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INTEGRAL EQUATIONS OF CONVOLUTION TYPE
WITH POWER NONLINEARITY *

BY

S. N. A S K H A B O V (GROZNY̆I)

In the cone Γ of nonnegative continuous functions on R+ = [0,∞) the
solvability of the nonlinear equation uα = k ∗ u + f , α > 1, with the kernel
k ∈ Γ , is considered. That equation appears in applications of filtration
theory. The present paper is connected with getting rid of the assumption
k(0+) > 0, which is essentially utilized when considering the solvability of
the above equation in W. Okrasiński’s papers. According to the singularity
of the kernel as x → 0, two cases are considered:

(a) k′(x) nondecreasing, k(0) = 0, k′(0) > 0;
(b) k(x) = pxν + o(xν), x → 0, p > 0, ν > −1.

The existence of a solution (nontrivial for f(x) ≡ 0) and its uniqueness
are proved. In case (a) the kernel is smoother than in (b) and the results
are more complete. Moreover, under assumptions (a), (b), the stability
of solutions with respect to the perturbations of k, α and f is studied.
Finally, the case 0 < α < 1 is considered. It is shown that in this case
the equation may have at most one solution in Γ if k, f ∈ Γ . It is also
shown, via the method of monotone operators, that for particular values
of α = p − 1, p = 2n/(2n − 1), n = 1, 2, 3, . . . , the equation has a unique
solution in the (real) space Lp(R+) for f ∈ L2n(R+) and for the kernel
k ∈ L1(R+) ∩ Ln(R+) satisfying the condition Re k̂(x) ≤ 0, 0 ≤ x < ∞,
where k̂ denotes the Fourier transform of k.

0. Introduction. It was shown in [5] and [9]–[11] that the nonlinear
differential Boussinesq equation (cf. [3], [12])

(hhr)r + r−1hhr = ht, h = h(r, t) ,

which describes the process of infiltration of a fluid from a cylindrical reser-
voir into an isotropic, homogeneous, porous medium can be reduced to a

* This survey was written mainly on the basis of papers of W. Okrasiński,
S. N. Askhabov, N. K. Karapetyants and other authors.
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nonlinear integral equation of convolution type of the form

(0.1) uα(x) =
x∫

0

k(x− t)u(t) dt, x > 0 ,

where the kernel k(x) is, by physical reasons, a nonnegative and nonde-
creasing function. One looks for solutions of (0.1) in the cone Γ of nonneg-
ative, continuous functions defined on the nonnegative half-line x ≥ 0. W.
Okrasiński showed that under the assumption k(0+) = q > 0 equation (0.1)
has for α > 1 a unique solution in the subclass Γ0 ⊂ Γ of functions which
are positive for x > 0. The solution belongs to the cone interval(

α− 1
α

qx

)1/(α−1)

≤ u(x) ≤
(

α− 1
α

x∫
o

k(t) dt

)1/(α−1)

and may be found by the method of successive approximations in a suitably
chosen metric. The results were also generalized to the case of a nonhomo-
geneous linear part:

(0.2) uα(x) =
x∫

0

k(x− t)u(t) dt + f(x) .

One of the main assumptions in [9]–[10] is k(0+) > 0, since the convergence
of successive approximations depends there on 1/k(0+).

In the present paper we discuss the problem of existence of nonnegative
solutions of (0.1) and (0.2) without assuming k(0+) > 0.

The paper consists of five sections. In Section 1 we assume k(0) = 0,
k′(0) = p > 0, which allows us to get an exact lower bound for solutions in
the class Γ0. The importance of this estimate follows from a special role it
plays in estimating the rate of convergence. In particular, a new metric (cf.
[9], [10]) in the class of solutions is introduced. It is shown that equation
(0.1) has a unique solution in the cone Γ0. A scheme is also proposed for
the construction of the solution.

In Section 2 a generalization of results of [10] is given: one assumes that
the kernel k has the form k(x) = pxν + l(x), p > 0, l(x) ≥ 0, ν ≥ 0,
x−ν l(x) → 0 as x → 0. Moreover, the assumptions concerning the smooth-
ness of k are less restrictive, which in contrast to Section 1 gives a possibility
to study not necessarily monotonic solutions.

In Section 3 we consider the dependence of solutions of equation (0.1)
on the kernel k and on the exponent α.

In Section 4 equation (0.2) is considered. Here for α > 1 the existence of
nonnegative solutions under assumptions made in Sections 1 and 2 is studied
together with the question of the dependence of solutions, this time, on
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perturbations of f . The arguments used permit the assumptions concerning
f to be essentially weakened in comparison with [10].

Finally, in Section 5 the case 0 < α < 1 is considered. Here the picture of
solvability of (0.1) changes in comparison with the case α > 1. For example,
it turns out that equation (0.1) has only a trivial solution in the cone Γ
whereas equation (0.2) may have only one solution. Moreover (see part B of
Section 5), the questions of existence and uniqueness of solutions to equa-
tions (0.1)–(0.2) in real Lp(R+) spaces are considered for some particular
values of α.

The results of this paper were partially announced in [1]–[2] and [6].

1. Case k(0) = 0, k′(0) > 0. We assume throughout this section that

(1.1) k′(x) is nondecreasing, k(0) = 0 and k′(0) = p > 0 .

Denote by Γ the cone (see [7]) of nonnegative continuous functions de-
fined for x ≥ 0. It is easy to see that if u ∈ Γ is a solution of equation (0.1)
then so are the translations

uδ(x) =
{

u(x− δ) for x > δ,
0 for 0 < x ≤ δ,

for any δ > 0. To exclude the resulting nonuniqueness we introduce the
following class of functions:

Γ0 = {u : u ∈ Γ, u(0) = 0, u(x) > 0 for x > 0} .

Lemma 1.1. If u ∈ Γ0 is a solution of (0.1) then it is nondecreasing and

(1.2) C(α)x2/(α−1) ≤ u(x) ≤
(

α− 1
α

x∫
0

k(t) dt

)1/(α−1)

,

where

C(α) =
(

k′(0)(α− 1)2

2α(α + 1)

)1/(α−1)

.

P r o o f. Since, by assumption, k is nondecreasing, so is u (see [10]) and

(1.3) u′(x) =
1
α

u1−α(x)(k′ ∗ u)(x) .

The last formula implies that u′(x) is continuous for x > 0 and u′′(x) exists.
We shall find the lower bound in (1.2). We get from (1.3)

(uα)′′ = pu + k′′ ∗ u ≥ pu .

Putting uα(x) = v(x) and z = v′ we get zz′ ≥ pv1/α, which implies z ≥√
2pα/(α + 1)v(α+1)/2α. Integrating the last inequality we get the lower

bound in (1.2).
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To find the upper bound we make use of (1.3):

(uα(x))′ = αuα−1(x)u′(x) =
x∫

0

k(x− t)u′(t) dt ≤ k(x)u(x) .

Since u ∈ Γ0, we hence get
α

α− 1
(uα−1(x))′ ≤ k(x) .

The desired upper bound follows by integrating the last inequality.

Define

Ωb = {u : u ∈ C[0, b] and satisfies (1.2)} .

Put Ω∞ =
⋃

b>0 Ωb and

(Tu)(x) =
( x∫

0

k(x− t)u(t) dt

)1/α

.

Lemma 1.2. The operator T maps the set Ωb into itself.

P r o o f. Let u ∈ Ωb. It is easy to see that (Tu)(x) satisfies the upper
estimate in (1.2). To check the lower estimate it suffices to integrate by
parts and note that k′(x) ≥ p, which gives

[(Tu)(x)]α ≥
x∫

0

k(x− t)C(α)t2/(α−1) dt

=
α− 1
α + 1

C(α)
x∫

0

t(α+1)/(α−1)k′(x− t) dt ≥ (C(α)x2/(α−1))α .

Lemma 1.2 is proved.

We introduce in Ωb a metric by the formula (cf. [9, 10])

(1.4) %b(u1, u2) = sup
0<x≤b

|u1(x)− u2(x)|
eβxx2/(α−1)

, β =
1
p

sup
a≤x≤b

k′(x)− p

x
,

where b < ∞ and a > 0 is chosen so that k′(a) < αk′(0).
Define

g(x) = eβxx2/(α−1), r(x) = x2/(α−1) .

We check, as in [9], that Ωb with the metric %b is a complete metric space.
We shall show that the operator T is a contraction. Applying the Lagrange
theorem as in [10] we have

%b(Tu1, Tu2) ≤
1
α

sup
0<x≤b

|[k ∗ (u2 − u1)](x)|
{min([Tu2(x)]α, [Tu1(x)]α)}(α−1)/αg(x)

,
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from which, by using the lower estimate for (Tu)(x) of Lemma 1.2, we get

(1.5) %b(Tu1, Tu2) ≤
1
α

[C(α)]1−α sup
0<x≤b

|[k ∗ (u2 − u1)](x)|
x2eβxr(x)

and since |[k ∗ (u2 − u1)](x)| ≤ (k ∗ [eβtr(t)])(x)%b(u1, u2), we have

(1.5′) %b(Tu1, Tu2) ≤
1
α

[C(α)]1−α sup
0<x≤b

(k ∗ [eβtr(t)])(x)
x2eβxr(x)

%b(u1, u2) .

In what follows the following lemma will be needed.

Lemma 1.3. For any a > 0 and x ∈ [0, b]

(1.6) k(x)e−βx ≤ xk′(x)e−βx ≤ xk′(a) .

P r o o f. Applying (1.1) we get k(x) ≤ xk′(x), which gives the left-hand
inequality in (1.6). To prove the other inequality it suffices to apply Lemma
7 of [9] to the function k′(x).

Let us return to the estimate (1.5′). Lemma 1.3 implies

e−βx(k ∗ [eβxr(x)]) ≤ k′(a)
x∫

0

(x− t)r(t) dt .

Applying this inequality to (1.5′) we get

%b(Tu1, Tu2) ≤
k′(a)

α[C(α)]α−1
%b(u1, u2) sup

0<x≤b

x∫
0

(x− t)r(t) dt

x2r(x)
.

The supremum is equal to (α− 1)2/2α(α + 1), hence

(1.7) %b(Tu1, Tu2) ≤
1
α

k′(a)
k′(0)

%b(u1, u2) .

Since for any b > 0 there exists a > 0 such that k′(a) < αk′(0), the operator
T is a contraction and the following is true.

Theorem 1.1. The nonlinear equation (0.1) of convolution type has a
unique solution in Γ0 as well as in any Ωb, b ≤ ∞. It may be found by the
method of successive approximations.

P r o o f. A solution u(x) sought in the class Γ0 satisfies automatically
the inequalities (1.2), which implies u ∈ Ω∞.

On the other hand, the coefficient k′(a)(αk′(0))−1 in (1.7) does not de-
pend on b, which means that the unique solution obtained by the method
of successive approximations belongs to Ωb for any b > 0, and this implies
u ∈ Ω∞. Therefore it is unique in Γ0 too.
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R e m a r k 1.1. The lower estimate in (1.2) cannot be improved: this
follows from the fact that the function u(x) = C(α)x2/(α−1) is a solution of
(0.1) with the kernel k(x) = px satisfying all assumptions of Section 1.

The contraction principle guarantees that the solution u can be obtained
as limn→∞ Tnv, where v is any element of Ωb. Let us choose v to be equal
to F (x) = C(α)r(x) appearing in (1.2) as well as in the definition of Ωb. It
is convenient since F ∈ Ωb and in consequence TnF → u on [0, b] for any b.
The rate of convergence is given by

Lemma 1.4. Let u(x) = limn→∞(TnF )(x). Then

%b(TnF, u) ≤ qn

1− q

[C(α)]2−α

α
sup

0<x≤b

x∫
0

[k(t)− pt] dt

x2eβx

where q = k′(a)(αk′(0))−1 < 1.

The proof follows by immediate calculations.

Example 1.1. Assume that k(x) is of the form k(x) = px + γxµ, µ > 1,
γ > 0. In this case

x∫
0

(k(t)− pt) dt =
γ

γ + 1
xµ+1 .

If b is so large that (µ − 1)/β ∈ [0, b], then the maximum of the function
z(x) = γ(µ + 1)−1xµ−1e−βx, x ∈ [0, b], is equal to

zmax = z

(
µ− 1

β

)
=

γ

µ + 1

(
µ− 1

β

)µ−1

e1−µ .

Hence

%b(TnF, u) ≤ qn

1− q

1
α

[C(α)]2−αzmax .

In particular, for α = 2, γ = 1 and µ = 2 we have

%b(TnF, u) ≤ k′(0)
3β[2k′(0)− k′(a)]

[
k′(a)
2k′(0)

]n

.

2. Case k(x) = pxν + o(xν). Assume that the kernel has the form

(2.1) k(x) = pxν + l(x), p > 0 , ν ≥ 0 ,

where

(2.2) l ∈ Γ and x−ν l(x) → 0 as x → 0 .

Note that for ν = 0 the results of this section are similar to the results
of [9, 10] and for ν = 1 to those of Section 1.
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Lemma 2.1. If k(x) = pxν , ν > −1, then the function

(2.3) F (x) = γx(ν+1)/(α−1), γ =
[
pB

(
ν + 1,

ν + α

α− 1

)]1/(α−1)

,

where B is Euler’s Beta function, is a solution of (0.1).

The proof is by immediate calculations.
It is easy to check that

(2.4) F (x) ≤ (TF )(x) and u(x) ≤
( x∫

0

[ptν + l(t)] dt
)1/(α−1)

≡ G(x) ,

if u ∈ Γ0 is a solution of (0.1).
Define (cf. [2])

Ω′
b = {u : u ∈ C[0, b], F (x) ≤ u(x) ≤ G(x)} .

Similarly to Section 1, we introduce in Ω′
b (b < ∞) a metric by the formula

%b(u1, u2) = sup
0<x≤b

|u1(x)− u2(x)|
eβxr(x)

,

where r(x) = x(ν+1)/(α−1) and β > 0 is given by (2.6) below. It is easy to
check that Ω′

b with the metric %b is a complete metric space.

Lemma 2.2. For any x ∈ [0, b] the inequality

(2.5) k(x)e−βx ≤ (p + ε)xν

is true for any ε > 0 and β = β(ε, b) given by (2.6) below.

P r o o f. We have to show the inequality

[pxν + l(x)]e−βx ≤ pxν + εxν ,

which holds if l(x)e−βx ≤ εxν for x ∈ [0, b]. For a given ε a number a ∈ (0, b]
may be found such that x−ν l(x) < ε for all x ∈ (0, a). It now suffices to put

(2.6) β =
1
a

ln
maxa≤x≤b l(x)

εaν
.

Lemma 2.3. The operator T : Ω′
b → Ω′

b defined as before is a contraction
(for sufficiently small ε) and for every ε > 0

%b(Tu1, Tu2) ≤
p + ε

αp
%b(u1, u2) .

The proof is similar to that of (1.7), this time making use of Lemmas
2.1 and 2.2.

We have (p + ε)/αp < 1 for sufficiently small ε; this yields
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Theorem 2.1. Equation (0.1) with kernel of the form (2.1) has a unique
continuous solution defined on [0,∞) satisfying the inequality

u(x) ≥ γx(ν+1)/(α−1)

with γ given by (2.3)

R e m a r k 2.1. The results of this section remain true for ν > −1 and
for l(x) ≥ 0 bounded on [0,∞) such that x−ν l(x) → 0 as x → 0.

3. Dependence of solutions on k and α. In this section we consider
the problem of dependence of solutions to (0.1) on perturbations of k and
of α. We begin with the former.

Theorem 3.1. Let u ∈ Γ0 be a solution of the equation uα = k1 ∗u where
k1 is a kernel satisfying (1.1). If v ∈ Γ0 is a solution of uα = k2 ∗ u with
kernel k2 satisfying (1.1) then for b > 0

(3.1) sup
0≤x≤b

|u(x)− v(x)| ≤ C sup
0<x≤b

x∫
0

|k1(t)− k2(t)| dt

x2α/(α−1)eβ1x
,

where

C = C(α, k1, k2, b) =
eβ1bb2/(α−1)2α(α + 1)

[αk′1(0)− k′1(a)](α− 1)2

[
α− 1

α

b∫
0

k2(t) dt

]1/(α−1)

,

β1 = 1
p sup

a≤x≤b

k′1(x)− p

x
,

and a > 0 is chosen so that k′1(a) < αk′1(0).

P r o o f. Since %b(u, v) = %b(T1u, T2v) ≤ %b(T1u, T1v) + %b(T1v, T2v),
where (Tiu)(x) = [(ki ∗ u)(x)]1/α, by (1.7) we obtain

(3.2) %b(T1u, T1v) ≤ 1
α

k′1(a)
k′1(0)

%b(u, v) .

We also have a relation similar to (1.5):

%b(T1v, T2v) ≤ 1
α

[C(α)]1−α sup
0<x≤b

|([k1 − k2] ∗ v)(x)|
x2eβ1xr(x)

≤
[
α− 1

α

b∫
0

k2(t) dt

]1/(α−1) 1
α

[C(α)]1−α sup
0<x≤b

x∫
0

|k1(t)− k2(t)| dt

x2eβ1xr(x)
.

Combining these two estimates we obtain (3.1), and the theorem is proved.
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Assume now that the kernel k satisfying condition (1.1) is fixed and u,
v are solutions of the equations uαi = k ∗ u, i = 1, 2, respectively. Let
%b,i, Ti be the corresponding metric and operator respectively and let, to be
definite, 1 < α1 < α2. Then %b,2(u, v) = %b,2(T1u, T2v) ≤ %b,2(T1u, T2u) +
%b,2(T2u, T2v) and by applying (3.2) we get(

1− 1
α2

k′(a)
k′(0)

)
%b,2(u, v) ≤ %b,2(T1u, T2u) .

In order to estimate the right-hand side we use the inequality 1 − rx ≤
x ln(1/r), valid for r > 0, x > 0. We have

%b,2(T1u, T2u)(3.3)

≤ sup
0<x≤b

[(k ∗ u)(x)]1/α2

(
1
α1

− 1
α2

) ∣∣∣∣ln 1
(k ∗ u)(x)

∣∣∣∣
x2/(α2−1)eβx

=
(

1− α1

α2

)
sup

0<x≤b

[u(x)]α1/α2 | lnu(x)|
x2/(α2−1)eβx

.

Applying the inequality (1.2) from Lemma 1.1 we get

[u(x)]α1/α2

x2/(α2−1)
≤

[
α1 − 1

α1

k(x)
x

]α1/(α1−1)α2

x2(α2−α1)/(α1−1)α2(α2−1) .

For b = 1 and
∫ 1

0
k(t) dt ≤ 1 we have

| lnu(x)| ≤ | ln[C(α1)x2]1/(α1−1)| = 1
α1 − 1

| ln[C(α1)x2]| .

Hence

%b,2(T1u, T2v) ≤
(

1− α1

α2

) [
α1−1

α1
k(1)

]α1/(α1−1)α2

α1 − 1

× sup
0<x≤1

{x2(α2−α1)/(α1−1)α2(α2−1)| ln[C(α1)x2]|} .

So we have proved

Theorem 3.2. Let u ∈ Ω1 be a solution of the equation uα1 = k∗u where
α1 > 1 is given and the kernel k satisfies (1.1) and

∫ 1

0
k(t) dt ≤ 1. If v ∈ Ω1

is a solution of uα2 = k ∗ u where α1 < α2 then

sup
0≤x≤1

|u(x)− v(x)| ≤ C(α1, α2, k)(α2 − α1)
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with

C(α1, α2, k) =
k′(0)eβ

[
α1−1

α1
k(1)

]α1/(α1−1)α2

α2k′(0)− k′(a)

× sup
0<x≤1

{x2(α2−α1)/(α1−1)α2(α2−1)| ln[C(α1)x2]|} .

We observe that theorems analogous to 3.1 and 3.2 can be proved for
kernels k satisfying the conditions of Section 2.

4. Equations with nonhomogeneous linear part. Making use of
the results contained in Sections 1–2 we investigate the solvability of the
equation (0.2) with nonhomogeneous linear part as well as the problem of
stability of solutions with respect to the perturbations of f . The section is
divided into two parts A and B, according to the assumptions concerning
the kernel k.

A. Consider equation (0.2) where f ∈ Γ0 is a nonnegative, nondecreasing
function satisfying f ′′(x) ≥ 0 for x ≥ 0 and f(x) = O(x2α/(α−1)), x → 0.
The kernel k satisfies the conditions of Section 1.

Lemma 4.1. Any solution u ∈ Γ0 of (0.2) is a nondecreasing function of
class C2 and

(4.1) C(α)x2/(α−1) ≤ u(x) ≤
[
α− 1

α

x∫
0

k(t) dt + (f(x))(α−1)/α

]1/(α−1)

.

for x > 0, where C(α) is defined by (1.2).

Put (Tfu)(x) = (
∫ x

0
k(x− t)u(t) dt + f(x))1/α and denote by Ω′′

b the set
{u ∈ C[0, b] : u satisfies (4.1)}. Let F (x) = C(α)x2/(α−1).

Lemma 4.2. The operator Tf maps Ω′′
b into itself.

The proofs of these two lemmas are similar to the proofs of the corre-
sponding lemmas of Section 1, cf. also [9, 10].

We equip Ω′′
b with the same metric as in Ωb (it is important that its

weight is defined by the left-hand sides of (1.2) and (4.1), which are identi-
cal). Ω′′

b is a complete metric space. We have

(4.2) |(Tfu2)(x)− (Tfu1)(x)| ≤ 1
α

F 1−α(x)|[k ∗ (u2 − u1)](x)| .

The right-hand side of (4.2) is independent of f and is of the same form as
in Section 1 in similar estimates of |T0u2 − T0u1| corresponding to the case
f = 0. Therefore Tf , just as T in Section 1, is a contraction and we have
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Theorem 4.1. The nonlinear equation (0.2) of convolution type has a
unique solution u∗ in Γ0 (and in Ω′′

b , b ≤ ∞). It may be found by the method
of successive approximations.

Now we consider the problem of the dependence of solutions to equation
(0.2) on f (see [9], Lemma 6).

Theorem 4.2. The following inequality holds true:

(4.3)
(

1− k′(a)
αk′(0)

)
%b(u1, u2) ≤

2(α + 1)
k′(0)(α− 1)2

sup
0<x≤b

|f1(x)− f2(x)|
eβxx2α/(α−1)

,

where uj(x), j = 1, 2, are the solutions of the equations uα = k ∗ u + fj

respectively.

P r o o f. Making use of the Lagrange Theorem and (4.1) we have

|u1(x)− u2(x)| ≤ [C(α)]1−α

αx2
{|[k ∗ (u1 − u2)](x)|+ |f1(x)− f2(x)|}

≤ [C(α)]1−α

αx2

{
%b(u1, u2)

x∫
0

k(x− t)eβtt2/(α−1) dt + |f1(x)− f2(x)|
}

.

Since
x∫

0

k(x− t)eβtt2/(α−1) dt =
x∫

0

k(τ)e−βτeβx(x− τ)2/(α−1) dτ

≤ k′(a)eβx
x∫

0

τ(x− τ)2/(α−1) dτ

= k′(a)eβx (α− 1)2

2α(α + 1)
x2x2/(α−1) ,

the preceding inequality gives

%b(u1, u2)≤
[C(α)]1−α

α

{
k′(a)(α− 1)2

2α(α + 1)
%b(u1, u2)+ sup

0<x≤b

|f1(x)− f2(x)|
eβxx2α/(α−1)

}
.

To get (4.3) we only have to note that

[C(α)]1−α

α

k′(a)(α− 1)2

2α(α + 1)
=

k′(a)
k′(0)

1
α

.

R e m a r k 4.1. Note that in contrast to [10] the results of Part A have
been proved without assuming f(x)x1/(1−α) to be nondecreasing and convex
for x > 0 and, moreover, the proof of Theorem 4.2 does not require α = 2.

B. Consider now equation (0.2) and assume that f is a nonnegative
continuous function and k satisfies the conditions of Section 2.
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From (4.2) it is easy to see that (0.2) has a unique solution in Ω′
b for

any b ≤ ∞. Without repeating arguments similar to those used in the proof
of Theorem 4.2 we content ourselves only with the formulation of the next
theorem.

Theorem 4.3. Let fj(x) ≥ 0 and let uj(x) be a solution of uα = k∗u+fj ,
j = 1, 2, satisfying uj(x) ≥ γx(ν+1)/(α−1), where γ is defined by (2.3). Then(

1− p + ε

αp

)
%b(u1, u2) ≤

1
α

γ1−α sup
0<x≤b

|f1(x)− f2(x)|
eβxx(ν+1)α/(α−1)

.

R e m a r k 4.2. The results of Section 3 concerning the dependence of
solutions on k and α can be generalized to the case of equation (0.2).

5. Case 0 < α < 1

A. It has been shown in Section 1 that the nonlinear equation (0.1) may
have for α > 1 a nontrivial solution, therefore the theory of this equation
must be essentially different from that of the linear case (α = 1). It will be
shown that for α < 1 equation (0.1) has only the trivial solution, as in the
linear case. We assume that k and f are nonnegative continuous functions
on [0,∞). Let

Nj(y) = max
0≤x≤y

uj(x), L(y) = max
0≤x≤y

f(x) ,

Dy = max
j

[
Ni(y)

y∫
0

k(t) dt + L(y)
](1−α)/α

.

Lemma 5.1. If equation (0.2) has, for 0 < α < 1, a solution in Γ , then
it is unique.

P r o o f (some arguments of the theory of Volterra operators will be used).
Let uj(x) = (Tfuj)(x), j = 1, 2, be two solutions of (0.2). The equation
implies u1(0) = u2(0) = f1/α(0). We shall prove that u1(x) = u2(x) for
small x. Assuming x ∈ [0, b], b < 1, we have by the Lagrange Theorem

|u1(x)− u2(x)|

≤ 1
α
|[k ∗ (u1 − u2)](x)|(max[(k ∗ u1 + f)(x), (k ∗ u2 + f)(x)])(1−α)/α

≤ 1
α

Db|[k∗(u1−u2)](x)|≤ 1
α

D1‖u1−u2‖C[0,b]

b∫
0

k(t) dt

and hence

‖u1 − u2‖C[0,b] ≤
(

1
α

D1

b∫
0

k(t) dt

)
‖u1 − u2‖C[0,b] .
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Since D1 and α are constants independent of b, we have (1/α)D1

∫ b

0
k(t) dt <

1 for small b, and hence u1(x) = u2(x) for 0 ≤ x ≤ b. Let b = sup{b : u1(x) =
u2(x) for 0 ≤ x ≤ b}. Clearly b ≤ b ≤ ∞. If b = ∞ our lemma is proved. If
b < ∞, then u1 and u2 differ on (b, b + ε) for any ε > 0. We show this to be
impossible. Estimating as before u1(x)− u2(x) for x ∈ [b, b + ε] we obtain

‖u1 − u2‖C[b̄,b̄+ε] ≤
(

1
α

Db̄+1

ε∫
0

k(t) dt

)
‖u1 − u2‖C[b̄,b̄+ε] ,

which implies u1(x) = u2(x) for x ∈ [b, b + ε] for sufficiently small ε. This
completes the proof.

Corollary. If 0 < α < 1 then equation (0.1) has in Γ only a trivial
solution.

Note that for solutions belonging to C[0,∞) and bounded at infinity
Lemma 5.1 was proved in [6].

B. If α, 0 < α < 1, takes some particular values, we may ask for solutions
that are not necessarily nonnegative. To find them we make use of the
method of monotonic operators due to Browder–Minty (cf. [4], [13]). We
recall some basic facts of the theory.

Let E be a real Banach space and E∗ its dual with norms ‖ · ‖ and ‖ · ‖∗
respectively. Let 〈y, x〉 denote the value of y ∈ E∗ at x ∈ E. Let u, v ∈ E.

Definition 5.1. An operator A : E → E∗ is said to be

monotonic if 〈Au−Av, u− v〉 ≥ 0,
strictly monotonic if 〈Au−Av, u− v〉 > 0 for u 6= v,
strongly monotonic if 〈Au−Av, u− v〉 ≥ m‖u− v‖2,
coercive if 〈Au, u〉 ≥ γ(‖u‖)‖u‖,

where m > 0, γ is a real function defined on R+ such that γ(t) → ∞ as
t →∞.

Theorem (Browder’s Principle [8, p. 326]). Let E be a reflexive Banach
space and let A : E → E∗ be a continuous monotonic (resp. strictly mono-
tonic) operator satisfying 〈Au, u〉 ≥ 0 for ‖u‖ = R0. Then the equation
Au = 0 has a solution (resp. a unique solution) in the ball ‖u‖ ≤ R0.

Note that for linear operators the conditions of monotonicity, strict
monotonicity and strong monotonicity reduce to positivity, strict positiv-
ity and positive definiteness respectively.

Let 1 < p ≤ 2 and k ∈ L1(R)∩Lp/2(p−1)(R), R = (−∞,∞). By Young’s
Theorem the convolution (Hu)(x) =

∫∞
−∞ k(x− t)u(t) dt defines a bounded

operator from Lp(R) to Lq(R), p−1 + q−1 = 1.
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Let û denote the Fourier transform of u:

û(x) =
1√
2π

∞∫
−∞

u(t)e−ixt dt ,

and let ( · , · ) be the inner product in L2(R), which coincides with 〈 · , · 〉
if E is a Hilbert space.

Lemma 5.2. The convolution operator H : Lp(R) → Lq(R), 1 ≤ p ≤ 2,
is positive (resp. strictly positive) if and only if

(5.1) Re k̂(x) =
1√
2π

∞∫
−∞

k(t) cos(xt) dt ≥ 0, 0 ≤ x < ∞

(resp. Re k̂(x) > 0). If k ∈ Lq/2(R) is an odd function then 〈Hu, u〉 = 0.

P r o o f. Sufficiency. We distinguish two cases.

(a) p = 2. Using well known relations (cf. formulas (2.18) and (2.29) in
[14]) and u(x) = u(x) we obtain

(Hu, u) = (Ĥu, û) = (k̂û, û) =
∞∫

−∞
k̂(x)|û(x)|2 dx(5.2)

=
∞∫

−∞
Re k̂(x)|û(x)|2 dx + i

∞∫
−∞

Im k̂(x)|û(x)|2 dx .

It is easy to see that Re k̂(x) is even and Im k̂(x) odd. Then from (5.2) and
from the fact that |û(x)|2 is even we obtain

(5.3) (Hu, u) =
∞∫

−∞
Re k̂(x)|û(x)|2 dx ,

and hence (Hu, u) ≥ 0 owing to (5.1).

(b) 1 ≤ p < 2. The density of L2(R) ∩ Lp(R) in Lp(R), the continuity
of 〈Hu, u〉 and (a) imply 〈Hu, u〉 ≥ 0 for all u ∈ Lp(R).

Let now k ∈ Lq/2(R) be an odd function. It has odd approximations
kε ∈ C∞

0 such that ‖k − kε‖q/2 → 0 as ε → 0. Let Hεu = kε ∗ u. We have

(5.4) ‖H −Hε‖p→q ≤ ‖k − kε‖q/2 → 0 as ε → 0 .

kε is odd, therefore Re k̂ε(x) = 0 and (5.3) implies 〈Hεu, u〉 = 0. By (5.4),
〈Hu, u〉 = 0 follows.
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Necessity. Let p = 2 and 〈Hu, u〉 ≥ 0. If Re k̂(x0) < 0 for some x0 ≥ 0,
then Re k̂(x) < 0 in a neighbourhood |x − x0| < ε of x0. Choose û(x) = 1
for |x − x0| < ε and û(x) = 0 for |x − x0| > ε. û (being in L2(R)) is the
Fourier transform of some u ∈ L2(R) for which

(Hu, u) =
∫

|x−x0|<ε

Re k̂(x) dx < 0 ,

and that contradicts our assumption.
For p 6= 2 we can use the density argument as in (b).

Corollary 5.1. If p = 2 then the operator H is not positive definite.

P r o o f. If (Hu, u) ≥ m‖u‖2
2, m > 0, then by (5.3) and Parseval’s

identity we obtain

(Hu, u)−m‖u‖2
2 =

∞∫
−∞

(Re k̂(x)−m)|û(x)|2 dx ≥ 0

for any u ∈ L2(R). This is obviously impossible owing to Re k̂(x) → 0 as
x →∞, which implies Re k̂(x)−m < 0 for large x.

Corollary 5.2. If p = 2 and k̂ ∈ L1(R) then the operator H is not
coercive.

P r o o f. It suffices to prove the existence of a sequence {un} in L2(R)
such that

lim
n→∞

‖un‖2 = ∞, lim
n→∞

(Hun, un)/‖un‖2 6= ∞ .

Put ûn(x) = 1 for 0 < x < n and ûn(x) = 0 elsewhere. It is clear that
un ∈ L2(R), ‖un‖2 = ‖ûn‖2 =

√
n, |(Hun, un)| ≤ ‖k̂‖1. Therefore

lim
n→∞

(Hun, un)/‖un‖2 = 0 ,

which completes the proof.

Corollary 5.3. If 1 < p ≤ 2, k ∈ L1(R+) ∩ Lq/2(R+) and Re k̂(x) ≥ 0
(resp. Re k̂(x) > 0) for x ≥ 0, then the convolution operator (Ku)(x) =∫ x

0
k(x − t)u(t) dt is continuous and positive (resp. strictly positive) from

Lp(R+) to Lq(R+).

Theorem 5.1. Let p = 2n/(2n − 1), n = 1, 2, . . . , and k ∈ L1(R+) ∩
Ln(R+). If Re k̂(x) ≤ 0 for x ≥ 0 then for any f ∈ L2n(R+) and α = p− 1
equation (0.2) has a unique solution u∗ ∈ Lp(R+) for which

(5.5) ‖u∗‖p ≤ ‖f‖1/(p−1)
2n .

P r o o f. We rewrite (0.2) in the form Au = 0 with Au = up−1−k ∗u−f
and then apply Browder’s Principle. The operator A : Lp(R+) → L2n(R+)
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is continuous. By Corollary 5.3 we have, for any u, v ∈ Lp(R+), u 6= v,

〈Au−Av, u− v〉 = 〈up−1 − vp−1, u− v〉 − 〈k ∗ (u− v), u− v〉 > 0 ,

hence A is strictly monotonic. Now

〈Au, u〉 = ‖u‖p
p − 〈k ∗ u, u〉 − 〈f, u〉

≥ ‖u‖p(‖u‖p−1
p − ‖f‖2n) = 0 if ‖u‖p = ‖f‖1/(p−1)

2n ≡ R0 ,

and the assertion follows from Browder’s Principle.

The inequality (5.5) implies

Corollary 5.4. Under the assumption of Theorem 5.1 the equation
up−1 = k ∗ u has in Lp(R+) only a trivial solution.

Note finally that the last corollary holds true for all p ∈ (1, 2] provided
u(x) ≥ 0.
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