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A HELSON SET OF UNIQUENESS BUT NOT OF SYNTHESIS

BY

T . W . K ÖR NER (CAMBRIDGE)

In [3] I showed that there are Helson sets on the circle T which are not of
synthesis, by constructing a Helson set which was not of uniqueness and so
automatically not of synthesis. In [2] Kaufman gave a substantially simpler
construction of such a set; his construction is now standard. It is natural
to ask whether there exist Helson sets which are of uniqueness but not of
synthesis; this has circulated as an open question. The answer is “yes” and
was also given in [3, pp. 87–92] but seems to have got lost in the depths of
that rather long paper. Furthermore, the proof depends on the methods of
[3], which few people would now wish to master. The object of this note is
to give a proof using the methods of [2].

We begin by recalling two definitions.

Definition 1. A closed set F ⊂ T is called Helson if, for every measure
µ ∈ M(F ), we have supn∈Z |µ̂(n)| = ‖µ‖.

Definition 2. A closed set F ⊂ T is called Dirichlet if

lim inf
|n|→∞

sup
t∈F

|eint − 1| = 0 .

We are going to prove the following theorem.

Theorem 1. Any closed set of multiplicity in T contains a Helson 1 set
which is of uniqueness but not of synthesis.

(The set constructed is, in fact, weak Kronecker in the sense of [3].)
Theorem 1 follows at once from the next theorem.

Theorem 2. Any closed nowhere dense set of multiplicity in T contains
a Helson 1 set which is Dirichlet but not of synthesis.

P r o o f. We know that every Dirichlet set is of uniqueness (see e.g. [1,
p. 97]). On the other hand, any closed set of multiplicity contains a nowhere
dense set of multiplicity.

The proof of Theorem 2 takes up the rest of this note.
Let F be a nowhere dense set of multiplicity. Then F supports a pseudo-

function S, i.e., a distribution such that Ŝ(n) → 0. Let χn(t) = eint. By
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considering λχmS we may suppose that Ŝ(0) = 1 and |Ŝ(n)| ≤ 1 for every n.
Also, we can find a sequence f1, f2, . . . with fj : T → C such that |fj(t)| = 1
for all t ∈ T and such that given any f : T → C with |f(t)| = 1 for all t ∈ T
and any ε > 0 there is a j such that |fj(t)− f(t)| < ε for all t ∈ F .

Our proof will mimic Kaufman’s proof of the existence of Helson sets
of multiplicity [2] but will have an extra twist. Let S0 = S and F0 = F .
We construct pseudofunctions S1, S2, . . . , closed sets F1, F2, . . . and integers
M(0) = 1,M(1), . . . , with M(j) ≥ M(j − 1) + 1, such that for all j,

(1) supp Sj ⊂ Fj ,

(2) Fj ⊂ Fj−1,

(3) |Ŝj(r)− Ŝj−1(r)| ≤ 2−j−2 for all |r| ≤ M(j − 1),

(4) |Ŝj(r)| ≤ 2− 2j ,

(5) there are an(n), an+1(n), . . . , aM(2n)(n) ≥ 0 such that

(a)
M(2n)∑
k=n

ak(n) = 1,

(b) sup
t∈F2n

∣∣∣fn(t)−
M(2n)∑
k=n

ak(n)χk(t)
∣∣∣ ≤ 2−n,

(c) if ak(n) 6= 0 then |Ŝ2n(k)| ≤ 2−n−1,

(6) there exists an L(n) > 1 such that sup
t∈F2n+1

|1− χL(n)(t)| ≤ 2−n.

Let us see the consequences of these facts. By (3) and (4), Sj converges
to a pseudomeasure T (in the sense that Ŝj(r) → T̂ (r) for each r) with
supr∈Z |T̂ (r) − Ŝj(r)| ≤ 2−1. Since S0 = S and 1 = Ŝ(0) ≥ |Ŝ(r)| for all r,
it follows that |T̂ (0)| ≥ 2−1, so T is not zero.

By (1) and (2), supp T ⊂ Fj for each j. Thus by (5)(b)

lim
n→∞

sup
t∈supp T

∣∣∣fn(t)−
M(2n)∑
k=n

ak(n)χk(t)
∣∣∣ = 0

Hence by standard arguments (using the theorems of Radon–Nikodym and
Lusin) suppT is Helson 1. We also note that (6) gives

lim
n→∞

sup
t∈supp T

|1− χL(n)(t)| = 0

so, since L(n) is never zero, supp T is Dirichlet.
To see that supp T is not of synthesis it is sufficient to show that T is

not a measure. (If E is a Helson set which is of synthesis then M(E) =
C∗(E) = A∗(E) = PM(E) (see e.g. [1, p. 61]) and E cannot support a true
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pseudomeasure). We do this by using (3) together with (5)(b) and (c) to
obtain

(b′) sup
t∈supp T

∣∣∣fn(t)−
M(2n)∑
k=n

ak(n)χk(t)
∣∣∣ ≤ 2−n ,

(c′) if ak(n) 6= 0 then |T̂ (k)| ≤ 2−n .

Thus, if T = µ is a measure we have from (5)(a) and (b′)∣∣∣ ∫
fn dµ−

M(2n)∑
k=n

ak(n)T̂ (k)
∣∣∣ ≤ 2−n‖µ‖,

so by (c′) ∣∣∣ ∫
fn dµ

∣∣∣ ≤ 2−n + 2−n‖µ‖.

Thus, if f is any continuous function f : T → C with |f(t)| = 1 for all t ∈ T
we see, by considering a sequence n(r) →∞ with supt∈F |fn(r)(t)− f(t)| →
0, that

∫
f dµ = 0. Therefore µ = 0, which is impossible since |µ̂(0)| ≥ 2−1.

Our proof will thus be complete if we can show how to handle the induc-
tive steps required to obtain conditions (1) to (6). We require two different
constructions according as j is even (when we need to satisfy (1) to (5) but
not (6)) or odd (when we need to satisfy (1) to (4) and (6) but not (5)).
This will be done in the two lemmas that follow.

If j is even we follow the standard Kaufman proof.

Lemma 1. Suppose S is a pseudofunction, M a positive integer ,
f : T → C a continuous function with |f(t)| = 1 for all t ∈ T and ε ≥ 0.
Then we can find a pseudofunction T such that

(1′) supp T ⊂ suppS,

(3′) |Ŝ(r)− T̂ (r)| ≤ ε for all r,

(4′) |T̂ (r)| ≤ sup
n∈Z

|Ŝ(n)|+ ε for all r,

(5′) there are aM , aM+1, . . . , aP ≥ 0 such that

(a)
P∑

k=M

ak = 1,

(b) sup
t∈supp T

∣∣∣f(t)−
P∑

k=M

akχk(t)| ≤ ε,

(c) if ak 6= 0 then |T̂ (k)| ≤ ε.
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P r o o f. Let δ ≥ 0 be a very small number, to be determined later. Then
by Kaufman’s fundamental construction we can find an A(δ) such that if
η > 0 and N are chosen independently of δ we can find an F : T → R which
is a C∞ function, F̂ (0) = 1, and

(A) |F̂ (r)| ≤ δ for all |r| ≥ 1,

(B) if r1, r2 ∈ Z are such that |r1−r2| < 2N +2 then min(|F̂ (r1)|, |F̂ (r2)|)
≤ η,

(C)
∑
r∈Z
|F̂ (r)| ≤ A(δ),

(D) there are aM , aM+1, . . . , aP ≥ 0 such that

(a)
P∑

k=M

ak = 1,

(b) sup
t∈supp F

∣∣∣f(t)−
P∑

k=M

akχk(t)
∣∣∣ ≤ ε.

Now let T = FS. Since F̂ (0) = 1 we have, using (A), (B) and (C),

|Ŝ(r)− T̂ (r)| =
∣∣∣∑
k 6=0

F̂ (k)Ŝ(r − k)
∣∣∣ ≤ ∑

k 6=0

|Ŝ(r − k)| |F̂ (k)|

≤
∑
|n|≤N

|Ŝ(n)|η + ( sup
|n|≤N

|Ŝ(n)|)δ + ( sup
|n|>N

|Ŝ(n)|)A(δ) .

But Ŝ(n) → 0 as |n| → ∞, so, provided that N is large enough and η small
enough,

|Ŝ(r)− T̂ (r)| ≤ 2δ sup
n∈Z

|Ŝ(n)| for all r .

Hence, choosing δ sufficiently small we have

|Ŝ(r)− T̂ (r)| < ε for all r .

Thus (3′) and (4′) are satisfied. Since T = FS, suppT ⊂ suppS and
suppT ⊂ suppF , so (1′) and (5′) are satisfied. Finally, since F is C∞

and S is a pseudofunction it follows by simple estimates that T = FS is a
pseudofunction.

In the inductive step with j = 2n we take M = n, ε = 2−n, f = fn,
M(2n) = P , S = Sj−1, Sj = T . Thus conditions (1) to (5) are satisfied.

If j is odd we use the following lemma.

Lemma 2. Suppose S is a pseudofunction, M a positive integer and
1 > ε > 0. Then we can find a pseudofunction T such that

(1′′) supp T ⊂ suppS,
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(3′′) |Ŝ(r)− T̂ (r)| ≤ ε for all |r| < M ,

(4′′) |T̂ (r)| ≤ sup
n∈Z

|Ŝ(n)|+ ε for all r,

(5′′) there exists an L > 0 such that sup
t∈supp T

|1− χL(t)| ≤ ε.

P r o o f. Let g be a C∞ function such that g(t) ≥ 0 for all t ∈ T, g(t) = 0
for |t| ≥ ε/10 and ĝ(0) = 1. Let FL(t) = g(Lt) and T = FLS. If t ∈ suppT
then t ∈ suppFL, so that |1−χL(t)| ≤ ε. Thus (1′′) and (5′′) are automatic.
Now

T̂ (r) =
∑

k

F̂L(k)Ŝ(r − k) =
∑

k

ĝ(k)Ŝ(r − kL) ,∑
k

|ĝ(k)| < ∞, lim
|n|→∞

Ŝ(n) = 0, ĝ(0) = 1 .

Thus, provided L is large enough, we have |Ŝ(r) − T̂ (r)| ≤ ε for |r| < M

and in general |T̂ (r)| ≤ supn∈Z |Ŝ(n)|+ ε. Thus (3′′) and (4′′) are satisfied.
Finally, we observe that T̂ (r) → 0 as |r| → ∞, so T is a pseudofunction.

In the inductive step with j = 2n+1 we take ε = 2−n, S = Sj−1, Sj = T .
Thus conditions (1) to (4) and (6) are satisfied. This completes the proof of
Theorem 2 and concludes the note.

I should like to thank Professor Hartman for help in drafting this paper.

REFERENCES
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