi, pi = ai(x) , ξi = ξi , Xi = Xi ,

πi =
∂ai
∂xj

ξj , Pi =
∂2ai

∂xj∂xk
ξjξk +

∂ai
∂xj

Xj .
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Applying transformation (2) with F = 1, H = 0 we get

xi = xi , yi = ξi , zi = Xi , τi = Gai , %i = 2G
∂ai
∂xj

ξj +Mai ,

σi = G
∂2ai

∂xj∂xk
ξjξk +G

∂ai
∂xj

Xj +M
∂ai
∂xj

ξj +Nai .

The fact that F = 1, H = 0 follows from the assumption that our natural
transformation is over the identity of T 2

1 . Further, the coordinate expression
of the flow prolongation T 2

1 ξ is

dxi = bi(x) , dyi =
∂bi

∂xj
ξj , dzi =

∂2bi

∂xj∂xk
ξjξk +

∂bi

∂xj
Xj ,

provided the bi(x) are the coordinates of a vector field ξ. We can write

δ1〈ω, ξ〉 =
(
∂ai
∂xj

bi + ai
∂bi

∂xj

)
ξj .

Hence (21) reads

G

(
∂2ai

∂xj∂xk
ξjξk +

∂ai
∂xj

Xj

)
bi +M

∂ai
∂xj

ξjbi +Naib
i +Mai

∂bi

∂xj
ξj

+ 2G
∂ai
∂xj

ξj
∂bi

∂xk
ξk +Gai

∂2bi

∂xj∂xk
ξjξk +Gai

∂bi

∂xj
Xj

=
∂2ai

∂xj∂xk
biξjξk + 2

∂ai
∂xj

∂bi

∂xk
ξjξk + ai

∂2bi

∂xj∂xk
ξjξk

+
∂ai
∂xj

biXj + ai
∂bi

∂xj
Xj .

This implies G = 1, M = 0, N = 0.
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