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The Hardy space Hp(∆) for 0 < p < ∞ is the set of all holomorphic
functions on the open unit disk ∆ for which the norm

‖f‖Hp = sup
r<1

(

1

2π

2π
∫

0

|f(reiθ)|p dθ

)1/p

is finite. Wigley [7] showed that, for p ≥ 1, this Banach space can be given a
Banach algebra structure under the Duhamel product (we use “∗” to repre-
sent the product, although it is not the usual convolution of two functions):

(1) f ∗ g(z) =
d

dz

z
∫

0

f(z − t)g(t) dt =
z
∫

0

f(z − t)g′(t) dt + f(z)g(0) .

This is by no means the only natural multiplication that this vector space
could be given. The usual convolution of the boundary values of f on the set
T of complex numbers of absolute value 1 makes Hp(∆) into a semisimple
Banach algebra when p ≥ 1 [5].

In [6] the authors note that the Banach algebra Hp(∆) with the Duhamel
product has a singly generated Schauder basis. The question is posed
whether Hp(∆n) can be endowed with a Banach algebra structure for which
the natural basis is finitely generated. In this note we show that this is the
case, and we extend the result to the non-Banach space case of p < 1.
Moreover, the product we define on Hp(∆n) is a natural extension of the
Duhamel product on Hp(∆). This result follows from a more general argu-
ment on vector-valued analytic functions. We show that for an appropriate
topological algebra B the space Hp(∆,B) of B-valued analytic functions
for which the “usual” Hp norm is finite is a topological algebra under the
Duhamel product, and the radical of Hp(∆,B) is naturally isomorphic to
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the radical of B. The main tool in our proof is the nontangential maximal
function for B-valued analytic functions. Our proofs simplify those given in
[7] for the case B = C, and extend them to the case p < 1.

1. Main results. Let B be a complex topological vector space which is
a complete metric space such that the dual of B separates points of B, and
let Ω be a region in C. Then f : Ω → B is analytic if for every x∗ in the dual
of B, the function x∗(f(z)) is an analytic function from Ω to C. It can then
be shown that f is continuous in the metric topology of B and that the usual
line integrals one needs for the basic theorems of complex function theory
can be treated as Riemann integrals, with the Riemann sums converging in
the metric topology of B [3].

Fix p such that 0 < p ≤ ∞. If p ≥ 1, let B be a Banach space. If 0 <
p < 1, let B be a “p-normed F-space”: that is, B has a homogeneous form
‖ · ‖

B
such that ‖ · ‖p

B
satisfies the triangle inequality and gives a complete

metric on the space (see [8]). In this case, we also suppose that the dual of B
separates points of B. We define Hp(∆,B) to be the (Banach or F-) space
of B-valued analytic functions on ∆ for which the “usual” Hp norm is finite:

|||f |||Hp = sup
r<1

(

1

2π

2π
∫

0

‖f(reiθ)‖p
B
dθ

)1/p

.

Now suppose B is actually a (Banach or F-) algebra with identity e,
end let ∗B denote the algebra product on B. (A large part of the Gelfand
theory for commutative complex Banach algebras holds for such algebras,
as is shown in [8].) We define the Duhamel product on Hp(∆,B) by

(2) f ∗ g(z) =
d

dz

z
∫

0

f(z − t) ∗B g(t) dt .

Our main theorems are these:

Theorem 1. For 0 < p ≤ ∞, the product defined above is a bounded

bilinear form on Hp(∆,B) and hence Hp(∆,B) is a Banach algebra (for
p ≥ 1) or an F-algebra (for p < 1).

Theorem 2. For 0 < p < ∞, there is a natural isomorphism between

the maximal ideal space of Hp(∆,B) and that of B.

The Hardy space of the polydisc, Hp(∆n), is defined as those functions
analytic on ∆× . . .×∆ for which the following norm is finite:

‖f‖Hp

= sup
r1<1

. . . sup
rn<1

(

1

(2π)n

2π
∫

0

. . .
2π
∫

0

|f(r1e
iθ1 , . . . , rne

iθn)|p dθ1 . . . dθn

)1/p

.



HARDY SPACES 75

If p ≥ 1, this is a Banach space. If 0 < p < 1, this is a p-normed F-space,
and it is known that its dual separates points, as is shown in [2] and [4].
The product we define on this space is the following:

(3) f ∗ g(z1, . . . , zn)

=
∂n

∂z1 . . . ∂zn

zn
∫

0

. . .
z1
∫

0

f(z1 − t1, . . . , zn − tn)g(t1, . . . , tn) dt1 . . . dtn .

If Hp(∆n−1) is an algebra with the product (3), then by Theorem 1,
Hp(∆,Hp(∆n−1)) is an algebra. By Wigley’s result [7], or by taking B = C

in our Theorem 1, Hp(∆) is an algebra with the product (1), so an induc-
tion yields that Hp(∆,Hp(∆n−1)) is an algebra for all n ≥ 1. (We will
take Hp(∆n) = C when n = 0.) Moreover, since Hp(∆) is a local algebra
([7] or Theorem 2 with B = C), Theorem 2 and an induction show that
Hp(∆,Hp(∆n−1)) is also a local algebra for all n ≥ 1. We show in Section 5
that the algebras Hp(∆,Hp(∆n−1)) and Hp(∆n) are naturally isomorphic.
Thus we have:

Corollary 3. Hp(∆n), for 0 < p ≤ ∞, with the product given in (3),
is a local (Banach or F-) algebra.

For p = ∞, a separate argument is required, but an argument follow-
ing the lines of Wigley’s paper—embedding H∞ into the algebra of formal
power series in n variables—works here as well.

2. Hardy spaces of vector-valued functions. B-valued Hp theory
includes certain analogues of results known in the numerically-valued case,
which we present without proof.

An important and well-known [1, p. 36] estimate of the size of an Hp

function is

|f(z)| ≤

(

1 + |z|

1 − |z|

)1/p

‖f‖Hp .

This estimate is true for all p, 0 < p ≤ ∞. Its proof follows from the fact
that |f(z)|p is a subharmonic function of z for all holomorphic f and for all
positive p. We write this simply as

|f(z)| ≤ Cp(1 − |z|)−1/p‖f‖Hp

and an application of Cauchy’s estimates gives us its close relative,

|f ′(z)| ≤ Cp(1 − |z|)−(1+1/p)‖f‖Hp .

(Cp refers to any constant which depends only on p. We use the same sym-
bol to represent constants that are not necessarily the same from usage to
usage.)
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For B-valued holomorphic functions f , ‖f(z)‖p
B

is also subharmonic,
hence the analogues of these estimates hold:

‖f(z)‖B ≤ Cp(1 − |z|)−1/p|||f |||Hp ,(4)

‖f ′(z)‖B ≤ Cp(1 − |z|)−(1+1/p) |||f |||Hp .(5)

We will also need the nontangential maximal function of f . We define
this as follows: For each point z∗ on the boundary of ∆, we construct the
“cone” or “nontangential approach region” based at z∗ as shown in the figure
(see [9]).

The nontangential approach region

The nontangential maximal function of f at z∗ is defined as

Nf(z∗) = sup
z∈Γ (z∗)

|f(z)| .

(Of course, we can do the same with B-valued functions, using the norm
instead of the absolute value. In any case, Nf is itself real-valued.) The
following fact is well known (see [9]): f ∈ Hp(∆) if and only if Nf ∈ Lp(T).
In particular, we have the following (that it holds, even in the B-valued
case, involves once again noting that ‖f(z)‖p

B
is subharmonic):

(6)

(

1

2π

2π
∫

0

|Nf(eiθ)|p dθ

)1/p

≤ Cp|||f |||Hp .

3. Proof of Theorem 1. Splitting the integral for f ∗g into two pieces
and integrating one of them by parts, we have

f ∗ g(z) =

z/2
∫

0

f(z − t) ∗B g′(t) dt +
z
∫

z/2

f(z − t) ∗B g′(t) dt + f(z) ∗B g(0)

=

z/2
∫

0

f(z − t) ∗B g′(t) dt +
z
∫

z/2

f ′(z − t) ∗B g(t) dt

+ f(z) ∗B g(0) + f(0) ∗B g(z) − f(z/2) ∗B g(z/2)
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=

z/2
∫

0

f(z − t) ∗B g′(t) + g(z − t) ∗B f ′(t) dt

+ f(z) ∗B g(0) + f(0) ∗B g(z) − f(z/2) ∗B g(z/2) .

Now apply inequality (5) to the derivatives under the integral and inequality
(4) to the boundary term. This, along with the fact that |t| ≤ 1

2 |z| ≤
1
2 ,

gives

‖f ∗ g(z)‖B ≤ Cp

[

|||g|||Hp

z/2
∫

0

‖f(z − t)‖B dt+ |||f |||Hp

z/2
∫

0

‖g(z − t)‖B dt

+ |||g|||Hpf(z) + |||f |||Hpg(z) + |||f |||Hp |||g|||Hp

]

.

However, if z = reiθ, then z ∈ Γ (eiθ) and thus ‖f(z)‖B ≤ Nf(eiθ) and
‖g(z)‖B ≤ Ng(eiθ). Thus at each point z = reiθ,

‖f ∗ g(reiθ)‖B ≤ Cp[|||g|||HpNf(eiθ) + |||f |||HpNg(e
iθ) + |||f |||Hp |||g|||Hp ] .

Raising this to the pth power and integrating around the circle yields

|||f ∗ g(z)|||Hp ≤ Cp|||f |||Hp |||g|||Hp .

4. Proof of Theorem 2. Since polynomials are dense in Hp(∆,B)
for 0 < p < ∞, the product is completely determined by its action on the
powers of z. This action can be summarized by the following lemma, whose
proof is a straightforward calculation:

Lemma 4. anz
n ∗ amz

m =
n!m!

(n+m)!
(an ∗B am)zn+m.

We define Z∗n to be the n-fold ∗-product of Z with itself, where Z de-
notes the function in Hp(∆,B) whose value at point z is z times the identity
element of B. It follows from Lemma 4 that (e·z)n = n!Z∗n. Thus, if an ele-
ment f ∈ Hp(∆,B) can be written as a convergent series f(z) =

∑

∞

n=0 anz
n

for coefficients an ∈ B, then it can be written in terms of the algebra as

f =

∞
∑

n=0

AnZ
∗n

where An = n!an. If we also have g =
∑

∞

n=0BnZ
∗n, then

(7) f ∗ g =
(

∞
∑

n=0

AnZ
∗n

)

∗
(

∞
∑

n=0

BnZ
∗n

)

=
∞
∑

n=0

(

n
∑

k=0

An−k ∗B Bk

)

Z∗n .

In particular, for constant functions f = A0 · 1 , g = B0 · 1 in Hp(∆,B),
f ∗ g = (A0 ∗B B0) · 1 .
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Again, if the appropriate power series converge in Hp(∆,B), and if φ is
a bounded multiplicative linear functional on Hp(∆,B), then

φ(f) =

∞
∑

n=0

n!φ(anZ
∗n) =

∞
∑

n=0

n!φ(an · 1 )[φ(Z)]n .

Since φ is bounded, this last series must converge for all f ∈ Hp(∆,B).
Consider as a particular case f(z) =

∑

∞

n=0(e/n
2)zn, where e is the iden-

tity element of B. By direct calculation, this f ∈ Hp(∆,B) for all p, since
it actually defines a continuous function on the closure of ∆, and the power
series converges in the topology of Hp(∆,B). Then

φ(f) = φ(e · 1 )
∞
∑

n=0

n!

n2
[φ(Z)]n .

So either φ(e · 1 ) = 0, in which case φ is the zero functional, or the sum
must converge; but the only way for the sum to converge is for φ(Z) to be 0.

Thus for every polynomial f =
∑N

n=0AnZ
∗n in Hp(∆,B), φ(f) = φ(A0 ·1 ).

Since such polynomials are dense in Hp(∆,B) for 0 < p <∞, it follows from
(7) that φ must be a multiplicative linear functional on the subalgebra of
Hp(∆,B) consisting of the elements of the form a · 1 , a ∈ B. But this
subalgebra is simply an isomorphic copy of B, so that ψ : B → C given
by ψ(a) = φ(a · 1 ) defines a multiplicative linear functional on B, and the
correspondence φ ↔ ψ is a homeomorphism of the maximal ideal spaces of
Hp(∆,B) and B.

5. Proof of Corollary 3. The space Hp(∆,Hp(∆n−1)) can be iden-
tified with Hp(∆n). To do this, for each f(z1, . . . , zn) ∈ Hp(∆n), define
F : ∆→ Hp(∆n−1) by letting F (zn) be that function of z1, . . . , zn−1 whose
values are given by F (zn)(z1, . . . , zn−1) = f(z1, . . . , zn). Now let us compute
the norm of F :

|||F |||Hp(∆,Hp(∆n−1)) = sup
rn<1

(

1

2π

2π
∫

0

‖F (rne
iθn)‖p

Hp(∆n−1) dθn

)1/p

= sup
r1<1

. . . sup
rn<1

(

1

(2π)n

2π
∫

0

. . .
2π
∫

0

|f(r1e
iθ1 , . . . , rne

iθn)|p dθ1 . . . dθn

)1/p

= ‖f‖Hp(∆n) .

Thus, this map is an isometry of the two spaces.

Finally, a direct calculation shows that the product (3) on Hp(∆,
Hp(∆n−1)) agrees with the product (2) on Hp(∆n) under the correspon-
dence of the previous paragraph. Therefore these spaces are isomorphic as
Banach algebras.
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