COLLOQUIUM MATHEMATICUM

ON A PROBLEM OF FELL AND DORAN

WIESŁAW ŻELAZKO (WARSZAWA)
Let X be a real or complex topological vector space. Denote by $L(X)$ the algebra of all continuous endomorphisms of X. Let A be an algebra over the same field of scalars as X. A topological vector space representation (shortly: a t.v.s.-representation) of A on X is a homomorphism T of A into $L(X)$. Denote by T_{a} the operator in $L(X)$ which is the value of T at an element a in A. A t.v.s.-representation T of A on X is said to be irreducible if every element x in $X, x \neq 0$, is cyclic for T, i.e. the orbit $\mathcal{O}(T ; x)=\left\{T_{a} x \in X: a \in A\right\}$ is dense in X. In other words, T is irreducible if there is no closed proper subspace $X_{0} \subset X$ (i.e. $\{0\} \neq X_{0} \neq X$) which is invariant for all operators $T_{a}, a \in A$. For given T denote by $T^{(k)}$ the t.v.s.-representation of A on X^{k} - the k-fold direct sum of X-given by

$$
T_{a}^{(k)}\left(x_{1}, \ldots, x_{k}\right)=\left(T_{a} x_{1}, \ldots, T_{a} x_{k}\right), \quad a \in A
$$

A t.v.s.-representation T of A on X is said to be totally irreducible if each vector $\left(x_{1}, \ldots, x_{k}\right)$ in X^{k} with linearly independent coordinates is cyclic for $T^{(k)}$ for $k=1,2, \ldots$

Thus T is totally irreducible if and only if for each positive integer k and k-tuple $\left(x_{1}, \ldots, x_{k}\right)$ of linearly independent elements of X the multiple orbit

$$
\begin{equation*}
\mathcal{O}\left(T ; x_{1}, \ldots, x_{k}\right)=\left\{\left(T_{a} x_{1}, \ldots, T_{a} x_{k}\right) \in X^{k}: a \in A\right\} \tag{1}
\end{equation*}
$$

is dense in X^{k} endowed with the cartesian product topology. Let T and S be two t.v.s.-representations of A respectively on X and Y. Let R be a linear densely defined operator from X into Y with domain D_{R}. It is said to be intertwining between T and S, or (T, S)-intertwining, if $T_{a} D_{R} \subset D_{R}$ for all a in A and

$$
\begin{equation*}
R T_{a} x=S_{a} R x \tag{2}
\end{equation*}
$$

for all x in D_{R} and all a in A. We do not assume the continuity of R. If R is continuous, we can extend it by continuity onto the whole of X, and since relations (2) will be satisfied for all x in X, by continuity of the involved operators, we can assume in this case $D_{R}=X$.

In ([1], problem II, p. 321) Fell and Doran ask whether an irreducible locally convex representation of an algebra A on X (i.e. a t.v.s.-representation on X which is a locally convex space), such that the only continuous (T, T) intertwining operators are scalar multiples of the identity, is necessarily totally irreducible. In this paper we give necessary and sufficient conditions in order that the answer to this question be in the affirmative. Our main result reads as follows.

Theorem 1. Let X be a real or complex topological vector space and let T be an irreducible t.v.s.-representation of an algebra A on X for which the only continuous (T, T)-intertwining operators are scalar multiples of the identity. Then T is totally irreducible if and only if all closed $\left(T, T^{(k)}\right)$ intertwining operators are continuous for all positive integers k.

In the above we say, as usual, that a densely defined operator R from X into Y is closed if its graph

$$
\Gamma_{R}=\left\{(x, R x) \in X \times Y: x \in D_{R}\right\}
$$

is a closed subset in $X \times Y$.
This theorem is a corollary to the following more technical result. To formulate it we need the following

Definition. Let R be a densely defined operator from X into X^{n}, for some positive integer n. We say that R is a scalar operator if there are scalars $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\begin{equation*}
R x=\left(\lambda_{1} x, \ldots, \lambda_{n} x\right), \quad x \in D_{R} \tag{3}
\end{equation*}
$$

Theorem 2. Let X be a real or complex topological vector space and let A be an algebra over the same field of scalars as X. Let T be an irreducible t.v.s.-representation of A on X. Then T is totally irreducible if and only if all closed $\left(T, T^{(k)}\right)$-intertwining operators are scalar for all positive integers k.

Proof. Suppose that there is a positive integer k such that some closed $\left(T, T^{(k)}\right)$-intertwining operator R is non-scalar. Its graph Γ_{R} is a proper closed subspace of X^{k+1}. Since R is non-scalar, there is an element $\left(z_{0}, \ldots, z_{k}\right)$ in Γ_{R}, with $z_{0} \in D_{R},\left(z_{1}, \ldots, z_{k}\right)=R z_{0}$ and with

$$
\begin{equation*}
\operatorname{dim} \operatorname{span}\left\{z_{0}, \ldots, z_{k}\right\}=n+1>1 \tag{4}
\end{equation*}
$$

Relation (2) with $S=T^{(k)}$ implies

$$
R T_{a} z_{0}=T_{a}^{(k)}\left(z_{1}, \ldots, z_{k}\right)=\left(T_{a} z_{1}, \ldots, T_{a} z_{k}\right)
$$

and since $T_{a} z_{0} \in D_{R}$ for all a, it follows that

$$
\left\{\left(T_{a} z_{0}, \ldots, T_{a} z_{k}\right) \in X^{k+1}: a \in A\right\} \subset \Gamma_{R}
$$

By (4) we can choose i_{1}, \ldots, i_{n} so that the elements $z_{0}, z_{i_{1}}, \ldots, z_{i_{n}}$ are linearly independent and put

$$
Q=\left\{\left(T_{a} z_{0}, T_{a} z_{i_{1}}, \ldots, T_{a} z_{i_{n}}\right) \in X^{n+1}: a \in A\right\}
$$

We claim that the closure \bar{Q} of Q in X^{n+1} is a proper closed subspace in this space. In fact, by irreducibility of T we have $Q \neq(0)$. If \bar{Q} coincides with X^{n+1} we can choose there an element of the form $\left(0, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ with $y_{i_{n}} \neq 0$. Since, by (4), $z_{j}=\alpha_{0} z_{0}+\sum_{s=1}^{n} \alpha_{s}^{j} z_{i_{s}}$ for $j \neq 0, i_{1}, \ldots, i_{n}, 0<j \leq$ k, the element $\left(0, y_{1}, \ldots, y_{k}\right)$ is in Γ_{R}, where

$$
y_{j}=\sum_{s=1}^{n} \alpha_{s}^{j} y_{i_{s}}, \quad 0<j \leq k, j \neq i_{1}, \ldots, i_{n}
$$

But this is absurd, since $y_{i_{n}} \neq 0$ and Γ_{R} is the graph of an operator. Thus $\bar{Q} \neq X^{n+1}$. Since the closure of the orbit $\mathcal{O}\left(T ; z_{0}, z_{i_{1}}, \ldots, z_{i_{n}}\right)$ is contained in \bar{Q}, the vector $\left(z_{0}, z_{i_{1}}, \ldots, z_{i_{n}}\right)$ is non-cyclic for $T^{(n)}$. Since the coordinates $z_{0}, z_{i_{1}}, \ldots, z_{i_{n}}$ are linearly independent the representation T is not totally irreducible.

Suppose now that each closed $\left(T, T^{(k)}\right)$-intertwining operator is scalar for $k=1,2, \ldots$ We have to show that for each positive integer k and each k-tuple $\left(x_{1}, \ldots, x_{k}\right)$ of linearly independent elements of X the orbit (1) is dense in X^{k}. We shall prove this by induction on k. For $k=1$ it follows immediately from the definition of an irreducible t.v.s.-representation. Suppose now that for every $k \leq n$ and every k-tuple x_{1}, \ldots, x_{k} of linearly independent elements of X the orbit (1) is dense in X^{k}. We have to show that for any linearly independent elements x_{1}, \ldots, x_{n+1} in X the orbit $\mathcal{O}\left(T ; x_{1}, \ldots, x_{n+1}\right)$ is dense in X^{n+1}. Let $\overline{\mathcal{O}}=\overline{\mathcal{O}}\left(T ; x_{1}, \ldots, x_{n+1}\right)$ be the closure of this orbit in X^{n+1}.

In the first step we shall show that $\overline{\mathcal{O}}=X^{n+1}$ if and only if there is $\left(z_{1}, \ldots, z_{n+1}\right) \in \overline{\mathcal{O}}$ such that $z_{i_{0}} \neq 0$ for some $i_{0}, 1 \leq i_{0} \leq n+1$, and $z_{i}=0$ for $i \neq i_{0}$. One of the implications is trivial. So suppose that we have such an element $\left(z_{1}, \ldots, z_{n+1}\right)$ in $\overline{\mathcal{O}}$. First we show that for every y in X the element $\left(y_{1}, \ldots, y_{n+1}\right)$ is in $\overline{\mathcal{O}}$, where $y_{i_{0}}=y$ and $y_{i}=0$ for $i \neq i_{0}$.

The relation $T_{a}^{(n+1)} \mathcal{O}\left(T ; x_{1}, \ldots, x_{n+1}\right) \subset \mathcal{O}\left(T ; x_{1}, \ldots, x_{n+1}\right)$ implies $T_{a}^{(n+1)} \overline{\mathcal{O}} \subset \overline{\mathcal{O}}$, for all a in A, by the continuity of the operators $T_{a}^{(n+1)}$. This implies $\mathcal{O}\left(T ; z_{1}, \ldots, z_{n+1}\right) \subset \overline{\mathcal{O}}$ and since by the irreducibility of T we have $\left(y_{1}, \ldots, y_{n+1}\right) \subset \overline{\mathcal{O}}\left(T ; z_{1}, \ldots, z_{n+1}\right)$, we obtain $\left(y_{1}, \ldots, y_{n+1}\right) \in \overline{\mathcal{O}}$. To conclude the first step it is sufficient to show that for any $j, 1 \leq j \leq n+1$, there is an element $\left(y_{1}, \ldots, y_{n+1}\right)$ in $\overline{\mathcal{O}}$ with $y_{i}=0$ for $i \neq j$ and $y_{j}=y$, an arbitrarily given element in X. Summing such elements over j we can obtain an arbitrary element in X^{n+1}. For $j=i_{0}$ we are already done, so suppose $j \neq i_{0}$. Denote by $\Phi(X)$ a basis of neighbourhoods of the origin in X. Fix y in X and U in $\Phi(X)$ and take a V in $\Phi(X)$ with $V+V \subset U$. By the inductive assumption the orbit $\mathcal{O}\left(T ; u_{1}, \ldots, u_{n}\right)$ is dense in X^{n}, where
u_{1}, \ldots, u_{n} are the elements $x_{1}, \ldots, x_{i_{0}-1}, x_{i_{0}+1}, \ldots, x_{n+1}$. Thus there is an $a(V)$ in A such that

$$
\begin{equation*}
T_{a(V)} x_{j} \in y+V, \quad T_{a(V)} x_{i} \in V \quad \text { for } i_{0} \neq i \neq j \tag{5}
\end{equation*}
$$

Since for $j=i_{0}$ we are already done, we can find an element $b(V)$ in A such that
(6) $T_{b(V)} x_{i_{0}} \in-T_{a(V)} x_{i_{0}}+V, \quad T_{b(V)} x_{i} \in V \quad$ for $i \neq i_{0}, 1 \leq i \leq n+1$.

Adding coordinatewise (5) and (6) and using the first relation in (6) we obtain

$$
\begin{gathered}
T_{a(V)+b(V)} x_{i} \in V+V \subset U \quad \text { for } i_{0} \neq i \neq j, \\
T_{a(V)+b(V)} x_{i_{0}} \in V \subset V+V \subset U \\
T_{a(V)+b(V)} x_{j} \in y+V+V \subset y+U .
\end{gathered}
$$

Since U was chosen arbitrarily in $\Phi(X)$, we have $\left(y_{1}, \ldots, y_{n}\right) \in \overline{\mathcal{O}}$, where $y_{i}=0$ for $i \neq j, 1 \leq i \leq n+1$, and $y_{j}=y$. The proof of the first step is complete.

Consider now two mutually excluding cases:
(a_{1}) No non-zero element $\left(z_{1}, \ldots, z_{n+1}\right)$ in $\overline{\mathcal{O}}$ has a zero coordinate.
(a_{2}) There is a non-zero $(n+1)$-tuple $\left(z_{1}, \ldots, z_{n+1}\right)$ in $\overline{\mathcal{O}}$ with some coordinate $z_{i_{0}}, 1 \leq i_{0} \leq n+1$, equal to zero.

In the case $\left(\mathrm{a}_{1}\right)$ the linear space $\overline{\mathcal{O}}$ is the graph of the closed operator R from X to X^{n} given by

$$
\begin{equation*}
R z_{1}=\left(z_{2}, \ldots, z_{n+1}\right), \quad\left(z_{1}, \ldots, z_{n+1}\right) \in \overline{\mathcal{O}} \tag{7}
\end{equation*}
$$

It is a well defined operator on its domain D_{R}, which is the projection of $\overline{\mathcal{O}}$ onto the first coordinate space. Thus D_{R} is a dense subset of X, since it contains the orbit $\mathcal{O}\left(T ; x_{1}\right)$. We claim that R is a $\left(T, T^{(n)}\right)$-intertwining operator. To see this, we use the inclusions

$$
\begin{equation*}
T_{a}^{(n+1)} \overline{\mathcal{O}} \subset \overline{\mathcal{O}} \tag{8}
\end{equation*}
$$

for all a in A, obtained in the first step of our proof. They imply $T_{a} D_{R} \subset D_{R}$ for all a in A. Moreover, by (7) and (8) we have

$$
R T_{a} z_{1}=\left(T_{a} z_{2}, \ldots, T_{a} z_{n+1}\right)=T_{a}^{(n)}\left(z_{2}, \ldots, z_{n+1}\right)=T_{a}^{(n)} R z_{1}
$$

for all a in A and all z_{1} in D_{R}. Our claim is proved.
Since R is a closed $\left(T, T^{(n)}\right)$-intertwining operator, it is scalar. So, for example, $z_{2}=\lambda z_{1}$ for some scalar λ and this holds for all elements $\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ in $\overline{\mathcal{O}}$. In particular, we have $T_{a} x_{2}=\lambda T_{a} x_{1}$, or $T_{a}\left(x_{2}-\right.$ $\left.\lambda x_{1}\right)=0$ for all a in A. This contradicts the irreducibility of T, since $x_{2}-\lambda x_{1}$ is a non-zero element in X. Thus we must have the case (a_{2}). In this case there are elements in $\overline{\mathcal{O}}$ having some, but not all, coordinates equal
to zero. Among them there must exist elements with the maximal number, say s, of zero coordinates in the sense that if some $\left(z_{1}, \ldots, z_{n+1}\right)$ in $\overline{\mathcal{O}}$ has more than s coordinates equal to zero, then all of them are zeroes. Fix such an element $\left(z_{1}^{0}, \ldots, z_{n+1}^{0}\right)$. After a suitable renumbering of x_{1}, \ldots, x_{n+1} we can assume $z_{1}^{0}=\ldots=z_{s}^{0}=0$, and all other coordinates $z_{s+1}^{0}, \ldots, z_{n+1}^{0}$ are different from zero. We have $s \leq n$, if $s=n$ we are done by the first step of the proof. So assume $1 \leq s<n$ and consider two cases
$\left(\mathrm{b}_{1}\right) \operatorname{dim} \operatorname{span}\left(z_{s+1}^{0}, \ldots, z_{n+1}^{0}\right)=k>1$, and
$\left(\mathrm{b}_{2}\right) \operatorname{dim} \operatorname{span}\left(z_{s+1}^{0}, \ldots, z_{n+1}^{0}\right)=1$.
In the case (b_{1}) we fix k linearly independent elements $z_{i_{1}}^{0}, \ldots, z_{i_{k}}^{0}, s<$ $i_{l} \leq n+1$. We have

$$
\begin{equation*}
z_{i}^{0}=\sum_{l=1}^{k} \alpha_{l}^{i} z_{i_{l}}^{0} \quad \text { for } s<i \leq n+1 \tag{9}
\end{equation*}
$$

where α_{l}^{i} are suitable scalars. We have $k \leq n$, and so by the inductive assumption the orbit $\mathcal{O}\left(T ; z_{i_{1}}^{0}, \ldots, z_{i_{k}}^{0}\right)$ is dense in X^{k}. Thus for an arbitrary $y \neq 0$ in X and an arbitrary neighbourhood U in $\Phi(X)$ we can choose a V in $\Phi(X)$ so that $V+V \subset U$ and choose an element $a(U)$ in A so that

$$
\begin{equation*}
T_{a(V)} z_{i_{l}}^{0} \in V \quad \text { for } 1 \leq l<k, \quad T_{a(V)} z_{i_{k}}^{0} \in y+V \tag{10}
\end{equation*}
$$

By the continuity of $T_{a(V)}$ we can find another neighbourhood V_{1} in $\Phi(X)$ so that

$$
\begin{gather*}
T_{a(V)} V_{1} \subset V, \quad V_{1} \subset V \\
\sum_{l=1}^{k-1} \alpha_{l}^{i} V_{1} \subset V \quad \text { for all } i \text { with } s<i \leq n+1 \tag{11}
\end{gather*}
$$

where α_{l}^{i} are the coefficients in formula (9). Because $\left(z_{1}^{0}, \ldots, z_{n+1}^{0}\right)$ is in $\overline{\mathcal{O}}$, there is a $b\left(V_{1}\right)$ in A such that

$$
T_{b\left(V_{1}\right)} x_{i} \in z_{i}^{0}+V_{1}, \quad i=1, \ldots, n+1
$$

Thus by (10) and (11) we obtain
(12) $T_{a(V) b\left(V_{1}\right)} x_{i} \in T_{a(V)}\left(z_{i}^{0}+V_{1}\right)$

$$
\subset \begin{cases}V+V \subset U & \text { for } i=1, \ldots, s, i_{1}, \ldots, i_{k-1} \\ y+V+V \subset y+U & \text { for } i=i_{k}, \\ \alpha_{k}^{i} y+V+V \subset \alpha_{k}^{i} y+U & \text { for } i \neq 1, \ldots, s, i_{1}, \ldots, i_{k}\end{cases}
$$

Since U was arbitrarily chosen, we see from (12) that $\left(y_{1}, \ldots, y_{n+1}\right)$ is in $\overline{\mathcal{O}}$, where $y_{1}=\cdots=y_{s}=y_{i_{1}}=\ldots=y_{i_{k-1}}=0$ and $y_{i_{k}}=y$ while $y_{i}=\alpha_{k}^{i} y$ for $i \neq 1, \ldots, s, i_{1}, \ldots, i_{k}$. Since $k \geq 2$ and $y \neq 0$ we have obtained a non-zero element in $\overline{\mathcal{O}}$ which has more than s zero coordinates. This contradicts the definition of s, and thus the case (b_{1}) cannot occur.

We then have the case $\left(\mathrm{b}_{2}\right)$ and the element $\left(z_{1}^{0}, \ldots, z_{n+1}^{0}\right)$ has the coordinates $z_{1}^{0}=\ldots=z_{s}^{0}=0, z_{i}^{0}=\lambda_{i} z_{n+1}^{0}, s<i \leq n, z_{n+1}^{0} \neq 0$, and all the scalars λ_{i} are different from zero. Define $y_{i}=x_{i}$ for $1 \leq i \leq s$ and $i=n+1$, and $y_{i}=x_{i}-\lambda_{i} x_{n+1}, s<i \leq n$. Consider the map M of X^{n+1} onto itself given by

$$
M\left(u_{1}, \ldots, u_{n+1}\right)=\left(u_{1}, \ldots, u_{s}, u_{s+1}-\lambda_{s+1} u_{n+1}, \ldots, u_{n}-\lambda_{n} u_{n+1}, u_{n+1}\right)
$$

It is a one-to-one continuous map with a continuous inverse. It extends the map of $\mathcal{O}\left(T ; x_{1}, \ldots, x_{n+1}\right)$ onto $\mathcal{O}\left(T ; y_{1}, \ldots, y_{n+1}\right)$ given by $\left(T_{a} x_{1}, \ldots, T_{a} x_{n+1}\right) \rightarrow\left(T_{a} y_{1}, \ldots, T_{a} y_{n+1}\right)$. Hence M maps $\overline{\mathcal{O}}$ onto the closure $\overline{\mathcal{O}}_{1}$ of $\mathcal{O}_{1}=\mathcal{O}\left(T ; y_{1}, \ldots, y_{n+1}\right)$ in X^{n+1}. Thus $\overline{\mathcal{O}}_{1}$ contains $M\left(z_{1}^{0}, \ldots, z_{n+1}^{0}\right)=\left(0, \ldots, 0, z_{n+1}^{0}\right)$. Since $z_{n+1}^{0} \neq 0$ we obtain by the first step of this proof the equality $\overline{\mathcal{O}}_{1}=X^{n+1}$. Consequently, $\overline{\mathcal{O}}=M^{-1} \overline{\mathcal{O}}_{1}=$ X^{n+1} and the conclusion follows.

Proof of Theorem 1. If T is totally irreducible, then by Theorem 2 each closed $\left(T, T^{(k)}\right)$-intertwining operator is scalar, and so continuous. On the other hand, suppose that each $\left(T, T^{(k)}\right)$-intertwining operator R is continuous. Writing it in the form $R x=\left(R_{1} x, \ldots, R_{k} x\right)$ we see that all operators R_{i} are in $L(X)$. We also have

$$
R T_{a} x=\left(R_{1} T_{a} x, \ldots, R_{k} T_{a} x\right)=T_{a}^{(k)} R x=\left(T_{a} R_{1} x, \ldots, T_{a} R_{k} x\right)
$$

and this holds for all a in A and all x in X. Thus the R_{i} are continuous (T, T)-intertwining operators, so by the assumption of Theorem 1 there are scalars λ_{i} with $R_{i} x=\lambda_{i} x, x \in X$. This implies that R is scalar and so, by Theorem $2, T$ is totally irreducible. The conclusion follows.

We cannot solve the problem of Fell and Doran formulated above even if X is a Banach space. However, if the answer is in the negative, as some specialists believe, our Theorem 1 and also Theorem 2 offer an additional condition under which the answer is affirmative. On the other hand, if the answer is affirmative, our Theorem 1 offers a way of attacking this problem, since it reduces it to the more specific investigation of closed $\left(T, T^{(k)}\right)$-intertwining operators.

In [4] we solved the problem in the affirmative for representations of algebras on completely metrizable topological vector spaces (F-spaces) under the additional assumption that the representations T in question are algebraically irreducible, i.e. all orbits $\mathcal{O}(T ; x), x \neq 0$, coincide with the whole of X (in the conclusion we do not have algebraic total irreducibility but merely total irreducibility). This result can also be obtained as a corollary to Theorem 1 of the present paper. The results presented here, though formulated for general topological vector spaces, make unrestricted sense only for locally convex spaces. This is caused by the fact that for a topological vector space X the algebra $L(X)$ can be very poor, and there
are so-called (infinite-dimensional) rigid spaces X (see [2] and [3]) for which $L(X)$ contains only scalar multiples of the identity operator, so that there are no t.v.s.-representations on X which are irreducible.

REFERENCES

[1] J. M. G. Fell and R. S. Doran, Representations of ${ }^{*}$-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Pure Appl. Math. 125 and 126, Academic Press, 1988.
[2] N. J. Kalton and J. W. Roberts, A rigid subspace of L_{0}, Trans. Amer. Math. Soc. 266 (1981), 645-654.
[3] L. Waelbroeck, A rigid topological vector space, Studia Math. 59 (1977), 227-234.
[4] W. Żelazko, A density theorem for F-spaces, Studia Math. 96 (1990), 159-166.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND

