COLLOQUIUM MATHEMATICUM

ON POMMERENKE'S INEQUALITY FOR THE EIGENVALUES OF FIXED POINTS

By
G. M. LEVIN (JERUSALEM)
\S 1. Introduction. One of the main results of the paper is the following. We investigate the existence of solutions of the equation

$$
\begin{equation*}
\lambda h(\omega)=h(\rho \omega), \quad|\lambda|>1, \rho>1 \tag{1.1}
\end{equation*}
$$

in the class of mappings which are K-quasi-conformal in an open semidisc D centred at zero. The image of the diameter of the semidisc may be an arbitrary boundary subset of $h(D)$. Such a situation arises in iteration theory of polynomial and polynomial-like mappings. In those cases h maps the exterior of the unit disc (or equivalently a half plane) to the basin of attraction of infinity and ρ is the degree of the mapping. We shall prove in particular that

$$
\begin{equation*}
|\ln \lambda|^{2} / \ln |\lambda| \leq 2 K \ln \rho \tag{1.2}
\end{equation*}
$$

and determine all cases when equality occurs in (1.2).
Actually, (1.2) implies a generalization of the following theorem by Ch. Pommerenke [7]:

Theorem 1 [7]. Let $a \neq \infty$ be a repulsive fixed point of a rational function $f(\operatorname{deg} f \geq 2)$. For $i=1, \ldots, p$, let Ω_{i} be the distinct simply connected invariant components of $\overline{\mathbb{C}} \backslash J(J=J(f)$ denotes the Julia set for f [4], [5], [6]), let h_{i} map conformally the unit disc onto Ω_{i} and let $\omega_{i k},\left|\omega_{i k}\right|=1$, be distinct fixed points of the conjugate mappings $\varphi_{i}=h_{i}^{-1} \circ f \circ h_{i}$ with

$$
\begin{equation*}
h_{i}\left(\omega_{i k}\right)=a, \quad k=1, \ldots, l_{i} . \tag{1.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{p} \sum_{k=1}^{l_{i}} \frac{1}{\ln \varphi_{i}^{\prime}\left(\omega_{i k}\right)} \leq \frac{2 \ln \left|f^{\prime}(a)\right|}{\left|\ln f^{\prime}(a)\right|^{2}} \leq \frac{2}{\ln \left|f^{\prime}(a)\right|} \tag{1.4}
\end{equation*}
$$

Note that φ_{i} is a finite Blaschke product and $\omega_{i k}$ is a repulsive fixed point of φ_{i}. Equality (1.3) is to be understood to mean that the angular limit $\lim _{\omega \rightarrow \omega_{i k}} h_{i}(\omega)=a$ exists [7].

In the present paper we shall prove (1.4) in a more general situation. Our method is related to the extremal lengths method [1]. It allows us to investigate when equality is achieved in (1.4).

Notations:

$$
\begin{aligned}
& D(r)=\{\omega:|\omega|<r, \operatorname{Im} \omega>0\} \\
& \Pi=\{\omega: \operatorname{Im} \omega>0\}, B(r)=\{z:|z|<r\} \\
& C\left(r_{1}, r_{2}\right)=\left\{z: r_{1}<|z|<r_{2}\right\} \\
& z_{0} A=\left\{z: \exists u \in A, z=z_{0} u\right\}\left(z_{0} \in \mathbb{C}, A \subset \mathbb{C}\right)
\end{aligned}
$$

For example:

$$
\Pi=\bigcup_{k=0}^{\infty} \rho^{k} D(r), \quad \rho>1, r>0
$$

§2. Results. Let $f: z \mapsto \lambda z, \varphi_{\rho}: \omega \mapsto \rho \omega,|\lambda|>1, \rho>1$. Suppose there exist domains Ω, U and a mapping h_{0} such that
(1) $0 \in \partial \Omega, \Omega \subset \lambda \Omega \subset \mathbb{C}, 0 \in \partial U, U \subset \rho U \subset \mathbb{C}, \bigcup_{n=0}^{\infty} \rho^{n} U=\Pi$;
(2) $h_{0}: \rho U \rightarrow \lambda \Omega$ is a K-quasi-conformal homeomorphism [5] which conjugates $\left.f_{\lambda}\right|_{\Omega}$ and $\left.\varphi_{\rho}\right|_{U}$:

$$
\begin{equation*}
\lambda h_{0}(\omega)=h_{0}(\rho \omega), \quad \omega \in U . \tag{2.1}
\end{equation*}
$$

We shall prove the following basic
Theorem 2. (a) We have

$$
\begin{equation*}
|\ln \lambda|^{2} / \ln |\lambda| \leq 2 \alpha^{*} K \ln \rho, \tag{2.2}
\end{equation*}
$$

where

$$
\alpha^{*}=\lim _{\delta \rightarrow 0} \frac{1}{2 \pi \ln (r / \delta)} \iint_{\Omega \cap C(\delta, r)}|z|^{-2} d x d y, \quad z=x+i y, r>0
$$

(b) equality is achieved in (2.2) if and only if

$$
h_{0}(\omega)=\xi \omega^{\eta} \bar{\omega}^{\kappa}, \quad \xi, \eta, \kappa \in \mathbb{C}, \kappa=t \eta, t \in[0,1)
$$

under this condition the boundary of the domain

$$
\Omega^{*}=\bigcup_{n=0}^{\infty} \lambda^{n} \cdot \Omega
$$

is limited by either rays (if $\lambda>0$), or logarithmical spirals.
Remark 1. The number α^{*} equals the density of the domain Ω at 0 in the logarithmic metric $|d z| /|z|$.

We now formulate a generalization of Theorem 1 . Let $f: A \rightarrow \mathbb{C}$ be a map conformal in a neighbourhood A of 0 , and let $f(0)=0, f^{\prime}(0)=\lambda$,
$|\lambda|>1$. Suppose there exist finitely many pairwise disjoint domains Ω_{i} and mappings $h_{i}, i=1, \ldots, p$, such that
(1) $0 \in \partial \Omega_{i}, \Omega_{i} \subset f\left(\Omega_{i}\right) \subset A$;
(2') for every i there exist $\varepsilon_{i}>0, K_{i} \geq 1$ and $\rho_{i}>1$ for which h_{i} : $D\left(\rho_{i} \varepsilon_{i}\right) \rightarrow f\left(\Omega_{i}\right)$ is K_{i}-quasi-conformal with

$$
f\left(h_{i}(\omega)\right)=h_{i}\left(\rho_{i} \omega\right), \quad \omega \in D\left(\varepsilon_{i}\right) .
$$

Theorem 3. (a) We have

$$
\begin{equation*}
\sum_{i=1}^{p} \frac{1}{K_{i}} \cdot \frac{1}{\ln \rho_{i}} \leq \frac{2 \underline{\alpha} \ln |\lambda|}{|\ln \lambda|^{2}}, \tag{2.3}
\end{equation*}
$$

where

$$
\underline{\alpha}=\varliminf_{\delta \rightarrow 0} \frac{1}{2 \pi \ln (r / \delta)} \int_{\Omega \cap C(\delta, r)}|z|^{-2} d x d y,
$$

the lower density of $\Omega=\bigcup_{i=1}^{p} \Omega_{i}$ at 0 in the logarithmic metric.
(b) If equality holds in (2.3), then every h_{i} extends continuously to a closed semi-neighbourhood $\overline{D\left(\varepsilon_{i}\right)}$ of $\omega=0$ and transforms the boundary interval to an analytic arc with end at $z=0$.

Remark 2. Theorem 1 follows from Theorem 3 if Schröder's theorem [9] is applied. Then φ_{i} is locally (in neighbourhood of $\omega_{i k}$) conjugate to its derivative $\omega \mapsto \varphi_{i}^{\prime}\left(\omega_{i k}\right) \omega$. Besides, $K_{i}=1$.

Corollary. Equality is achieved in the left inequality of (1.4) if and only if the Julia set of f is either a circle or a segment and a is any fixed point of f.

The proofs are given in $\S \S 3,4$. Hyperbolic sets are introduced in $\S 5$. The results of $\S \S 3-5$ are applied in $\S 6$ for estimation of eigenvalues of polynomials and polynomial-like mappings periodic points. The paper is ended by some comments and open problems.

§3. Proof of Theorem 2

3.1. The mapping h_{0} may be extended to a mapping h of the half-plane Π with the property (2.1). The extension is given by

$$
h\left(\rho^{n} \omega\right)=\lambda^{n} h_{0}(\omega), \quad n=0,1, \ldots ; \omega \in U
$$

We get a K-quasi-conformal homeomorphism $h: \Pi \rightarrow \Omega^{*}$, where

$$
\Omega^{*}=h(\Pi)=\bigcup_{k=0}^{\infty} \lambda^{k} \cdot \Omega, \quad \lambda h(\omega)=h(\rho \omega), \quad \omega \in \Pi .
$$

3.2. For every ray

$$
\alpha_{\varphi}=\{\omega \in \Pi \mid \arg \omega=\varphi\}, \quad 0<\varphi<\pi
$$

we have

$$
\lim _{\omega \rightarrow 0} h(\omega)=0, \quad \lim _{\omega \rightarrow \infty} h(\omega)=\infty
$$

if $\omega \in \alpha_{\varphi}$.
3.3. Now we fix the boundary circle S_{r} of a ball $B(r)$ and consider the curve $\beta_{\varphi_{0}}=h\left(\alpha_{\varphi_{0}}\right)$ with some $\varphi_{0} \in(0, \pi)$. This curve is in Ω^{*} and joins 0 and ∞. There exists an arc $S \subset S_{r} \cap \Omega^{*}$ with ends on $\partial \Omega^{*}$ through which $\beta_{\varphi_{0}}$ leaves the ball $B(r)$. Then any β_{φ} crosses S. Set

$$
l=h^{-1}(S) .
$$

Every ray α_{φ} crosses $l, 0<\varphi<\pi$.
3.4. We now introduce two families of curves $\widetilde{\Gamma}$ and Γ. Consider first the family of all intervals joining points $\omega \in l$ and ω / ρ; then on every ray $\alpha_{\varphi}, 0<\varphi<\pi$, we choose exactly one such interval $\widetilde{\gamma}=\widetilde{\gamma}_{\varphi}$, namely the one closest to zero. We get the family of intervals $\left\{\widetilde{\gamma}_{\varphi}\right\}=\widetilde{\Gamma}$. It fills in some set $R \subset \Pi$.

The family Γ is the family of images $\gamma=h(\widetilde{\gamma}), \widetilde{\gamma} \in \widetilde{\Gamma}$; every curve $\gamma \in \Gamma$ joins a point $z \in S$ and z / λ. The family Γ fills in the set $h(R) \subset \Omega^{*}$.

Now introduce the logarithmic metric in $\mathbb{C} \backslash\{0\}$:

$$
\sigma(z)=1 /|z|, \quad z \neq 0
$$

and the induced metric in Π :

$$
\tilde{\sigma}(\omega)=\left.\frac{\sigma(z)}{\left|\left(h^{-1}\right)_{z}^{\prime}\right|-\left|\left(h^{-1}\right)_{\bar{z}}^{\prime}\right|}\right|_{z=h(\omega)} .
$$

Define (see [1])

$$
\begin{aligned}
L & =\inf _{\gamma \in \Gamma} \int_{\gamma} \sigma(z)|d z|,
\end{aligned} \quad A=\iint_{h(R)} \sigma^{2}(z) d x d y,
$$

$(z=x+i y, \omega=u+i v)$ and, finally,

$$
M=m(\sigma, \Gamma)=A / L^{2}, \quad \widetilde{M}=m(\widetilde{\sigma}, \widetilde{\Gamma})=\widetilde{A} / \widetilde{L}^{2}
$$

3.5. We prove that

$$
\begin{equation*}
M \geq \widetilde{M} / K \tag{3.1}
\end{equation*}
$$

(this is a general fact, see [1]). Let $\gamma=h(\widetilde{\gamma}), \widetilde{\gamma} \in \widetilde{\Gamma}$. Then

$$
\begin{equation*}
\int_{\tilde{\gamma}} \widetilde{\sigma}(\omega)|d \omega| \geq \int_{\gamma} \sigma(z)|d z|, \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\iint_{R} \tilde{\sigma}^{2}(\omega) d u d v \leq K \iint_{h(R)} \sigma^{2}(z) d x d y \tag{3.3}
\end{equation*}
$$

and (3.1) follows.
3.6. We estimate \widetilde{M} from below. For every $\widetilde{\gamma}_{\varphi} \in \widetilde{\Gamma}$ we have

$$
\begin{equation*}
\widetilde{L}^{2} \leq\left(\int_{\tilde{\gamma}_{\varphi}} \widetilde{\sigma}|d \omega|\right)^{2} \leq \int_{\tilde{\gamma}_{\varphi}} \widetilde{\sigma}^{2} \cdot|\omega||d \omega| \cdot \int_{\tilde{\gamma}_{\varphi}}\left|\frac{d \omega}{\omega}\right| \tag{3.4}
\end{equation*}
$$

But

$$
\int_{\tilde{\gamma}_{\varphi}}\left|\frac{d \omega}{\omega}\right|=\ln \rho
$$

therefore

$$
\pi \widetilde{L}^{2} \leq \ln \rho \cdot \int_{0}^{\pi} d \varphi \int_{\tilde{\gamma}_{\varphi}} \widetilde{\sigma}^{2}\left(r e^{i \varphi}\right) r d r=\ln \rho \cdot \iint_{R} \widetilde{\sigma}^{2} d u d v=\ln \rho \cdot \widetilde{A}
$$

Thus,

$$
\begin{equation*}
\widetilde{M} \geq \pi / \ln \rho \tag{3.5}
\end{equation*}
$$

3.7. Now we estimate M from above. Firstly,

$$
\begin{equation*}
\int_{\gamma} \sigma(z)|d z| \geq\left|\int_{\gamma} \frac{d z}{z}\right|=|\ln \lambda|, \quad \gamma \in \Gamma \tag{3.6}
\end{equation*}
$$

Secondly, consider

$$
A=\iint_{h(R)} \frac{d x d y}{|z|^{2}}
$$

Let $z \in h(R)$ and suppose $z, z_{1}=\lambda z$ and $z_{2}=z / \lambda$ are not endpoints of any curve $\gamma \in \Gamma$. It follows from the definition of the family $\widetilde{\Gamma}$ that $z_{1}, z_{2} \notin h(R)$.

Denote the area of a set $V \subset \mathbb{C} \backslash\{0\}$ in the logarithmic metric by

$$
I(V)=\iint_{V} \frac{d x d y}{|z|^{2}}
$$

For example, $A=I(h(R))$. Obviously,

$$
\begin{equation*}
I(V)=I(\lambda V) \tag{3.7}
\end{equation*}
$$

Now, if z belongs to $h(R)$, but not to the annulus

$$
C=C(r /|\lambda|, r)=\{z: r /|\lambda|<|z|<r\}
$$

then we transform z into C by the mapping $z \mapsto \lambda^{k} z$ with some $k=$ $\pm 1, \pm 2, \ldots$ By the above,

$$
A=I(h(R)) \leq I\left(\Omega^{*} \cap C\right)
$$

We now show that

$$
\frac{I\left(\Omega^{*} \cap C\right)}{2 \pi \ln |\lambda|}=\alpha^{*}=\lim _{\delta \rightarrow 0} \frac{I(\Omega \cap C(\delta, r))}{I(C(\delta, r))}
$$

Indeed, this follows from (3.7):

$$
\begin{aligned}
I\left(\Omega^{*} \cap C\right) & =\lim _{k \rightarrow \infty} I\left(C \cap \lambda^{k} \Omega\right)=\lim _{k \rightarrow \infty} I\left(C\left(r|\lambda|^{-k-1}, r|\lambda|^{-k}\right) \cap \Omega\right) \\
& =\lim _{k \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} I\left(C\left(r|\lambda|^{-k-1}, r|\lambda|^{-k}\right) \cap \Omega\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} I\left(C\left(r|\lambda|^{-n}, r\right) \cap \Omega\right)
\end{aligned}
$$

where the existence of each subsequent limit follows from the existence of the preceding one.

Hence the following limit exists:

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \frac{1}{\ln (r / \delta)} I(C(\delta, r) \cap \Omega)=\frac{I\left(\Omega^{*} \cap C\right)}{\ln |\lambda|}=2 \pi \alpha^{*} \tag{3.8}
\end{equation*}
$$

Thus, we have proved that

$$
M \leq \frac{2 \pi \alpha^{*} \ln |\lambda|}{|\ln \lambda|^{2}}
$$

and, finally,

$$
\frac{1}{K} \cdot \frac{\pi}{\ln \rho} \leq \frac{1}{K} \widetilde{M} \leq M \leq \frac{2 \pi \alpha^{*} \ln |\lambda|}{|\ln \lambda|^{2}}
$$

Part (a) of Theorem 2 is proved.
We proceed to prove (b). Suppose equality holds in (2.2). From (3.2) we obtain $L=\widetilde{L}$. Therefore we have equality in (3.5) and in Schwarz's inequality (3.4) (for almost every $\varphi \in(0, \pi)$). Hence

$$
\begin{equation*}
\widetilde{\sigma}(\omega)=\frac{\text { const }}{|\omega|} \tag{3.9}
\end{equation*}
$$

almost everywhere on $\widetilde{\gamma}_{\varphi}$.
Now (3.2) may be rewritten as

$$
\text { const } \cdot \ln \rho \geq \int_{\gamma} \sigma(z)|d z| \geq|\ln \lambda|
$$

From $L=\widetilde{L}$ it follows that

$$
\text { const } \cdot \ln \rho=\int_{\gamma}\left|\frac{d z}{z}\right|=|\ln \lambda|
$$

almost everywhere in φ. So, γ is a geodesic in the metric $|d z| /|z|$. Hence

$$
h(\omega)=\xi \cdot \omega^{\eta} \bar{\omega}^{\kappa} .
$$

The conditions on η and κ are verified by calculations. Theorem 2 is proved.
At the same time we have proved
Lemma 1. If a domain Ω is such that $0 \in \partial \Omega, \Omega \subset \lambda \Omega,|\lambda|>1$, then:
(a) the limit

$$
\alpha=\lim _{\delta \rightarrow 0} \frac{I(\Omega \cap C(\delta, r))}{I(C(\delta, r))}, \quad r>0
$$

exists;
(b) α is a conformal invariant, that is, for every mapping ψ conformal in a neighbourhood V of 0 and such that $\psi(0)=0$,

$$
\alpha=\lim _{\delta \rightarrow 0} \frac{I(\psi(V \cap \Omega) \cap C(\delta, r))}{I(C(\delta, r))} .
$$

§4. Proof of Theorem 3. By Schröder's theorem [9] (applied to the branch of f^{-1} with $f^{-1}(0)=0$), there exists a conformal isomorphism $g: B(|\lambda| \tau) \rightarrow A_{0}$ from some ball $B(|\lambda| \tau)$ to a neighbourhood $A_{0} \subset A$ of zero such that $g(\lambda z)=f(g(z)), z \in B(\tau)$.

Let $\Pi_{t}=\{\omega: \arg \omega \in(t, \pi-t)\}$. For $t \in(0,1 / 2)$, the restriction of h_{i} to Π_{t} is continuous up to the point $\omega=0$. Hence for every i and t there exists $\varepsilon=\varepsilon(i, t)$ such that for $U_{i, t}=D(\varepsilon) \cap \Pi_{t}$ we have

$$
V_{i, t}=h_{i}\left(U_{i, t}\right) \subset A_{0} .
$$

We may assume that $\varepsilon\left(i, t_{1}\right)<\varepsilon\left(i, t_{2}\right)$ if $0<t_{1}<t_{2}<1 / 2$. Set

$$
\begin{gathered}
U_{i}=\bigcup_{t} U_{i, t}, \quad V_{i}=\bigcup_{t} V_{i, t} \subset A_{0} \cap \Omega_{i} \\
\widetilde{\Omega}_{i}=g^{-1}\left(V_{i}\right), \quad V=\bigcup_{i} V_{i} \subset A_{0} \cap \Omega, \quad \widetilde{\Omega}=\bigcup_{i} \widetilde{\Omega}_{i} .
\end{gathered}
$$

Then $\bigcup_{k=0}^{\infty} \rho_{i}^{k} U_{i}=\Pi, i=1, \ldots, p$. We now apply Theorem 2 and Lemma 1 to get

$$
\sum_{i=1}^{p} \frac{1}{K_{i}} \cdot \frac{1}{\ln \rho_{i}} \leq \frac{2 \alpha \ln |\lambda|}{|\ln \lambda|^{2}} \leq \frac{2 \underline{\alpha} \ln |\lambda|}{|\ln \lambda|^{2}},
$$

where

$$
\alpha=\lim _{\delta \rightarrow 0} \frac{I(V \cap C(\delta, r))}{I(C(\delta, r))} \leq \varliminf_{\delta \rightarrow 0} \frac{I(\Omega \cap C(\delta, r))}{I(C(\delta, r))}=\underline{\alpha} .
$$

Part (a) is thus proved; (b) follows from Theorem 2(b).
Proof of the Corollary. We apply Theorem 3(b) and the following theorem of Fatou [5]: if the Julia set J of a rational function contains an analytic arc, then J is a circle or a segment. Equality in (1.4) is checked up directly.
§5. Hyperbolic sets. Call a domain $\Omega \subset \mathbb{C}$ hyperbolic with (hyperbolicity) constant $\alpha, 0<\alpha<1$, if there exists $\varepsilon>0$ such that for any ball $B_{z}(r)$ with centre at $z \in \partial \Omega$ and radius $r<\varepsilon$

$$
\begin{equation*}
\frac{l_{2}\left(B_{z}(r) \cap \Omega\right)}{l_{2}\left(B_{z}(r)\right)} \leq \alpha \tag{5.1}
\end{equation*}
$$

(l_{2} is the two-dimensional Lebesgue measure on \mathbb{C}).
Example. Let Ω be the simply connected basin of attraction of an attracting fixed point $\xi \in \overline{\mathbb{C}}$ of a rational function f (more generally: Ω and f are the RB-domain and the mapping, introduced in [8]). Let $f: \partial \Omega \rightarrow \partial \Omega$ be an expanding mapping [7], that is, there exist $K>1, n \in \mathbb{N}$ such that $\left|\left(f^{n}\right)^{\prime}\right|>K$ on $\partial \Omega$. Then Ω satisfies (5.1) (see [7]).

Let $C_{a}\left(r_{1}, r_{2}\right)=\left\{z: r_{1}<|z-a|<r_{2}\right\}$.
Lemma 2. If Ω is a hyperbolic domain with constant α, then for any $a \in \partial \Omega$ and any $r>0$

$$
\varliminf_{\delta \rightarrow 0} \frac{1}{2 \pi \ln (r / \delta)} I\left(C_{a}(\delta, r) \cap \Omega\right) \leq \alpha
$$

Proof. Fix any $\alpha_{1}>\alpha$ and choose $m \in(0,1)$ so that

$$
\alpha_{1}=\frac{\alpha}{1-m^{2}} .
$$

Then for any $a \in \partial \Omega$ and $u<\varepsilon$

$$
\frac{l_{2}\left(C_{a}(m u, u) \cap \Omega\right)}{l_{2}\left(C_{a}(m u, u)\right)} \leq \frac{l_{2}\left(B_{a}(u) \cap \Omega\right)}{\left(1-m^{2}\right) l_{2}\left(B_{a}(u)\right)} \leq \alpha_{1}
$$

or

$$
\int_{m u}^{u} l(\tau) d \tau \leq \alpha_{1} \int_{m u}^{u} 2 \pi \tau d \tau, \quad u \in(0, \varepsilon) .
$$

Here $l(\tau)$ is the Euclidean length of that part of the circumference $|z-a|=\tau$ which lies in Ω. We substitute $\tau=u t, t \in(m, 1)$, divide the last inequality by u^{3} and integrate over u from δ to r. We obtain

$$
\int_{m}^{1} d t \int_{\delta}^{r} \frac{l(u t)}{u^{2}} d u \leq 2 \pi \alpha_{1} \ln \frac{r}{\delta} \int_{m}^{1} t d t
$$

or

$$
\begin{equation*}
\int_{m}^{1} t d t \frac{1}{\ln \frac{r t}{\delta t}} \int_{\delta t}^{r t} \frac{l(\tau)}{\tau^{2}} d t \leq 2 \pi \alpha_{1} \int_{m}^{1} t d t \tag{5.2}
\end{equation*}
$$

Now define

$$
\varliminf_{\delta \rightarrow 0} \frac{1}{\ln \frac{r t}{\delta t}} \int_{\delta t}^{r t} \frac{l(\tau)}{\tau^{2}} d \tau \equiv A \leq 2 \pi
$$

A does not depend on t; from (5.2), $A \leq 2 \pi \alpha_{1}, \forall \alpha_{1}>\alpha$. Thus, $A \leq 2 \pi \alpha$.
Notice that

$$
\int_{\delta}^{r} \frac{l(\tau)}{\tau^{2}} d \tau=\int_{C_{a}(\delta, r) \cap \Omega} \frac{d x d y}{|z|^{2}}=I\left(C_{a}(\delta, r) \cap \Omega\right)
$$

§6. Applications. Let us write down the obtained results for polyno-mial-like mappings [8]. First, let P be a polynomial of degree $m \geq 2$ and suppose its Julia set $J(P)$ is connected. This is equivalent to the basin of attraction of infinity

$$
D_{\infty}=\left\{z: P^{n} z \rightarrow \infty, n \rightarrow \infty\right\}, \quad P^{n}=\underbrace{P \circ \ldots \circ P}_{n},
$$

being simply connected in the Riemann sphere $\overline{\mathbb{C}}$. There exists an analytic homeomorphism

$$
H_{0}: B(1)=\{z:|z|<1\} \rightarrow D_{\infty}, \quad H_{0}(0)=\infty
$$

The mapping H_{0} transforms $P: D_{\infty} \rightarrow D_{\infty}$ into $P_{0}: B(1) \rightarrow B(1), P_{0}(\omega)=$ ω^{m} :

$$
P \circ H_{0}=H_{0} \circ P_{0} .
$$

Let $z_{0} \in J(P)$ be a repulsive periodic point of P. Then z_{0} can be reached by a curve from D_{∞} and there exist a finite number r of radial directions in $B(1)$ on which $H_{0}(\omega) \rightarrow z_{0}(|\omega| \rightarrow 1)$ [2], [3].

Now consider a polynomial-like mapping $T: W \rightarrow W^{\prime}$. This means that W, W^{\prime} are simply connected domains, $\bar{W} \subset W^{\prime}$ and $T: W \rightarrow W^{\prime}$ is a proper holomorphic mapping of degree $m, m \geq 2$. The term "polynomial-like" is accounted for by Douady-Hubbard's theorem [2]: there exist a polynomial P of degree m and a quasi-conformal homeomorphism H_{1} of some neighbourhood V of

$$
F(P)=\left\{z: \sup _{n}\left|P^{n} z\right|<\infty\right\}=\mathbb{C} \backslash D_{\infty}
$$

onto some neighbourhood U of

$$
F(T)=\left\{z \in W: T^{n} z \in W, \forall n \in \mathbb{N}\right\}
$$

such that $T \circ H_{1}(z)=H_{1} \circ P(z)$ if $P(z) \in V$.
Denote the maximal dilation of the quasi-conformal mapping $H_{1}: V \rightarrow$ U by K. Let $J(T)=\partial F(T)$.

Assume that the set $J(T)$ is connected and let $a \in J(T)$ be a repulsive periodic point of T with period n and eigenvalue

$$
\lambda=\left(T^{n}\right)^{\prime}(a) .
$$

Then we define $r=r(a)$ to be the (finite) number of radial directions in $B(1)$ on which $H_{1} \circ H_{0}(\omega) \rightarrow a$. Theorem 3 and Lemma 2 yield

Theorem 4.

(a) $\left(^{1}\right) \frac{\left|\ln \lambda^{l}\right|^{2}}{\ln \left|\lambda^{l}\right|} \leq \frac{2 K n \ln m^{l}}{r}$ for some $l \in \mathbb{N}$;
(b) if every critical point of T is attracted by an attractive periodic cycle, then there exists $\alpha, 0<\alpha<1$, such that for any repulsive periodic point of T with eigenvalue λ,

$$
\frac{\left|\ln \lambda^{l}\right|^{2}}{\ln \left|\lambda^{l}\right|} \leq \frac{2 K \alpha n \ln m^{l}}{r} \quad \text { for some } l \in \mathbb{N} .
$$

Proof. (a) This follows from the fact that the eigenvalue ρ of any repulsive periodic point ω_{0} with period N for the mapping $P_{0}: \omega \mapsto \omega^{m}$ is $\rho=m^{N}$.
(b) is a consequence of the fact that the domain $\Omega=W^{\prime} \backslash W$ is hyperbolic under the condition of (b) (see example in $\S 5$ and [7]).
§ 7. Comments and open problems. The inequality

$$
\begin{equation*}
\frac{1}{n} \ln |\lambda| \leq 2 \ln m \tag{7.1}
\end{equation*}
$$

for the eigenvalue λ of a periodic point of period n of a polynomial P ($\operatorname{deg} P=m$) with connected Julia set follows from Theorem 4. It may also be proved by the methods of entire function theory [3]. Rewrite it as

$$
\begin{equation*}
\chi_{n} \leq 2 \chi(P) \tag{7.2}
\end{equation*}
$$

where $\chi_{n}=(1 / n) \ln |\lambda|$ is the characteristic exponent of the periodic point and

$$
\chi(P)=\int \ln \left|P^{\prime}(z)\right| d \mu(z)
$$

is the characteristic exponent of the dynamical system $P: J \rightarrow J$ related to the measure of maximal entropy or, equivalently,

$$
\chi(P)=\lim _{k \rightarrow \infty} \bar{\chi}_{k}
$$

where $\bar{\chi}_{k}$ is the arithmetic mean of χ_{k} over all repulsive periodic points of period k.

[^0]Question: does inequality (7.2) remain true for polynomials with disconnected Julia set? and for rational functions $R(\operatorname{deg} R \geq 2)$?

If $P(z)=z^{m}+c$, then (7.2) is true for every $c \in \mathbb{C}$.
ANOTHER PROBLEM: find the infimum x_{*} of x such that the inequality $\chi_{n} \leq x \ln m$ is valid for all periodic points of a given polynomial. We have proved that $x_{*} \leq 2$, and if $P: J \rightarrow J$ is expanding that $x_{*}<2(J(P)$ is connected). As shown in [3], either $x_{*}>1$ or P is equivalent to z^{m}.

REFERENCES

[1] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1966.
[2] A. Douady, Systèmes dynamiques holomorphes, in: Séminaire Bourbaki, 35^{e} année, 1982, No. 599.
[3] A. È. Eremenko and G. M. Levin, On periodic points of polynomials, Ukrain. Mat. Zh. 41 (1989), 1467-1471.
[4] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271.
[5] -, Sur les équations fonctionnelles, ibid. 48 (1920), 33-94, 208-314.
[6] G. Julia, Mémoire sur l'itération des fonctions rationnelles, J. Math. Pures Appl. 8 (1918), 47-245.
[7] Ch. Pommerenke, On conformal mapping and iteration of rational functions, Complex Variables 5 (2-4) (1986), 117-126.
[8] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Ann. of Math. 130 (1989), 1-40.
[9] M. Schröder, Über unendlich-viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870), 317-365.
[10] J. C. Yoccoz, Sur la taille des membres de l'ensemble de Mandelbrot, manuscript, 1987.

INSTITUTE OF MATHEMATICS
HEBREW UNIVERSITY OF JERUSALEM
GIVAT RAM
JERUSALEM 91904, ISRAEL

[^0]: $\left({ }^{1}\right)$ I was informed by the referee that the similar result was proved by Yoccoz [10] for polynomials.

