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ON A PROBLEM OF FELL AND DORAN

BY

WIES LAW Ż E L A Z K O (WARSZAWA)

Let X be a real or complex topological vector space. Denote by L(X)
the algebra of all continuous endomorphisms of X. Let A be an algebra
over the same field of scalars as X. A topological vector space representation
(shortly: a t.v.s.-representation) of A on X is a homomorphism T of A
into L(X). Denote by Ta the operator in L(X) which is the value of T
at an element a in A. A t.v.s.-representation T of A on X is said to be
irreducible if every element x in X, x 6= 0, is cyclic for T , i.e. the orbit
O(T ;x) = {Tax ∈ X : a ∈ A} is dense in X. In other words, T is irreducible
if there is no closed proper subspace X0 ⊂ X (i.e. {0} 6= X0 6= X) which
is invariant for all operators Ta, a ∈ A. For given T denote by T (k) the
t.v.s.-representation of A on Xk—the k-fold direct sum of X—given by

T (k)
a (x1, . . . , xk) = (Tax1, . . . , Taxk), a ∈ A .

A t.v.s.-representation T of A on X is said to be totally irreducible if each
vector (x1, . . . , xk) in Xk with linearly independent coordinates is cyclic for
T (k) for k = 1, 2, . . .

Thus T is totally irreducible if and only if for each positive integer k
and k-tuple (x1, . . . , xk) of linearly independent elements of X the multiple
orbit

(1) O(T ;x1, . . . , xk) = {(Tax1, . . . , Taxk) ∈ Xk : a ∈ A}

is dense in Xk endowed with the cartesian product topology. Let T and
S be two t.v.s.-representations of A respectively on X and Y . Let R be a
linear densely defined operator from X into Y with domain DR. It is said
to be intertwining between T and S, or (T, S)-intertwining , if TaDR ⊂ DR

for all a in A and

(2) RTax = SaRx

for all x in DR and all a in A. We do not assume the continuity of R. If R
is continuous, we can extend it by continuity onto the whole of X, and since
relations (2) will be satisfied for all x in X, by continuity of the involved
operators, we can assume in this case DR = X.



32 W. ŻELAZKO

In ([1], problem II, p. 321) Fell and Doran ask whether an irreducible lo-
cally convex representation of an algebra A on X (i.e. a t.v.s.-representation
on X which is a locally convex space), such that the only continuous (T, T )-
intertwining operators are scalar multiples of the identity, is necessarily to-
tally irreducible. In this paper we give necessary and sufficient conditions
in order that the answer to this question be in the affirmative. Our main
result reads as follows.

Theorem 1. Let X be a real or complex topological vector space and
let T be an irreducible t.v.s.-representation of an algebra A on X for which
the only continuous (T, T )-intertwining operators are scalar multiples of the
identity. Then T is totally irreducible if and only if all closed (T, T (k))-
intertwining operators are continuous for all positive integers k.

In the above we say, as usual, that a densely defined operator R from X
into Y is closed if its graph

ΓR = {(x,Rx) ∈ X × Y : x ∈ DR}

is a closed subset in X × Y .
This theorem is a corollary to the following more technical result. To

formulate it we need the following

Definition. Let R be a densely defined operator from X into Xn, for
some positive integer n. We say that R is a scalar operator if there are
scalars λ1, . . . , λn such that

(3) Rx = (λ1x, . . . , λnx) , x ∈ DR .

Theorem 2. Let X be a real or complex topological vector space and
let A be an algebra over the same field of scalars as X. Let T be an irre-
ducible t.v.s.-representation of A on X. Then T is totally irreducible if and
only if all closed (T, T (k))-intertwining operators are scalar for all positive
integers k.

P r o o f. Suppose that there is a positive integer k such that some
closed (T, T (k))-intertwining operator R is non-scalar. Its graph ΓR is a
proper closed subspace of Xk+1. Since R is non-scalar, there is an element
(z0, . . . , zk) in ΓR, with z0 ∈ DR, (z1, . . . , zk) = Rz0 and with

(4) dim span{z0, . . . , zk} = n + 1 > 1 .

Relation (2) with S = T (k) implies

RTaz0 = T (k)
a (z1, . . . , zk) = (Taz1, . . . , Tazk) ,

and since Taz0 ∈ DR for all a, it follows that

{(Taz0, . . . , Tazk) ∈ Xk+1 : a ∈ A} ⊂ ΓR .
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By (4) we can choose i1, . . . , in so that the elements z0, zi1 , . . . , zin are lin-
early independent and put

Q = {(Taz0, Tazi1 , . . . , Tazin) ∈ Xn+1 : a ∈ A} .

We claim that the closure Q of Q in Xn+1 is a proper closed subspace in
this space. In fact, by irreducibility of T we have Q 6= (0). If Q coincides
with Xn+1 we can choose there an element of the form (0, yi1 , . . . , yin) with
yin 6= 0. Since, by (4), zj = α0z0 +

∑n
s=1 αj

szis for j 6= 0, i1, . . . , in, 0 < j ≤
k, the element (0, y1, . . . , yk) is in ΓR, where

yj =
n∑

s=1

αj
syis , 0 < j ≤ k , j 6= i1, . . . , in .

But this is absurd, since yin 6= 0 and ΓR is the graph of an operator. Thus
Q 6= Xn+1. Since the closure of the orbit O(T ; z0, zi1 , . . . , zin

) is contained
in Q, the vector (z0, zi1 , . . . , zin

) is non-cyclic for T (n). Since the coordinates
z0, zi1 , . . . , zin are linearly independent the representation T is not totally
irreducible.

Suppose now that each closed (T, T (k))-intertwining operator is scalar for
k = 1, 2, . . . We have to show that for each positive integer k and each k-tuple
(x1, . . . , xk) of linearly independent elements of X the orbit (1) is dense in
Xk. We shall prove this by induction on k. For k = 1 it follows immediately
from the definition of an irreducible t.v.s.-representation. Suppose now that
for every k ≤ n and every k-tuple x1, . . . , xk of linearly independent elements
of X the orbit (1) is dense in Xk. We have to show that for any linearly in-
dependent elements x1, . . . , xn+1 in X the orbit O(T ;x1, . . . , xn+1) is dense
in Xn+1. Let O = O(T ;x1, . . . , xn+1) be the closure of this orbit in Xn+1.

In the first step we shall show that O = Xn+1 if and only if there is
(z1, . . . , zn+1) ∈ O such that zi0 6= 0 for some i0, 1 ≤ i0 ≤ n + 1, and zi = 0
for i 6= i0. One of the implications is trivial. So suppose that we have such
an element (z1, . . . , zn+1) in O. First we show that for every y in X the
element (y1, . . . , yn+1) is in O, where yi0 = y and yi = 0 for i 6= i0.

The relation T
(n+1)
a O(T ;x1, . . . , xn+1) ⊂ O(T ;x1, . . . , xn+1) implies

T
(n+1)
a O ⊂ O, for all a in A, by the continuity of the operators T

(n+1)
a .

This implies O(T ; z1, . . . , zn+1) ⊂ O and since by the irreducibility of T we
have (y1, . . . , yn+1) ⊂ O(T ; z1, . . . , zn+1), we obtain (y1, . . . , yn+1) ∈ O. To
conclude the first step it is sufficient to show that for any j, 1 ≤ j ≤ n + 1,
there is an element (y1, . . . , yn+1) in O with yi = 0 for i 6= j and yj = y,
an arbitrarily given element in X. Summing such elements over j we can
obtain an arbitrary element in Xn+1. For j = i0 we are already done, so
suppose j 6= i0. Denote by Φ(X) a basis of neighbourhoods of the origin in
X. Fix y in X and U in Φ(X) and take a V in Φ(X) with V + V ⊂ U . By
the inductive assumption the orbit O(T ;u1, . . . , un) is dense in Xn, where
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u1, . . . , un are the elements x1, . . . , xi0−1, xi0+1, . . . , xn+1. Thus there is an
a(V ) in A such that

(5) Ta(V )xj ∈ y + V , Ta(V )xi ∈ V for i0 6= i 6= j .

Since for j = i0 we are already done, we can find an element b(V ) in A such
that

(6) Tb(V )xi0 ∈ −Ta(V )xi0 + V , Tb(V )xi ∈ V for i 6= i0 , 1 ≤ i ≤ n + 1 .

Adding coordinatewise (5) and (6) and using the first relation in (6) we
obtain

Ta(V )+b(V )xi ∈ V + V ⊂ U for i0 6= i 6= j ,

Ta(V )+b(V )xi0 ∈ V ⊂ V + V ⊂ U ,

Ta(V )+b(V )xj ∈ y + V + V ⊂ y + U .

Since U was chosen arbitrarily in Φ(X) , we have (y1, . . . , yn) ∈ O, where
yi = 0 for i 6= j, 1 ≤ i ≤ n + 1, and yj = y. The proof of the first step is
complete.

Consider now two mutually excluding cases:

(a1) No non-zero element (z1, . . . , zn+1) in O has a zero coordinate.
(a2) There is a non-zero (n + 1)-tuple (z1, . . . , zn+1) in O with some

coordinate zi0 , 1 ≤ i0 ≤ n + 1, equal to zero.

In the case (a1) the linear space O is the graph of the closed operator R
from X to Xn given by

(7) Rz1 = (z2, . . . , zn+1) , (z1, . . . , zn+1) ∈ O .

It is a well defined operator on its domain DR, which is the projection of
O onto the first coordinate space. Thus DR is a dense subset of X, since
it contains the orbit O(T ;x1). We claim that R is a (T, T (n))-intertwining
operator. To see this, we use the inclusions

(8) T (n+1)
a O ⊂ O ,

for all a in A, obtained in the first step of our proof. They imply TaDR ⊂ DR

for all a in A. Moreover, by (7) and (8) we have

RTaz1 = (Taz2, . . . , Tazn+1) = T (n)
a (z2, . . . , zn+1) = T (n)

a Rz1

for all a in A and all z1 in DR. Our claim is proved.
Since R is a closed (T, T (n))-intertwining operator, it is scalar. So,

for example, z2 = λz1 for some scalar λ and this holds for all elements
(z1, z2, . . . , zn+1) in O. In particular, we have Tax2 = λTax1, or Ta(x2 −
λx1) = 0 for all a in A. This contradicts the irreducibility of T , since
x2 − λx1 is a non-zero element in X. Thus we must have the case (a2). In
this case there are elements in O having some, but not all, coordinates equal
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to zero. Among them there must exist elements with the maximal number,
say s, of zero coordinates in the sense that if some (z1, . . . , zn+1) in O has
more than s coordinates equal to zero, then all of them are zeroes. Fix such
an element (z0

1 , . . . , z0
n+1). After a suitable renumbering of x1, . . . , xn+1 we

can assume z0
1 = . . . = z0

s = 0, and all other coordinates z0
s+1, . . . , z

0
n+1 are

different from zero. We have s ≤ n, if s = n we are done by the first step of
the proof. So assume 1 ≤ s < n and consider two cases

(b1) dim span(z0
s+1, . . . , z

0
n+1) = k > 1, and

(b2) dim span(z0
s+1, . . . , z

0
n+1) = 1.

In the case (b1) we fix k linearly independent elements z0
i1

, . . . , z0
ik

, s <
il ≤ n + 1. We have

(9) z0
i =

k∑
l=1

αi
lz

0
il

for s < i ≤ n + 1 ,

where αi
l are suitable scalars. We have k ≤ n, and so by the inductive

assumption the orbit O(T ; z0
i1

, . . . , z0
ik

) is dense in Xk. Thus for an arbitrary
y 6= 0 in X and an arbitrary neighbourhood U in Φ(X) we can choose a V
in Φ(X) so that V + V ⊂ U and choose an element a(U) in A so that

(10) Ta(V )z
0
il
∈ V for 1 ≤ l < k , Ta(V )z

0
ik
∈ y + V .

By the continuity of Ta(V ) we can find another neighbourhood V1 in
Φ(X) so that

Ta(V )V1 ⊂ V , V1 ⊂ V ,
(11) k−1∑

l=1

αi
lV1 ⊂ V for all i with s < i ≤ n + 1 ,

where αi
l are the coefficients in formula (9). Because (z0

1 , . . . , z0
n+1) is in O,

there is a b(V1) in A such that

Tb(V1)xi ∈ z0
i + V1 , i = 1, . . . , n + 1 .

Thus by (10) and (11) we obtain

(12) Ta(V )b(V1)xi ∈ Ta(V )(z0
i + V1)

⊂


V + V ⊂ U for i = 1, . . . , s, i1, . . . , ik−1,
y + V + V ⊂ y + U for i = ik,
αi

ky + V + V ⊂ αi
ky + U for i 6= 1, . . . , s, i1, . . . , ik.

Since U was arbitrarily chosen, we see from (12) that (y1, . . . , yn+1) is in O,
where y1 = · · · = ys = yi1 = . . . = yik−1 = 0 and yik

= y while yi = αi
ky for

i 6= 1, . . . , s, i1, . . . , ik. Since k ≥ 2 and y 6= 0 we have obtained a non-zero
element in O which has more than s zero coordinates. This contradicts the
definition of s, and thus the case (b1) cannot occur.
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We then have the case (b2) and the element (z0
1 , . . . , z0

n+1) has the coor-
dinates z0

1 = . . . = z0
s = 0, z0

i = λiz
0
n+1, s < i ≤ n, z0

n+1 6= 0, and all the
scalars λi are different from zero. Define yi = xi for 1 ≤ i ≤ s and i = n+1,
and yi = xi − λixn+1, s < i ≤ n. Consider the map M of Xn+1 onto itself
given by

M(u1, . . . , un+1) = (u1, . . . , us, us+1 − λs+1un+1, . . . , un − λnun+1, un+1) .

It is a one-to-one continuous map with a continuous inverse. It extends
the map of O(T ;x1, . . . , xn+1) onto O(T ; y1, . . . , yn+1) given by
(Tax1, . . . , Taxn+1) → (Tay1, . . . , Tayn+1). Hence M maps O onto the
closure O1 of O1 = O(T ; y1, . . . , yn+1) in Xn+1. Thus O1 contains
M(z0

1 , . . . , z0
n+1) = (0, . . . , 0, z0

n+1). Since z0
n+1 6= 0 we obtain by the first

step of this proof the equality O1 = Xn+1. Consequently, O = M−1O1 =
Xn+1 and the conclusion follows.

P r o o f o f T h e o r e m 1. If T is totally irreducible, then by Theo-
rem 2 each closed (T, T (k))-intertwining operator is scalar, and so continu-
ous. On the other hand, suppose that each (T, T (k))-intertwining operator
R is continuous. Writing it in the form Rx = (R1x, . . . , Rkx) we see that
all operators Ri are in L(X). We also have

RTax = (R1Tax, . . . , RkTax) = T (k)
a Rx = (TaR1x, . . . , TaRkx) ,

and this holds for all a in A and all x in X. Thus the Ri are continuous
(T, T )-intertwining operators, so by the assumption of Theorem 1 there are
scalars λi with Rix = λix, x ∈ X. This implies that R is scalar and so, by
Theorem 2, T is totally irreducible. The conclusion follows.

We cannot solve the problem of Fell and Doran formulated above even if
X is a Banach space. However, if the answer is in the negative, as some spe-
cialists believe, our Theorem 1 and also Theorem 2 offer an additional condi-
tion under which the answer is affirmative. On the other hand, if the answer
is affirmative, our Theorem 1 offers a way of attacking this problem, since it
reduces it to the more specific investigation of closed (T, T (k))-intertwining
operators.

In [4] we solved the problem in the affirmative for representations of
algebras on completely metrizable topological vector spaces (F -spaces) un-
der the additional assumption that the representations T in question are
algebraically irreducible, i.e. all orbits O(T ;x), x 6= 0, coincide with the
whole of X (in the conclusion we do not have algebraic total irreducibil-
ity but merely total irreducibility). This result can also be obtained as a
corollary to Theorem 1 of the present paper. The results presented here,
though formulated for general topological vector spaces, make unrestricted
sense only for locally convex spaces. This is caused by the fact that for a
topological vector space X the algebra L(X) can be very poor, and there
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are so-called (infinite-dimensional) rigid spaces X (see [2] and [3]) for which
L(X) contains only scalar multiples of the identity operator, so that there
are no t.v.s.-representations on X which are irreducible.

REFERENCES

[1] J. M. G. Fe l l and R. S. Doran, Representations of ∗-Algebras, Locally Compact
Groups, and Banach ∗-Algebraic Bundles, Pure Appl. Math. 125 and 126, Academic
Press, 1988.

[2] N. J. Kalton and J. W. Roberts, A rigid subspace of L0, Trans. Amer. Math. Soc.
266 (1981), 645–654.

[3] L. Waelbroeck, A rigid topological vector space, Studia Math. 59 (1977), 227–234.
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