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ON POMMERENKE’S INEQUALITY
FOR THE EIGENVALUES OF FIXED POINTS

BY

G. M. LEVIN (JERUSALEM)

81. Introduction. One of the main results of the paper is the following.
We investigate the existence of solutions of the equation

(1.1) M(w) = h(pw), |A[>1, p>1,

in the class of mappings which are K-quasi-conformal in an open semidisc
D centred at zero. The image of the diameter of the semidisc may be an
arbitrary boundary subset of h(D). Such a situation arises in iteration
theory of polynomial and polynomial-like mappings. In those cases h maps
the exterior of the unit disc (or equivalently a half plane) to the basin of
attraction of infinity and p is the degree of the mapping. We shall prove in
particular that

(1.2) | In \?/In |\ < 2K Inp

and determine all cases when equality occurs in (1.2).

Actually, (1.2) implies a generalization of the following theorem by
Ch. Pommerenke [7]:

THEOREM 1 [7]. Let a # oo be a repulsive fized point of a rational func-
tion f (deg f >2). Fori=1,...,p, let £2; be the distinct simply connected
invariant components of C\ J (J = J(f) denotes the Julia set for f [4], [5],
[6]), let h; map conformally the unit disc onto §2; and let wik, |wik| = 1, be
distinct fized points of the conjugate mappings @; = h;l o f o h; with

(1.3) hi(wig)=a, k=1,...,1;.
Then
p l; 1 2111’]0/(&)‘ 9
1.4 |
v 2 2 on) < TP = WlFa)

Note that ¢; is a finite Blaschke product and w;; is a repulsive fixed
point of ;. Equality (1.3) is to be understood to mean that the angular
limit limy, ., hi(w) = a exists [7].
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In the present paper we shall prove (1.4) in a more general situation.
Our method is related to the extremal lengths method [1]. It allows us to
investigate when equality is achieved in (1.4).

Notations:

D(r)={w:|w| <7, Imw > 0},
II={w:Imw >0}, B(r) ={z:|z| <r},
C(r1,r2) ={z:r1 <|z| <ra},
20A={z:3ue A, z=z2u} (20 C, ACC)

For example:

H:Uka(r), p>1,r>0.
k=0

§2. Results. Let f: 2+ Az, ¢, : w— pw, |A\| > 1, p > 1. Suppose
there exist domains {2, U and a mapping hg such that

(1)0€d2, 2CA\2CC,0€0U,UcCpUcCC,J,_,p"U=1I;
(2) ho : pU — A2 is a K-quasi-conformal homeomorphism [5] which
conjugates fi|o and ¢,|y:

(2.1) Aho(w) = ho(pw), wel.
We shall prove the following basic
THEOREM 2. (a) We have
(2.2) |InA?/In|\| < 20*K1np,
where

1
o =lim ——— 2| 2dxdy, z=x4iy, r>0;
§—0 27 In(r/9) an(l;({r)

(b) equality is achieved in (2.2) if and only if
ho(w) =@, &nreC, k=1tn, tel0,1);

under this condition the boundary of the domain
o=
n=0

is limited by either rays (if A > 0), or logarithmical spirals.

Remark 1. The number o* equals the density of the domain (2 at 0 in
the logarithmic metric |dz|/|z|.

We now formulate a generalization of Theorem 1. Let f : A — C be
a map conformal in a neighbourhood A of 0, and let f(0) = 0, f'(0) = A,
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|A| > 1. Suppose there exist finitely many pairwise disjoint domains {2; and
mappings h;, i = 1,...,p, such that
(1,) 0e€ a8, 2; C f(_QZ> C A;
(2") for every i there exist ; > 0, K; > 1 and p; > 1 for which h; :
D(p;e;) — f(£2;) is K;-quasi-conformal with
f(hi(w)) = hi(piw),  w € D(e;).
THEOREM 3. (a) We have

P
1 1 2aln | A
2.3 . < =
(23) ;KZ Inp; = |InA]2’
where
1
a=lim ———— |2| 72 dx dy,
5—0 2mIn(r/d) ng(jdﬂ,r)

the lower density of 2 =J'_, £2; at 0 in the logarithmic metric.
(b) If equality holds in (2.3), then every h; extends continuously to a

closed semi-neighbourhood D(e;) of w = 0 and transforms the boundary
interval to an analytic arc with end at z = 0.

Remark 2. Theorem 1 follows from Theorem 3 if Schroder’s theorem
[9] is applied. Then ¢; is locally (in neighbourhood of w;i) conjugate to its
derivative w +— @} (w;x)w. Besides, K; = 1.

COROLLARY. Equality is achieved in the left inequality of (1.4) if and
only if the Julia set of f is either a circle or a segment and a is any fized
point of f.

The proofs are given in §§ 3, 4. Hyperbolic sets are introduced in § 5.
The results of §§ 3-5 are applied in § 6 for estimation of eigenvalues of
polynomials and polynomial-like mappings periodic points. The paper is
ended by some comments and open problems.

§3. Proof of Theorem 2

3.1. The mapping hg may be extended to a mapping h of the half-plane
IT with the property (2.1). The extension is given by

h(p"w) = A"ho(w), n=0,1,...; weU.

We get a K-quasi-conformal homeomorphism h : II — 2%, where
2 =hI)=| N2, M(w) =h(pw), well.
k=0

3.2. For every ray
ap, ={well|argw=9}, 0<ep<m,
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we have
lim A(w) =0, lim h(w)= oo,

w—0 Ww—00
if we .

3.3. Now we fix the boundary circle S,. of a ball B(r) and consider the
curve B, = h(ay,) with some g € (0, 7). This curve is in £2* and joins 0
and oco. There exists an arc S C S, N 2* with ends on 9§2* through which
By, leaves the ball B(r). Then any [, crosses S. Set

l=h"1(S).
Every ray a, crosses [, 0 < ¢ < 7.

3.4. We now introduce two families of curves I" and I". Consider first
the family of all intervals joining points w € [ and w/p; then on every ray
ay,, 0 < ¢ <, we choose exactly one such interval 7 = 7,,, namely the one

closest to zero. We get the family of intervals {7,} = I". It fills in some set
RcCII. N

The family I" is the family of images v = h(¥), ¥ € I'; every curve v € I’
joins a point z € S and z/A. The family I fills in the set h(R) C £2*.

Now introduce the logarithmic metric in C \ {0}:

o(z) =1/lz[, 2#0,

and the induced metric in I71:

z=h(w)
Define (see [1])

L=inf | o(z)|dz|, A= ff o?(z)dzdy,
yel' h(R)

gl
L= inf f&(w)|dw|, A= ff52(w)dudv,
el 3 R

(z =2z + iy, w = u + iv) and, finally,
M =m(o,I)=A/L*, M =m(5I)=A/L*.
3.5. We prove that
(3.1) M>M/K
(this is a general fact, see [1]). Let v = h(5), € I". Then
(32) Ja@)ldol = [o(2)dz],
gl

ol
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(3.3) ff 72 (w)dudv < K ff o?(2)dx dy,
R

h(R)
and (3.1) follows.

3.6. We estimate M from below. For every 7y, € I" we have

~ 2 dw
: 2<( s ) < o2 : —.
(3.4) I? < ~fgydwy _~fa |w| |dw] ~f ~
Yo Yo Yo
But
‘dw
f - :lnp’
} w
Yo
therefore
L <lnp- fdcp f&z(rei‘p)rdrzlnp ff&zdudvzlnpg.
0 Yo R
Thus,
(3.5) M > w/lnp.
3.7. Now we estimate M from above. Firstly,
dz
. dz| > —|=|InA I.
(36) Jo@u = | [ =imAl, ve

Secondly, consider

dx dy
A= [ iR
h(R)
Let z € h(R) and suppose z, z; = Az and zy = z/\ are not endpoints
of any curve v € I'. It follows from the definition of the family I' that

VARR) ¢ h(R)
Denote the area of a set V' C C\ {0} in the logarithmic metric by

For example, A = I(h(R)). Obviously,
(3.7) I(V)=1(\V).
Now, if z belongs to h(R), but not to the annulus
C=C(r/|A,r)=A{z:r/I\ < |z| <7},

then we transform z into C' by the mapping z — Az with some k =
41,42, ... By the above,

A=I(h(R)) < I(2*NC).
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We now show that
1(2°NC) . 12N C6,7))
S\ Y g = lim A )
orIn|\ a0 I(C(5,7))
Indeed, this follows from (3.7):
I(2°NC) = lim 1(CN A0) = Jim I(Cr N1 r A% N )

= lim = > I(C@A A% N )
oo N

1
= lim —I(C(r|lA\|"",r)N12),

n—oo N
where the existence of each subsequent limit follows from the existence of
the preceding one.
Hence the following limit exists:
. 1 I(2*NnC)
3.8 lim —I(C(0,r)N2) = ———=
(38) i ey [(CO N2 = =

Thus, we have proved that

=2ra’™ .

2ma* In | Al
M= [In A2 7
and, finally,
1 1 ~ 2ra* In | Al
K np Sw&M=M=—70p
Part (a) of Theorem 2 is proved.

We proceed to prove (b). Suppose equality holds in (2.2). From (3.2)
we obtain L = L. Therefore we have equality in (3.5) and in Schwarz’s
inequality (3.4) (for almost every ¢ € (0,7)). Hence

~ const
(3.9) o(w) = ]
almost everywhere on 7,,.
Now (3.2) may be rewritten as

const - lnp > f o(z)|dz| > |InA|.
g

From L = L it follows that
dz

const - Inp = f — | =|ln\|

Y

almost everywhere in ¢. So, 7 is a geodesic in the metric |dz|/|z|. Hence

h(w) =¢& - w@".



POMMERENKE’S INEQUALITY 173

The conditions on 1) and « are verified by calculations. Theorem 2 is proved.
At the same time we have proved
LEMMA 1. If a domain §2 is such that 0 € 02, 2 C A2, |A| > 1, then:
(a) the limit
. I(2nC6,r))
= lim ——— % 0
R A T

exists;
(b) « is a conformal invariant, that is, for every mapping 1 conformal
in a neighbourhood V of 0 and such that 1(0) = 0,
o — lim I(p(VNn2)ynco,r))
5—0 I(C(d,7))

§4. Proof of Theorem 3. By Schroder’s theorem [9] (applied to
the branch of f=1 with f=1(0) = 0), there exists a conformal isomorphism
g : B(]A\|7) — Ao from some ball B(|]A\|7) to a neighbourhood Ay C A of
zero such that g(Az) = f(g(2)), z € B(7).

Let IT; = {w: argw € (t,m7—t)}. For t € (0,1/2), the restriction of h; to
11, is continuous up to the point w = 0. Hence for every ¢ and t there exists
e = ¢€(1,t) such that for U;; = D(e) N II; we have

Vie="hi(U;s) C Ag.
We may assume that e(i,t1) < e(i,t2) if 0 < t1 <2 < 1/2. Set

Ui=JUis, Vi=UVieCcAon,
t t

Q=g '), V= Vicdne, Q=)o
i i
Then Uy~ p¥U; = II,i = 1,...,p. We now apply Theorem 2 and Lemma 1
to get

"1 1 2aIn || 2aln |)|
Z 7 S S )
~ K; Inp; [ In |2 | In AJ2

where
. I(vncC(,r)) .. I(2nC(o,r))
= lim %)) 0T .
T TICE ) Tam ICGm) ¢
Part (a) is thus proved; (b) follows from Theorem 2(b).

Proof of the Corollary. We apply Theorem 3(b) and the follow-
ing theorem of Fatou [5]: if the Julia set J of a rational function contains
an analytic arc, then J is a circle or a segment. Equality in (1.4) is checked
up directly.
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§5. Hyperbolic sets. Call a domain 2 C C hyperbolic with (hyper-
bolicity) constant «, 0 < av < 1, if there exists € > 0 such that for any ball
B, (r) with centre at z € 92 and radius r < ¢

l2(B.(r) N £2) N
lo(B.(r)) —

(I2 is the two-dimensional Lebesgue measure on C).

(5.1)

EXAMPLE. Let (2 be the simply connected basin of attraction of an
attracting fixed point ¢ € C of a rational function f (more generally: {2 and
f are the RB-domain and the mapping, introduced in [8]). Let f : 92 — 012
be an expanding mapping [7], that is, there exist K > 1, n € N such that
|(f™)| > K on 0f2. Then {2 satisfies (5.1) (see [7]).

Let Co(r1,m2) ={z:1r1 < |2 —a| <ra}.

LEMMA 2. If §2 is a hyperbolic domain with constant «, then for any
a €02 and any r >0

1
1. 71 a\Yy Q S ‘
b G0 (Caldm N2 <a

Proof. Fix any a; > a and choose m € (0,1) so that
o

o = .
1 —m?

Then for any a € 0f2 and u < ¢
l2(Cy(mu,u) N §2) < la(Ba(u) N 02) “u
lo(Co(mu,u)) = (1—m2)la(Ba(uw) =

or
u

f I(r)dr < oy f 2nrdr, we€(0,e).

mu mu

Here [(7) is the Euclidean length of that part of the circumference
|z — a| = 7 which lies in 2. We substitute 7 = ut, t € (m, 1), divide the last
inequality by u* and integrate over u from & to r. We obtain

- ~ U(ut) rop
mfdtgf » du§27ra11n57;lftdt,

or
1 rt 1
1 !
(5.2) [ tat Il @dtgzml [ tat.

Tt 2
ln& 5 7 S
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Now define

rt

1
lim th@dTEASQ?T.
§~>01n§6t T

A does not depend on ¢; from (5.2), A < 2maq, Yoy > «. Thus, A < 27a.
Notice that

§6. Applications. Let us write down the obtained results for polyno-
mial-like mappings [8]. First, let P be a polynomial of degree m > 2 and
suppose its Julia set J(P) is connected. This is equivalent to the basin of
attraction of infinity

Dyp={z2:P"'z— 00, n—o0}, P'=Po...0oP,
S——
being simply connected in the Riemann sphere C. There exists an analytic
homeomorphism
Hy:B(1)={z:|2| <1} = D, Hp(0)=00.
The mapping Hy transforms P : Do, — Dy into Py : B(1) — B(1), Py(w) =
w™:
Po H() = H() ] P() .

Let zg € J(P) be a repulsive periodic point of P. Then zj can be reached
by a curve from D, and there exist a finite number r of radial directions
in B(1) on which Hy(w) — zo (Jw| — 1) [2], [3].

Now consider a polynomial-like mapping 7': W — W'. This means that
W, W' are simply connected domains, W C W/ and T : W — W' is a proper
holomorphic mapping of degree m, m > 2. The term “polynomial-like” is
accounted for by Douady—Hubbard’s theorem [2]: there exist a polynomial

P of degree m and a quasi-conformal homeomorphism H; of some neigh-
bourhood V' of

F(P)={z:sup|P"z| < o0} =C\ Dy

onto some neighbourhood U of
FT)={eW: :T"ze€ W, Vn e N}
such that T o Hy(z) = Hy o P(z) if P(2) € V.

Denote the maximal dilation of the quasi-conformal mapping H; : V —
Uby K. Let J(T') = 0F(T).
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Assume that the set J(T') is connected and let a € J(T') be a repulsive
periodic point of T" with period n and eigenvalue

A= (T (a).

Then we define r = r(a) to be the (finite) number of radial directions in
B(1) on which H; o Hy(w) — a. Theorem 3 and Lemma 2 yield

THEOREM 4.

InX? _ 2Knlnm!
(a) (1) |11111|))\\l|| < nrnm for some |l € N;

(b) if every critical point of T is attracted by an attractive periodic cycle,
then there exists o, 0 < o < 1, such that for any repulsive periodic point of
T with eigenvalue \,

IIn M2 2Kanlnm!
In || — T
Proof. (a) This follows from the fact that the eigenvalue p of any
repulsive periodic point wy with period N for the mapping Py : w — w™ is
N
p=m".
(b) is a consequence of the fact that the domain 2 = W\ W is hyperbolic
under the condition of (b) (see example in §5 and [7]).

for somel € N.

§7. Comments and open problems. The inequality
1
(7.1) —In|A| <2lnm
n

for the eigenvalue A\ of a periodic point of period n of a polynomial P
(deg P = m) with connected Julia set follows from Theorem 4. It may
also be proved by the methods of entire function theory [3]. Rewrite it as

(7.2) Xn < 2x(P),

where x, = (1/n)In|\| is the characteristic exponent of the periodic point
and

X(P)= [I|P'(z)|du(z)

is the characteristic exponent of the dynamical system P : J — J related to
the measure of maximal entropy or, equivalently,

k—o0
where . is the arithmetic mean of xj over all repulsive periodic points of

period k.

(1) T was informed by the referee that the similar result was proved by Yoccoz [10] for
polynomials.
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QUESTION: does inequality (7.2) remain true for polynomials with dis-
connected Julia set? and for rational functions R (deg R > 2)?

If P(z) = 2™ + ¢, then (7.2) is true for every ¢ € C.

ANOTHER PROBLEM: find the infimum z, of z such that the inequality
Xn < xlnm is valid for all periodic points of a given polynomial. We have
proved that x, < 2, and if P : J — J is expanding that z, < 2 (J(P) is
connected). As shown in [3], either z, > 1 or P is equivalent to 2.
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