COLLOQUIUM MATHEMATICUM

A NOTE ON PRIMES p WITH $\sigma\left(p^{m}\right)=z^{n}$
 BY
 MAOHUA LE (CHANGSHA)

Let p^{m} be a power of a prime, and let $\sigma\left(p^{m}\right)$ denote the sum of divisors of p^{m}. Integer solutions (p, z, m, n) of the equation

$$
\begin{equation*}
\sigma\left(p^{m}\right)=z^{n}, \quad z>1, m>1, n>1, \tag{1}
\end{equation*}
$$

were investigated in many papers. By Nagell $[6],(p, z, m, n)=(7,20,3,2)$ is the only solution of equation (1) with $2 \nmid m$. Takaku [8] proved that if (p, z, m, n) is a solution with $2 \mid n$, then $p<2^{2^{m+1}}$. Chidambaraswawy and Krishnaiah [1] improved this result to $p<2^{2^{m}}$. However, Ljunggren [4] and Rotkiewicz [7] showed that the only solutions (p, z, m, n) with $2 \mid n$ are $(3,11,4,2)$ and $(7,20,3,2)$. Recently, it was proved by Takaku [9] that if (p, z, m, n) is a solution of (1) such that
(2) $\quad m+1=q^{r} m_{1}, q \nmid r, q \nmid m_{1}, q \mid n, q$ is an odd prime,
then $p<m q^{2}(2 q)^{(m-1) q^{m}}$. In this note we prove the following result.
Theorem. Equation (1) has no solution (p, z, m, n) which satisfies (2) with $q \equiv 3(\bmod 4)$.

The proof depends on the next two lemmas, which follow immediately from some old results of Gauss [2; Section 357] and Lucas [5] respectively.

Lemma 1. Let q be an odd prime with $q \equiv 3(\bmod 4)$, and let x, y be coprime integers. If $q>3$, then

$$
\frac{x^{q}-y^{q}}{x-y}=(A(x, y))^{2}+q(B(x, y))^{2}
$$

where $A(x, y), B(x, y)$ are coprime integers with $2 A(x, y) \equiv 0(\bmod x-y)$ and $2 B(x, y) \equiv 0(\bmod x y(x+y))$.

Lemma 2. Let D be a non-square integer, and let x, y be coprime integers. Further, let $\varepsilon=x+y \sqrt{D}, \bar{\varepsilon}=x-y \sqrt{D}$, and let

$$
E(t)=\frac{\varepsilon^{t}+\bar{\varepsilon}^{t}}{\varepsilon+\bar{\varepsilon}}, \quad F(t)=\frac{\varepsilon^{t}-\bar{\varepsilon}^{t}}{\varepsilon-\bar{\varepsilon}}
$$

for any positive integer t with $2 \nmid t$. Then $E(t), F(t)$ are integers. Moreover, if $E(q) F(q) \equiv 0(\bmod p)$ for some odd primes p, q, then either $p=q$ or $p \equiv(D / p)(\bmod q)$, where (D / p) is the Legendre symbol.

Proof of Theorem. (1) can be written as

$$
\begin{equation*}
\frac{p^{m+1}-1}{p-1}=z^{n}, \quad z>1, m>1, n>1 . \tag{3}
\end{equation*}
$$

Let (p, z, m, n) be an integer solution of (3) satisfying (2). By Lemma 4 of [3], this is impossible for $q=3$. Below we assume that $q>3$.

If $p=q$, then $q \mid n$ implies $p^{2} \mid z^{n}-1\left(\right.$ since $\left.p \mid z^{n}-1\right)$. So (3) is impossible in this case.

If $p \neq q$ and $p^{m_{1}} \not \equiv 1(\bmod q)$, then from (3) we get

$$
\frac{p^{q^{r-1} m_{1}}-1}{p-1}=z_{1}^{q}
$$

and

$$
\begin{equation*}
\frac{p^{m+1}-1}{p^{q^{r-1} m_{1}}-1}=p^{q^{r-1} m_{1}(q-1)}+\ldots+p^{q^{r-1} m_{1}}+1=z_{2}^{q} \tag{4}
\end{equation*}
$$

where z_{1}, z_{2} are positive integers satisfying $z_{1} z_{2}=z^{n / q}$. Since $p \not \equiv 1$ $(\bmod q)$, we have $p \nmid\left(z_{2}^{q}-1\right) /\left(z_{2}-1\right)$ and $p^{q^{r-1} m_{1}} \mid z_{2}-1$ by (4). It follows that

$$
p^{m+1}-1=p^{q^{r} m_{1}}-1>z_{2}^{q} \geq\left(p^{q^{r-1} m_{1}}+1\right)^{q}>p^{q^{r} m_{1}}
$$

a contradiction.
If $p \neq q, p^{m_{1}} \equiv 1(\bmod q)$ and $q \equiv 3(\bmod 4)$, then $q \nmid r$ implies $r=s q-l$ where s, l are positive integers with $l<q$. From (3) we get

$$
\begin{equation*}
\frac{p^{m_{1}}-1}{p-1}=q^{l} z_{0}^{q}, \quad \frac{p^{q^{i} m_{1}}-1}{p^{q^{i-1} m_{1}}-1}=q z_{i}^{q}, \quad i=1, \ldots, r, \tag{5}
\end{equation*}
$$

where $z_{0}, z_{1}, \ldots, z_{r}$ are positive integers satisfying $q^{s} z_{0} z_{1} \ldots z_{r}=z^{n / q}$, $2 \nmid z_{0} z_{1} \ldots z_{r}$ and $q \nmid z_{1} \ldots z_{r}$. We see from (5) that $p \not \equiv \pm 1(\bmod q)$. Since $r \geq 1$, by Lemma 1 we have

$$
\begin{equation*}
\frac{p^{q m_{1}}-1}{p^{m_{1}}-1}=\left(A\left(p^{m_{1}}, 1\right)\right)^{2}+q\left(B\left(p^{m_{1}}, 1\right)\right)^{2}=q z_{1}^{q}, \tag{6}
\end{equation*}
$$

where $A\left(p^{m_{1}}, 1\right), B\left(p^{m_{1}}, 1\right)$ are coprime integers satisfying

$$
\begin{align*}
& 2 A\left(p^{m_{1}}, 1\right) \equiv 0\left(\bmod p^{m_{1}}-1\right) \\
& 2 B\left(p^{m_{1}}, 1\right) \equiv 0\left(\bmod p^{m_{1}}\left(p^{m_{1}}+1\right)\right) \tag{7}
\end{align*}
$$

Hence

$$
\left(B\left(p^{m_{1}}, 1\right)\right)^{2}+q\left(\frac{A\left(p^{m_{1}}, 1\right)}{q}\right)^{2}=z_{1}^{q}
$$

where $B\left(p^{m_{1}}, 1\right), A\left(p^{m_{1}}, 1\right) / q$ are coprime integers. Since the class number of $\mathrm{Q}(\sqrt{-q})$ is less than q, it is prime to q. Therefore $B\left(p^{m_{1}}, 1\right)+$ $\left(A\left(p^{m_{1}}, 1\right) / q\right) \sqrt{-q}$ is the q th power of an algebraic integer of $\mathrm{Q}(\sqrt{-q})$. Recalling that $q>3$, we have

$$
\begin{equation*}
B\left(p^{m_{1}}, 1\right)+\frac{A\left(p^{m_{1}}, 1\right)}{q} \sqrt{-q}=\left(X_{1}+Y_{1} \sqrt{-q}\right)^{q} \tag{8}
\end{equation*}
$$

where X_{1}, Y_{1} are coprime integers satisfying

$$
\begin{equation*}
X_{1}^{2}+q Y_{1}^{2}=z_{1} \tag{9}
\end{equation*}
$$

Let $\varepsilon=X_{1}+Y_{1} \sqrt{-q}, \bar{\varepsilon}=X_{1}-Y_{1} \sqrt{-q}$. From (7) and (9) we get

$$
\begin{equation*}
B\left(p^{m_{1}}, 1\right)=X_{1}\left(\frac{\varepsilon^{q}+\bar{\varepsilon}^{q}}{\varepsilon+\bar{\varepsilon}}\right) \equiv 0\left(\bmod p^{m_{1}}\right) \tag{10}
\end{equation*}
$$

Recalling that $p \not \equiv \pm 1(\bmod q)$, by Lemma 2 we see from (10) that $p \nmid$ $\left(\varepsilon^{q}+\bar{\varepsilon}^{q}\right) /(\varepsilon+\bar{\varepsilon})$ and $p^{m_{1}} \mid X_{1}$. If $X_{1}=0$, then $\operatorname{gcd}\left(X_{1}, Y_{1}\right)=1$ shows that $Y_{1}= \pm 1$ and $z_{1}=q$ by (9), which is impossible. Hence $X_{1} \neq 0$ and $\left|X_{1}\right| \geq p^{m_{1}}$. From (6) and (9) we get

$$
p^{q m_{1}}>q z_{1}^{q}>X_{1}^{2 q} \geq p^{2 q m_{1}}
$$

a contradiction. Thus the theorem is proved.
Acknowledgment. The author would like to thank the referee for his valuable suggestions.

REFERENCES

[1] J. Chidambaraswawy and P. Krishnaiah, On primes p with $\sigma\left(p^{\alpha}\right)=m^{2}$, Proc. Amer. Math. Soc. 101 (1987), 625-628.
[2] C. F. Gauss, Disquisitiones Arithmeticae, Fleischer, Leipzig 1801.
[3] K. Inkeri, On the diophantine equation $a\left(x^{n}-1\right) /(x-1)=y^{m}$, Acta Arith. 21 (1972), 299-311.
[4] W. Ljunggren, Some theorems on indeterminate equations of the form $\left(x^{n}-1\right)$ / $(x-1)=y^{q}$, Norsk. Mat. Tidsskr. 25 (1943), 17-20 (in Norwegian).
[5] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 289-321.
[6] T. Nagell, Sur l'équation indéterminée $\left(x^{n}-1\right) /(x-1)=y^{2}$, Norsk Mat. Forenings Skr. (I) No. 3 (1921), 17 pp.
[7] A. Rotkiewicz, Note on the diophantine equation $1+x+x^{2}+\ldots+x^{n}=y^{m}$, Elemente Math. 42 (1987), 76.
[8] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect squares, Colloq. Math. 49 (1984), 117-121.
[9] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect power numbers, Colloq. Math. 52 (1987), 319-323.

RESEARCH DEPARTMENT
CHANGSHA RAILWAY INSTITUTE
CHANGSHA, HUNAN, CHINA

