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A NOTE ON PRIMES p WITH σ(pm) = zn

BY

MAOHUA LE (CHANGSHA)

Let pm be a power of a prime, and let σ(pm) denote the sum of divisors
of pm. Integer solutions (p, z,m, n) of the equation

(1) σ(pm) = zn, z > 1, m > 1, n > 1 ,

were investigated in many papers. By Nagell [6], (p, z,m, n) = (7, 20, 3, 2)
is the only solution of equation (1) with 2 - m. Takaku [8] proved that if
(p, z,m, n) is a solution with 2 |n, then p < 22m+1

. Chidambaraswawy and
Krishnaiah [1] improved this result to p < 22m

. However, Ljunggren [4]
and Rotkiewicz [7] showed that the only solutions (p, z,m, n) with 2 |n are
(3, 11, 4, 2) and (7, 20, 3, 2). Recently, it was proved by Takaku [9] that if
(p, z,m, n) is a solution of (1) such that

(2) m + 1 = qrm1 , q - r , q - m1 , q |n , q is an odd prime,

then p < mq2(2q)(m−1)qm

. In this note we prove the following result.

Theorem. Equation (1) has no solution (p, z,m, n) which satisfies (2)
with q ≡ 3 (mod 4) .

The proof depends on the next two lemmas, which follow immediately
from some old results of Gauss [2; Section 357] and Lucas [5] respectively.

Lemma 1. Let q be an odd prime with q ≡ 3 (mod 4), and let x, y be
coprime integers. If q > 3, then

xq − yq

x− y
= (A(x, y))2 + q(B(x, y))2,

where A(x, y), B(x, y) are coprime integers with 2A(x, y) ≡ 0 (mod x− y)
and 2B(x, y) ≡ 0 (mod xy(x + y)) .

Lemma 2. Let D be a non-square integer , and let x, y be coprime inte-
gers. Further , let ε = x + y

√
D, ε = x− y

√
D, and let

E(t) =
εt + εt

ε + ε
, F (t) =

εt − εt

ε− ε
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for any positive integer t with 2 - t. Then E(t), F (t) are integers. Moreover ,
if E(q)F (q) ≡ 0 (mod p) for some odd primes p, q, then either p = q or
p ≡ (D/p) (mod q), where (D/p) is the Legendre symbol.

P r o o f o f T h e o r e m. (1) can be written as

(3)
pm+1 − 1

p− 1
= zn, z > 1, m > 1, n > 1 .

Let (p, z,m, n) be an integer solution of (3) satisfying (2). By Lemma 4 of
[3], this is impossible for q = 3. Below we assume that q > 3.

If p = q, then q |n implies p2 | zn−1 (since p | zn−1). So (3) is impossible
in this case.

If p 6= q and pm1 6≡ 1 (mod q), then from (3) we get

pqr−1m1 − 1
p− 1

= zq
1

and

(4)
pm+1 − 1

pqr−1m1 − 1
= pqr−1m1(q−1) + . . . + pqr−1m1 + 1 = zq

2 ,

where z1, z2 are positive integers satisfying z1z2 = zn/q. Since p 6≡ 1
(mod q), we have p - (zq

2 − 1)/(z2 − 1) and pqr−1m1 | z2 − 1 by (4). It fol-
lows that

pm+1 − 1 = pqrm1 − 1 > zq
2 ≥ (pqr−1m1 + 1)q > pqrm1 ,

a contradiction.
If p 6= q, pm1 ≡ 1 (mod q) and q ≡ 3 (mod 4), then q -r implies r = sq−l

where s, l are positive integers with l < q. From (3) we get

(5)
pm1 − 1
p− 1

= qlzq
0 ,

pqim1 − 1
pqi−1m1 − 1

= qzq
i , i = 1, . . . , r,

where z0, z1, . . . , zr are positive integers satisfying qsz0z1 . . . zr = zn/q ,
2 -z0z1 . . . zr and q -z1 . . . zr. We see from (5) that p 6≡ ±1 (mod q). Since
r ≥ 1, by Lemma 1 we have

(6)
pqm1 − 1
pm1 − 1

= (A(pm1 , 1))2 + q(B(pm1 , 1))2 = qzq
1 ,

where A(pm1 , 1), B(pm1 , 1) are coprime integers satisfying

(7)
2A(pm1 , 1) ≡ 0 (mod pm1 − 1),
2B(pm1 , 1) ≡ 0 (mod pm1(pm1 + 1)) .

Hence

(B(pm1 , 1))2 + q

(
A(pm1 , 1)

q

)2

= zq
1 ,
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where B(pm1 , 1), A(pm1 , 1)/q are coprime integers. Since the class num-
ber of Q(

√
−q ) is less than q, it is prime to q. Therefore B(pm1 , 1) +

(A(pm1 , 1)/q)
√
−q is the qth power of an algebraic integer of Q(

√
−q ). Re-

calling that q > 3, we have

(8) B(pm1 , 1) +
A(pm1 , 1)

q

√
−q = (X1 + Y1

√
−q )q ,

where X1, Y1 are coprime integers satisfying

(9) X2
1 + qY 2

1 = z1 .

Let ε = X1 + Y1
√
−q, ε = X1 − Y1

√
−q. From (7) and (9) we get

(10) B(pm1 , 1) = X1

(
εq + εq

ε + ε

)
≡ 0 (mod pm1) .

Recalling that p 6≡ ±1 (mod q), by Lemma 2 we see from (10) that p -
(εq + εq)/(ε + ε) and pm1 |X1. If X1 = 0, then gcd(X1, Y1) = 1 shows
that Y1 = ±1 and z1 = q by (9), which is impossible. Hence X1 6= 0 and
|X1| ≥ pm1 . From (6) and (9) we get

pqm1 > qzq
1 > X2q

1 ≥ p2qm1 ,

a contradiction. Thus the theorem is proved.
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