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A note on integral representation of Feller kernels

by R. Rȩbowski (Wroc law)

Abstract. We consider integral representations of Feller probability kernels from a
Tikhonov space X into a Hausdorff space Y by continuous functions from X into Y . From
the existence of such a representation for every kernel it follows that the space X has to
be 0-dimensional. Moreover, both types of representations coincide in the metrizable case
when in addition X is compact and Y is complete. It is also proved that the representation
of a single kernel is equivalent to the existence of some non-direct product measure on the
product space Y N.

Introduction. Let X and Y be Hausdorff spaces and let BY be the
Borel σ-algebra in Y . A Feller kernel p on X ×BY is a continuous mapping
x→ p(x, ·) from X into the space of all Radon probabilities on Y endowed
with the weak∗ topology. The set of all Feller kernels on X × BY will be
denoted by Φ.

The space C(X,Y ) of all continuous functions from X into Y can be
embedded as a subspace of Φ. Indeed, every ϕ in C(X,Y ) defines the
deterministic Feller kernel pϕ(x,A) = 1A(ϕ(x)). It is obvious that Φ is
convex and pϕ is an extreme point of Φ for every ϕ in C(X,Y ). If in
addition X is separable metrizable and Y is Polish then the extreme points
of Φ are exactly the deterministic Feller kernels (see [4] for details).

We endow Φ with the least σ-algebra for which all the mappings p →
p(x,A) (x ∈ X,A ∈ BY ) are measurable. In C(X,Y ) we define the least
σ-algebra Σ for which the embedding ϕ → pϕ is measurable. In other
words, Σ is the least σ-algebra which makes measurable all the evaluation
mappings ϕ→ ϕ(x) (x ∈ X).

We say that the Feller kernel p ∈ Φ has an integral representation on Σ
if there exists a probability measure µ on Σ such that

p(x,A) =
∫

pϕ(x,A) dµ(ϕ) (x ∈ X, A ∈ BY ) .

Equivalently, p(x, ·) = πx(µ) where πx is the evaluation map πx(ϕ) = ϕ(x)
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94 R. Rȩbowski

on C(X,Y ). The above formula gives a Choquet-type integral representa-
tion for p ∈ Φ.

In C(X,Y ) we can also consider the σ-algebra C of Borel sets for the
compact-open topology in C(X,Y ). Clearly Σ ⊂ C.

The integral representation problem for Feller kernels has been consid-
ered by Blumenthal and Corson in [1,2] (see also [3]–[5]). In [1] they proved
the following theorem:

Let X be a 0-dimensional compact Hausdorff space and let Y be complete
metrizable. Then for every Feller kernel p on X × BY there is a Radon
measure µ on C such that p(x, ·) = πx(µ) for all x in X.

Hence if X and Y satisfy the assumptions of the above theorem, the
existence of the integral representation on Σ also follows for every p ∈ Φ.

In Section 1 we show that the 0-dimensionality assumption on X is in
fact necessary in the Blumenthal and Corson theorem and we prove that
the representation of every p ∈ Φ by means of a Radon measure on C is in
fact equivalent to the integral representation on Σ for every p ∈ Φ under
rather mild conditions on X and Y .

Section 2 shows that the existence of an integral representation on Σ for
a single Feller kernel is equivalent to the existence of a certain non-direct
product measure on Y N.

1. Necessary conditions for integral representation. We begin
by showing that the 0-dimensionality assumption on X in the Blumenthal–
Corson integral representation theorem is in fact necessary. This makes
precise a remark in [1], p. 194.

Indeed, assume that X is a Tikhonov space and Y is a Hausdorff space
containing at least two points. We prove that if every Feller kernel p on
X × BY has an integral representation by a Radon measure µ on C then
X is 0-dimensional. To this end, take an open neighbourhood U of x0 in
X. Without loss of generality we may assume U 6= X. Fix a continuous
function g from X into the unit interval such that g(x0) = 1 and g(x) = 0
on X \ U . Then x0 ∈ Z(1 − g) ⊂ U and Z(g) ∩ Z(1 − g) = ∅, where Z(h)
denotes the zero set of h.

For any two different points y and z in Y we define a Feller kernel p by

p(x, ·) = g(x)δy + (1− g(x))δz

and take a probability Radon measure µ on C which represents p. Now, since
µ is Radon, we have µ({ϕ : ϕ(X) ⊂ {y, z}}) = 1 and clearly µ({ϕ : ϕ(x) =
y}) = 1 on Z(1 − g) while µ({ϕ : ϕ(x) = z}) = 1 on Z(g). Hence there is
a mapping ϕ ∈ C(X,Y ) such that ϕ(Z(g)) = {z}, ϕ(Z(1 − g)) = {y} and
ϕ(X) = {y, z}. This gives a partition of X into two closed-and-open sets V ,
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W such that Z(1 − g) ⊂ V and Z(g) ⊂ W . Finally, since x0 ∈ V ⊂ U , we
see that X is 0-dimensional.

In general Σ 6= C, so there is no reason for the measure µ on Σ which
represents p ∈ Φ to have an extension to some Radon measure on the larger
σ-algebra C. Nevertheless, we have a similar result for integral representa-
tion on Σ under an additional separability condition.

Theorem 1. Let X be a separable metrizable space and let Y be Haus-
dorff with at least two elements. If every Feller kernel on X × BY has an
integral representation on Σ then X is 0-dimensional.

P r o o f. Let g and p be as in the above proof and assume that p has an
integral representation on Σ. By using, instead of the Radon property, the
fact that X,Z(g) and Z(1 − g) are separable, we obtain as before ϕ(X) =
{y, z}, ϕ(Z(1 − g)) = {y} and ϕ(Z(g)) = {z} for some ϕ ∈ C(X,Y ). This
yields the 0-dimensionality of X.

Now by combining the Blumenthal–Corson theorem and Theorem 1 we
have

Corollary. Let X and Y be metric spaces with X compact and Y com-
plete. Assume Y has at least two elements. Then the following conditions
are equivalent :

(1) X is 0-dimensional.
(2) Every p ∈ Φ has an integral representation on C by a Radon measure.
(3) Every p ∈ Φ has an integral representation on Σ.

2. Integral representation of Feller kernels. Let X be an infinite
separable Hausdorff space and let Y be metrizable. For every ϕ ∈ C(X,Y )
let Tϕ = (ϕ(x1), ϕ(x2), . . .) ∈ Y N, where {xn} is a fixed dense subset of X
with xi 6= xj for i 6= j. Then T is 1-1 but need not be onto Y N and we
denote by im(T ) the image of C(X,Y ) in Y N under T . It is easy to check
that T−1(BY N) = Σ, where BY N denotes the Borel σ-algebra in Y N endowed
with the product topology.

The last observation allows us to give an alternative description of the
representing measure in terms of a non-direct product measure on BY N .

Theorem 2. Let X be an infinite separable Hausdorff space and let Y
be metrizable. For every Feller kernel p on X ×BY the following conditions
are equivalent :

(1) p has an integral representation on Σ.
(2) There exists a probability measure λ on BY N with n-th marginal λn

equal to p(xn, ·) and the outer measure λ∗(imT ) equal to one.
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P r o o f. (1)⇒(2). The equality Σ = T−1(BY N) implies λ∗(imT ) = 1
for λ := T (µ). Since for every n = 1, 2, . . . and A ∈ BY we have λn(A) =
(T (µ))n(A) = p(xn, A), the condition (2) is satisfied.

(2)⇒(1). Note that the condition λ∗(imT ) = 1 allows us to define a
probability measure µ on Σ such that T (µ) = λ. In particular, for every
Borel set A in Y and every n we have µ({ϕ : ϕ(xn) ∈ A}) = λn(A) =
p(xn, A). Fix x0 ∈ X and choose a sequence zn → x0 selected from {xn}.
For any nonempty closed subset F in Y define Vn = {y : d(y, F ) < 1/n}
and Fn = {y : d(y, F ) ≤ 1/n} where d(y, F ) is the distance of y from F .
Since for every open (closed) set A the function x→ p(x,A) is lower (upper)
semicontinuous, the Fatou lemma implies∫

1F (ϕ(x0)) dµ(ϕ) ≤
∫

1Vn(ϕ(x0)) dµ(ϕ) ≤
∫

lim inf
k

1Vn(ϕ(zk)) dµ(ϕ)

≤ lim sup
k

∫
1Vn(ϕ(zk)) dµ(ϕ) ≤ lim sup

k
p(zk, Fn) ≤ p(x0, Fn)

for every n. Consequently, for every closed set F in Y and every x in X we
have

∫
1F (ϕ(x)) dµ(ϕ) ≤ p(x, F ). Since the left hand side is a probability

measure on the metric space Y , this implies that µ in fact represents p.
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50-370 WROC LAW, POLAND
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