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0. Introduction. For a given pair of metric spaces X; = (X;,p;),
1 = 1, 2, there are various possible product metrics, i.e. metrics which induce
the product topology in X; x X5. Evidently, for the multiplicativity of a
topological property the choice of a product metric is inessential. But, in
general, it is essential for the multiplicativity of a metric property.

Following the idea of Oledzki and Spiez [4], we are concerned with metrics
induced by functions from (R*)? to R*. Five families (Fo, Fi, F1, Fo, and
F3) of such functions are defined in Section 1; their role is described in
Section 2. The next two sections, 3 and 4, are devoted to F-multiplicativity
of different classes of metric spaces for F being one of the families Fi, Fi,
Fo, and Fj. It seems interesting that to decide whether a given class M is
f-multiplicative or not, it often suffices to examine the space (R, f (p,p)),
where p is the Euclidean metric in R? and f (p, p) is the induced metric in
R* (compare 4.3 and 4.8).

We use the terminology and notation of [3]; in particular, a space (X, p)
is said to be strongly arcwise connected if any two distinct points z,y € X
can be joined in X by an arc with a finite length; let p* denote the intrinsic
metric determined by p in a strongly arcwise connected space (X, p), i.e.
p*(x,y) is the infimum of the lengths of all arcs joining = and y in (X, p).
By B,(a,¢c) we denote the ball in (X, p) with centre a and radius ¢, i.e.

By(a,e) i= {x € X; pl,a) < e}
by M,(a,b) we denote the set of midpoints of the pair (a,b):
Mp(a7 b) = {.T} € X; ,O(Cl,.’IJ) = %P(a, b) = p(l’, b)} :

We are concerned with the following classes of metric spaces:

FC — the class of finitely compact spaces (X € FC iff every bounded
sequence in X has a convergent subsequence; compare [1]),
GA  — theclass of geometrically acceptable spaces ((X, p) € GA iff (X, p)

is strongly arcwise connected and p* is topologically equivalent
to p; compare [2] and [3]),
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IM — the class of spaces with intrinsic metrics ((X, p) € IM iff p* = p),

MC  — the class of metrically conver spaces (X € MC iff every pair of
points a,b in X can be joined by a metric segment, i.e. by an
isometric image of the interval [0, p(a,b)]; compare [1], [3]),

SMC — the class of strongly metrically convex spaces (X € SMC iff every
pair of points of X can be joined by a unique metric segment),

MidC — the class of Mid-convex spaces ((X,p) € MidC iff M,(a,b) # 0
for every a,b € X),

SMidC — the class of strongly Mid-convex spaces ((X,p) € SMidC iff
M,(a,b) is a singleton for every a,b € X, i.e. M, is an ope-

ration),
NL — the class of linear spaces with metric induced by a norm,
SNL  — the subclass of NL consisting of spaces with strictly convex balls

(i.e. balls with no segments on the boundary).
Let us note the following
0.1. LEMMmA. MC N SMidC = SMC.

Proof. The inclusion D is evident. We prove C. Let X = (X, p) be
a metrically convex and strongly Mid-convex metric space. Let Ly and Lo
be metric segments in X with endpoints a,b. Then, evidently, there is a
set A C Ly N Ly which is dense in both arcs L; and Lo (A is obtained by
iterating the midpoint operation M,). Thus L; = L. m

1. Some sets of real functions. Let R™ be the set of non-negative
reals and let ~ be the proportionality relation in R?. We shall deal with the
following conditions on f : (R*)? — R :

F.0. |si —ti] <7i < si 4ty fori = 1,2 = f(ry,r2) < f(s1,52) + f(t1,t2)
for every r;, s;,t; € RT;

F.1.  f(ti,t2) =0 & ty =ty = 0;
F.2. f is subadditive, i.e. f(t+s) < f(t) + f(s) for every t,s € (RT)?;
F.2’.  f is strictly subadditive, i.e. f is subadditive and
f(t+5s)=f(t)+ f(s) = t~sforevery t,s € (RT)?;
F.3. f is totally increasing, i.e. for every r = (r1,72) and t = (t1,t2),
ri <tjfori=1,2 = f(r) < f(t);

F.4.1. fis continuous at (0,0);
F.4.2. f is homogeneous, i.e. for every t € (R7)? and o € R,

flat) = af(t).
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Let us define five sets of functions:

Fo:={f:(R")2 — R*; f satisfies F.0 and F.1},
Fi:={f € Fo; [ satisfies F.4.i.} for i = 1,2,

Fp = {f:(RT)? = R*; f satisfies F.1, F.2, F.3, F.4.1},
Fy={f:(RT)? - R*; f satisfies F.1, F.2/, F.3, F.4.2}.

The set F5 can be characterized as follows:

1.1. B ={f: (R")? - R; f satisfies F.1, F.2, F.3, F.4.2} (1).

Proof. The inclusion D is obvious. To verify C it suffices to prove
FOAF42=F2AF.3.

Taking r = s+t in F.0, we get F.2. To obtain F.3, we assume r; < u; for
i=1,2 and take s; = ¢; = fu; in F.0. =

Using 1.1, we easily obtain
1.2. fé CF C f1 C Fi C Fp.

It can be shown that all the inclusions in 1.2 are proper. We shall need
the following three lemmas:

1.3. LEMMA. If f € Fq, then

(i) f is continuous;
(ii) for every (t™),en in (RT)2, lim,, f(t™) = 0 = lim,, t(™ = (0,0).

Proof. (i) By F.0 it follows that
|t; —si| <ri<t;+s; fori=1,2
= |f(t1,t2) — f(s1,82)[ < f(r1,m2) < fta,t2) + f(s1,82)
Setting r; = |t; — s;|, we obtain

(1) |f(t1,t2) — f(s1,82)| < f([t1 — s1], [t2 — s2])
for every (t1,t2), (s1,52) € (RT)?.

Take (s1,52) € (RT)? and ¢ > 0. Since f is continuous at (0,0), by F.1
there exist d1,d2 > 0 such that

Vi, to € RT |ty — 85| < 0; for i = 1,2 = f(|t; — s1], [ta — s2]) < €.
Thus (1) yields the continuity at (s1, $2).

(ii) Let
(2) lim f (1", ¢5") = 0

(1) By 1.1, F» is the set of functions considered in [4], p. 245.
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and suppose that ((t§”),t§")))n€N is not convergent to (0,0). Then we can

assume that (tﬁ”))neN is either divergent to oo or convergent to t; # 0,
whence

(3) dsy dng Vn >ng 0<s; < 2755") .

Thus, by F.0, f(s1,0) < 2f(t§"),tén)), which, by (2) and (3), contradicts
Fl. =

1.4. LEMMA. If f is continuous and subadditive, then the following con-
ditions are equivalent:

(i) f is homogeneous;
(ii) f(3¢t) = 3 f(t) for every t € (RT)?2

Proof. The implication (i)=-(ii) is obvious.
Assume (ii); to prove (i) it suffices to show that for every a € R

(1) flat) <af(t) forte (RT)2.
Let k € N; since

I =y
Z :;gn for some o, € {0,1}, n € N,
by F.2 and the continuity of f we obtain (1) for « rational. Using again

continuity, we get (1) for every a € RT. m

1.5. LEMMA. For every f € F5 the following conditions are equivalent:

(i) f e F3;
(i) r=s+tAf(s) = f(t) =1f(r)=s=t=gr, forallr,s,t € (RT)2.

Proof. (i)=(ii). Suppose

(1) r=s+tand f(s) = f(t) = 3 f(r).
Then f(s+t) = f(s) + f(t), whence, by F.2',
(2) s=at for some o € RT.

If s = (0,0) or t = (0,0), then (i) holds. Let s # (0,0) # t. By F.4.2
and (2), f(s) = af(t), whence, by F.1, « = 1. Thus, by (i) and (2),
s=t= %T‘.

(ii)=(i). First, notice that (ii) implies
Bla r=s+tAf(s)=af(r)Af(t)=(1-a)f(r)
=s=arANt=(1—-a)r

for every a € [0, 1].
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Indeed, (ii) coincides with (3)q for @ = 3. By F.4.2, (3)a = (3)a/2;
evidently (3)o = (3)1—q. Thus (3), holds for o = m/2™ for m,n € NU{0},
whence it holds for every a € [0, 1] because f is continuous.

By 1.1, it remains to prove

(1) Fls+1) = [(5)+ F(t) = s~ 1.
Let f(s+t) = f(s)+ f(t) and r = s +t. Then f(s) = af(r) for some
a € [0,1]; thus, (3), yields s = ar and t = (1 — a)r, which proves (4). m

2. Geometric characterizations of F;, F3, and Fj. Every
f: (RT)?2 — RT induces the function f which assigns to any pair of metrics
p1, p2 in X7, Xo, respectively, the function
Flpr,p2) = py + (X1 x X5)* — RF
defined by the formula

pr((z1,22), (y1,y2)) = f(p1(21, 1), p2(22,92)) -
The following two statements characterize Fy and Fi:

2.1. THEOREM. For every f : (RT)2 — Rt the following conditions are
equivalent:

(i) f € Fo;
(ii) for every pair of metric spaces (X;,pi), i = 1,2, the function
f(p1,p2) is a metric in X1 X Xo;
(iii) is p is the Buclidean metric in R?, then f(p,p) is a metric in R*.
The proof is routine. =
As a consequence of 2.1, 1.2, and 1.3(ii), we obtain

2.2. THEOREM. For every f : (RT)2 — RT the following conditions are
equivalent:

(i) f e Fy
(ii) for every pair of metric spaces (X;,pi), © = 1,2, the function
f(p1,p2) is a product metric in Xy x Xo;
(iii) if p is the Euclidean metric in R?, then f(p,p) is a product metric
in R4,
The next two statements reflect the role of Fy and Fj:
2.3. THEOREM. For every f € F; the following conditions are equivalent:
(i) f € Fy
(ii) for every pair of metric spaces (X;, pi), i = 1,2,
My, (a1, b1) X My, (az,b2) C My, .\ ((a1,a2), (b1, b2))

for every a;,b; € X;, i =1,2;
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(iii) if p is the Euclidean metric in R, then

M,(a1,b1) x M,(az,bs) C Mf(pvp)((al,ag), (b1,02))
for every a;,b; € R, 1 =1,2.
The proof of the implication (i)=-(ii) is routine; (ii)=-(iii) is obvious;
(iii) = (i) follows from 1.3 and 1.4. m
2.4. THEOREM. For every f € F; the following conditions are equivalent:

(i) f e Fa;

(ii) for every pair of metric spaces (X;, pi), i = 1,2,
Mpl (ala bl) X Mﬂz (a27 bQ) = Mf(plpr)((ala a2)a (bla b2))

for every a;,b; € X;,1=1,2;
(iii) if p is the FEuclidean metric in R, then

My (ar,br) x My(az,b2) = M, ,((a1,az), (b1, b2))
for every a;,b; e R, i =1,2.

Proof. (i)=(ii). Let p; = f(p1,p2), @ = (a1,a2), b = (b1,ba). Since
Fh C Fa, by 2.3 it suffices to prove

(1) My (a,b) C My, (a1,b1) x My, (az,b2) .

We can assume a # b. Take x = (v1,22) € M,,(a,b); let s; = p;(a;, x;),
t; = pz(:cl,bz), ry = pl(az,bz) for i = 1,2 and t = (tl,tg), s = (81,82),
r=(r1,r2). Then r; =s; +t; fori = 1,2 and f(s) = f(t) = 1 f(r), whence,
by 1.5, s =t = ir. Thus z; € M,,(a;,b;), which proves (1).

(ii) = (iii) is obvious.

(iii)=(i). By 2.3 and 1.5, it suffices to prove
(2) rzs—i—t/\f(s):f(t):% (r)és:t:%r,
for every r,5,t € (R*)2. Taker, s, t € (R")? satisfying the antecedent of (2).
For i = 1,2 there exist a;, b;,¢; € R such that p(a;,c;) = s;, p(bi,ci) = ti,
and p(a;,b;) = ;. Let a = (a1,a2), b = (b1,b2), ¢ = (c1,¢2). From the
assumption on s, ¢, r it follows that ¢ € Mf(pyp)(a,b), whence, by (iii),
¢ € My(a;,b;), which proves (2). m

3. On f-multiplicativity of some metric properties. Applying
2.1, for arbitrary f € Fy we can define the f-product X; xy X5 of metric
spaces X1, Xs:

If X; =(X;,p;) fori=1,2, then

X xf Xo = (X1 x Xo, f(p1,p2))-

We are only interested in product metrics. Therefore, we admit the following
definitions (compare 2.2):
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Let f € F1. A class M of metric spaces is f-multiplicative if and only if
X, Xoe M= X, X f Xo € M for every pair (Xl,XQ).

Let F C F1. The class M is F-multiplicative whenever M is f-multipli-
cative for every f € F.

Every class M determines the maximal subfamily of F; for which M is
multiplicative:

Fm ={f € F1; M is f-multiplicative} .

Of course, if M is a topological invariant, then, by 2.2, M is Fi-multiplica-
tive if and only if M is f-multiplicative for f(t1,t2) = \/(t1)% + (t2)2.
It is easy to prove that

3.1. The class of complete metric spaces is F -multiplicative.

Let us notice that
_3.2. The class FC of finitely compact spaces is Fa-multiplicative but not
JF1-multiplicative.

Proof. To prove that FC is F-multiplicative it is enough to show that
if A is a bounded set in X; x; X5, then A C A; x Ay for some sets A;
bounded in X; for i = 1,2. Let

(1)  ACBj,, pla,a) forsomea=(a1,az) € X1 x Xz and a > 0.
If

B =amax{(f(1,0))"*, (f(0,1))"*} and A; = B,,(a;,) fori=1,2,
then, by F.3 and F.4.2, for every t;,t, € R

tlf(l, 0) S f(tl,tg) and tgf(o, 1) S f(tl,tz) s
whence, by (1), A C A; x As.
To show that FC is not Fi-multiplicative, consider f defined by the
formula

f(ti,te) =ty +ta(1+1t2)" .
Evidently f € ;. The Euclidean line R = (R, p) is finitely compact, while

R x; R is not; indeed, the sequence ((0,7)),ey is bounded in (R, f(p, p)),
but has no convergent subsequence. m

In our terminology Theorem 3.7 of Oljdzki and Spiez [4] can be formu-
lated as follows:

3.3. If f € Fu, then for every pair of metric spaces X; = (X;, p;) € GA,
i = 1,2, the function f(p1,pz2) is a product metric in X1 x Xy and
(f(p1,p2))" = f(p1,p3) -
In fact, they proved the following slightly stronger statement:
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3.4. Let X; = (X;,pi) € GA fori=1,2.
(i) If f € F1 and X, x; Xo € GA, then (f(p1,p2))* = f(pt, p3).

(ii) If f € Fo, then X1 x5 Xo € GA and (f(p1,p2))*
We shall prove

f(pi,p3).

3.5. PROPOSITION. If f € Fin Faa, then the following conditions are
equivalent:

A A~

(i) (f(pr,p2))" = f(p7,p5) for every (X, pi) € GA, i =1,2;
(ii) the class IM is f-multiplicative;
(iii) the class MC is f-multiplicative.
Proof. The implication (i)=-(ii) is obvious.
(ii)=(i). Assume (ii) and let X; = (X, p;) € GA for i = 1,2. Then

(1) (f(p3,03))" = f(pi.p5).
By F.3, f(p},p5) = f(p1, p2), whence

(2) (F(ot,p3)* = (Fpr, p2))* s
by 3.4(i)

(3) (f(p1, p2))* = f(p}. p3) -

By (1)—(3), we obtain (i).

In what follows we use the notation |L|, for the length of an arc L in a
metric space (X, p).

(ii)=(iii). Assume (ii) and let X; = (X;,p;) € MC for i = 1,2. Let
pf = f(pl,pg). To prove (iii) it suffices to show that for every a;,b; € X;
the points a = (a1, az) and b = (by, ba) can be joined in X; X y X5 by an arc
L with |L|,, = ps(a,b).

By the assumption on p;, there exists an arc L; C X; with endpoints a;
and b; and with |L;|,, = pi(a;, b;), i = 1,2. Let p} = p;|(L;)?, i = 1,2, and

A~

Py = f(py, pa). Then

(4) Py = psl(L1 x L2)?.
Evidently (L;, p;) € MC C IM for ¢ = 1,2, whence, by (ii),
®) (i % Lay ) € M

Since (L1 x La, p') is compact, by Th. 28.1, p. 70 of [1], condition (5)
implies
(6) (L1 X LQ,p/f) € MC.
By (6), there is an arc L C Ly X Lo joining a and b, with |L|p’f = ps(a,b).
Thus, by (4),
|L’Pf = ‘L|Plf = ,030(@, b) = ,of(a, b) .
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(iii)=(ii). Assume (iii) and let X; = (X;,p;) € IM, i.e. p; = pf for
i = 1,2, Let py = f(p1,p2). We have to prove that (pf)* = ps. Let
a,b € X5 x Xo, a = (ay,a2), b= (b1,b2). It suffices to prove that there is a
sequence (L(™), ey of arcs joining @ and b in X; x Xy such that

(7) lim | L™, = ps(a.b).

Since p! = p;, there is a sequence (Lgn))neN of arcs joining a; and b; in X;
such that

(8) lim 1L, = pilas by), i=1,2.

Let pgn) = (pi|(LEn))2)* for i = 1,2, n € N. Evidently
(9) 1L, = p\™ (ai,b;) fori=1,2, neN.
Let
(10) o) = 1o p").

By Th. 28.1 of [1], the compactness of LZ(-n) implies (Lgn),pgn)) e MC,
whence, by (iii),

(L % L8, o) e MC.
Let now L(™ be an arc joining a and b in L§”) X L;n) such that
(11) |L(™) P (a,0).
Applying in turn (11), (10), 1.2 and 1.3(i), (9), and (8), we obtain
lim [ 2] ) = Tim pf” (0, 0) = Tim £ (" (ax,b1), p5" (a2, 2))

= f(lim A" (a1, by), lim Py (a2, bs))

= f(lim [ LS, i |257],,) = f(pr(ar,b), pa(az. b2))

p(fn) —

ie.

(12) lim |L7] 0 = py(a;b).

Since pgn) > pi\(Lgn))Q, by F.3 and (10) we infer that
oy = Forl (L), ol (£57)°).

Hence

(13) \L(")|pf < |L(")|p<n) for every n € N.
7

Finally,
(14) pr(a.b) < (py)*(a,b) < kim [L™],, .
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Conditions (12)—(14) imply (7). This completes the proof. m
Let us now consider the following three examples:

3.6. EXAMPLE. Let f(t1,t2) = /t1 + to for t1,to € RT. Evidently
fe F1 — F». We shall prove that GA is not f-multiplicative.

Let I =[0,1] C R and let p be the Euclidean metric. Take X; = (I, p)
and Xy = ({0}, p). Evidently X; € GA for i = 1.2. We have X; x; Xy =
(I x {0}, py), where

pf((x130)>(y1a0)) = P(xl,yl) for x1,y1 € 1.

The points (0, 0) and (1, 0) cannot be joined in X; Xy X5 by an arc of finite
length. Indeed, let I, = [k/n,(k+1)/n] forn € Nand k =0,...,n — 1;

then |1, x|,;, = \/1/n, whence
n—1
Z Lkl =nyv1/n= Vn,
k=0

and thus |I x {0}|,, is infinite. Therefore X; x; X5 is not geometrically
acceptable. =m

3.7. EXAMPLE. Let f(t1,t2) = /t1 + {2 for t1,to € RT. It is easy to
check that f € .7?1 — F5. We shall prove that IM, MC, and MidC are not
f-multiplicative.

Let p be the Euclidean metric in [0,1]; let X; = ([0, 1], p) for i = 1,2 and
let py = f (p,p). Clearly X; and X5 are convex, whence p is an intrinsic
metric. On the other hand, X; Xy X is not convex; moreover, X; x y X is
not Mid-convex, because for every = € [0, 1], if ps(a, z)+ps(z,b) = pt(a,b),
then x = a or x = b. Since X; x; Xy is compact, by Th. 28.1 of [1] it
follows that ps is not an intrinsic metric. m

3.8. EXAMPLE. Let f(t1,t2) = t1+tg for t1,to € RT. Then f € Fo— F).
Clearly the Euclidean line R is strongly Mid-convex (it is even strongly
convex), while R X R is not. m

We complete this section with two corollaries.

3.9. COROLLARY. The classes GA, IM, MC, and MidC are Fo-multi-
plicative but not F1-multiplicative.

Proof. For the class GA the statement follows from 3.4(ii) and 3.6; for
IM and MC it follows from 3.4(ii), 3.5, and 3.7; for MidC it follows from 2.3
and 3.7. m

3.10. COROLLARY. The classes SMidC and SMC are Fs-multiplicative
but not Fo-multiplicative.
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Proof. For the class SMidC we use 2.4 and 3.8; for SMC we use 0.1,
3.8,and 3.9. =

4. Products of normed linear spaces. We are now concerned with
normed linear spaces. Every f : (RT)? — R* induces a function f which
assigns to any pair of norms || ||1, || |2 in linear spaces Fy, Es, respectively,
the function

FAL I ll2) =1 lp B x By — RY
defined by the formula

(@1, z2)l 5 == f([lzll1, 22]l2) -
Evidently

4.1. If (E;, || ||;) is a normed linear space and p; is the metric induced by
the norm || ||; fori = 1,2, then for every f : (RT)? — R and z,y € E1 X Ey

fpr, p2) (@, y) = lle =yl -
As a direct consequence of 4.1 we obtain
4.2. Let p; be the metric induced by a norm || ||; in E;, i = 1,2. For
every f: (RT)2 — R
@) if F(I 1,1l 1I2) is a norm in Ey x Ey, then f(p1,p2) is the metric
nduced by this norm;

_ (il) of f satisfies F.4.2 and f(pl,pg) is a metric in E1 X FEs, then
FUl 1, 1 ll2) ds the norm which induces this metric.

We can now characterize F5 as follows:

4.3. THEOREM. For every f : (RT)?2 — R* the following conditions are
equivalent:

(i) f e F

(ii) the class NL is f-multiplicative;

(iii) if p is the Euclidean metric in R?, then f(p, p) is induced by a norm
in R4,

Proof. The implication (i)=-(ii) follows from 2.1 and 4.2(ii).

(ii) = (iii) is obvious.

(iii)=(i). By 2.1, f € Fo; it remains to verify F.4.2. Let py = f(p,p).
By assumption, py is induced by a norm || || in R*. Take (t1,%2) € (RT)? and
let 0 = (0,...,0) € R% Then t; = p((0,0),z;) for some z; € R? i = 1,2,
and for any o € RT

f(a(tlvt2)) = f(p((O, 0)7 O‘xl)a p((O, 0)> O‘x2)) = Pf(O, Oé($1, $2))
= lla(zy, z2)[| = af (t1,t2) -
This proves F.4.2. m
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By 4.3, the family F5 coincides with the family of all functions for which
NL is multiplicative:

4.4. COROLLARY. F5 = FnIL..

We are now going to prove the analogue of 4.4 for 7} and the class SNL.
Let us start with two simple lemmas:

4.5. LEMMA. If p is induced by a norm in a linear space E, then M,(a,b)
is affine convex for every a,b € E.

Proof. First notice that in (F, p)
(1)  every closed, affine Mid-convex set is affine convex.
By the continuity of p,
(2)  for every a,b the set M,(a,b) is closed (?).
Thus, it suffices to prove that for every a,b € E the set M,(a,b) is affine
Mid-convex, i.e.
(3) c1,¢2 € My(a,b) = %(cl +c2) € M,(a,b).
The proof of (3) is left to the reader. m

4.6. LEMMA. If p is induced by a norm in a linear space E, then trans-
lations and central symmetries are isometries of (E, p).

Let us now establish

4.7. PROPOSITION. For every normed linear space (E, || ||) and the met-
ric p induced by || || the following conditions are equivalent:

(i) balls are strictly conver;
(ii) the space (E,p) is strongly convez.

Proof. (i)=(ii). Clearly (F, p) is metrically convex, since every affine
segment is a metric segment. Thus, by 0.1, it suffices to prove

(1) Va,be E  M,(a,b) is a singleton .

Suppose there are a,b, ci,co such that a # b, ¢1 # c2, and ¢; € M,(a,b)
for i = 1,2. Then, by 4.5, A(cy,¢c2) C Mpy(a,b). Let a = p(b,¢;). Then
A(e1,c2) C 0B,(b, o), contrary to (i).

(ii)=(i). By 4.6, it suffices to prove that there exists a strictly convex
ball. Let By = By(a,1) for some a € E. Suppose that By is not strictly
convex, i.e. there are distinct points p,q with A(p,q) C 0By. Let r =
%(p + q); take the symmetry o, with respect to r and let b = o,.(a). Then,
by 4.6, 0.(Bo) = B,(b,1). It is easy to check that p,q € M,(a,b), contrary
to (ii). m

(%) Condition (2) holds in an arbitrary metric space.
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We are now ready to prove

4.8. THEOREM. For every f : (RT)?2 — R* the following conditions are
equivalent:

(i) f € Fy;

(ii) the class SNL is f-multiplicative;

(iii) if p is the Euclidean metric in R?, then (R*, f(p, p)) € SNL.

Proof. Applying 4.7 and 3.10 we obtain the implication (i)=-(ii).

(ii) = (iii) is obvious.

(iii)=(i). Assume (iii). By 4.7, the metric f(p,p) is strongly convex,
whence for every a,b € R?
1) Mg, p(a0) = {h(a+ D)}
Let a = (a1,a2), b = (b1,b2), ai,b; € R? for i = 1,2. Clearly, M,(a;, b;) =
{3(a; + b;)} for i = 1,2, which, together with (1), implies
(2) Mp(al,bl) X Mp(ag,bg) = Mf(pyp)(a, b)
Since, by 4.3, f € Fs, and thus, by 1.2, f € Fi, from 2.4 and (2) it follows
that f € 5. m

By 4.8, the family F} coincides with the family of all functions for which
SNL is multiplicative:

4.9. COROLLARY. F} = FsNL-
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