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SOME INDEFINITE METRICS AND COVARIANT DERIVATIVES
OF THEIR CURVATURE TENSORS

BY

W. ROTER (WROCLAW)

1. Introduction. Let (M, g) be a Riemannian or pseudo-Riemannian
manifold.

We denote its curvature tensor, Ricci tensor, scalar curvature and Weyl
conformal curvature tensor by R, S, K and C respectively, while V stands
for covariant differentiation with respect to g.

Nomizu and Ozeki proved the following remarkable result [11]:

THEOREM A. In a Riemannian manifold, if VIR = 0 for some t > 1,
then VR = 0.

Tanno extended this theorem as follows:

THEOREM B (see [17], Theorem 2). Let (M, g) be a Riemannian mani-
fold.

(a) If VES =0 for some t > 1, then V.S = 0.

(b) If VIC = 0 for some t > 1, then VC = 0.

(c) If VIK = 0 for some t > 1, then K = constant.

(d) If VIP = 0 for some t > 1, then VP = 0 and VR = 0, where P
denotes the Weyl projective curvature tensor of (M,g).

Moreover, investigating Riemannian manifolds with conformally related
metrics, Nickerson proved

THEOREM C (see [10], Theorem 4.1). A conformally recurrent manifold
with C' # 0 cannot be conformal to a Riemannian locally symmetric one.

In connection with the above theorems, an interesting question arises
whether these results are valid for pseudo-Riemannian manifolds.

Unfortunately, for a 4-dimensional indefinite metric Kaigorodov has
proved [8] that Theorem A fails in general.

The present paper deals with examples (Examples 1 and 2) of certain
n-dimensional (n > 4) metrics which show that neither Theorems A, B
(except case (c¢), which will be treated in a subsequent paper) nor Nickerson’s
Theorem C remain true for indefinite metrics.
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We shall also prove (Corollary 7) the existence of non-recurrent Ricci-
recurrent simple conformally recurrent metrics which are not conformal to
any essentially conformally symmetric one.

Throughout this paper, all manifolds under consideration are assumed
to be connected and of class C'™.

The present author is grateful to Professors K. Nomizu and U. Simon
whose interesting questions concerning Theorem A called the author’s
attention to problems considered in this paper.

2. Preliminaries. In the sequel we shall need the following definitions
and lemmas:

An n-dimensional (n > 4) Riemannian or pseudo-Riemannian manifold
is called conformally symmetric [2] if its Weyl conformal curvature tensor
(1) Chijk = Rhijr — ﬁ(gijshk — 9ikShj + gnkSij — gn;Sik)

K
+ m(gughk — 9nj9ik)
is parallel, i.e. if VC = 0.

Clearly, the class of conformally symmetric manifolds contains all locally
symmetric ones as well as all conformally flat manifolds of dimension n > 4.

The existence of essentially conformally symmetric manifolds, i.e. con-
formally symmetric manifolds which are neither conformally flat nor locally
symmetric, will be shown in Section 3 (see also [3] and [4]). Such manifolds
cannot have definite metrics [5].

Let M be a manifold with a (possibly indefinite) metric g. A smooth
tensor field T on M will be called recurrent if

(2) Tiyig iy jgg = Ty ig 1Ty g s

where the comma denotes (here and in the sequel) covariant differentiation
with respect to g.

Every parallel tensor field is therefore recurrent.

Condition (2) states that at each point x € M such that T'(z) # 0 there
exists a (unique) covariant vector a (called the recurrence vector of T') which
satisfies

(3) Tz = CLlTi

The above definition of recurrency differs slightly from the classical one,
i.e. that given by (3). Obviously, both definitions are equivalent on the
subset of M where T' does not vanish.

A Riemannian or pseudo-Riemannian manifold (M, g) will be called re-
current [18] (Ricci-recurrent [12]) if its curvature tensor (Ricci tensor) is
recurrent.

1oyl Lo *
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Following Adati and Miyazawa [1], an n-dimensional (n > 4) manifold
with a possibly indefinite metric will be called conformally recurrent if its
Weyl conformal curvature tensor is recurrent.

Clearly, the class of conformally recurrent manifolds contains all confor-
mally symmetric ones as well as all recurrent manifolds of dimension n > 4.

A conformally recurrent manifold (M, g) is said to be simple if its metric
is locally conformal to a non-conformally flat conformally symmetric one,
i.e., if for each point * € M there exist a neighbourhood U of x and a
function p on U such that § = (exp 2p)g is a non-conformally flat conformally
symmetric metric.

Obviously, every non-conformally flat conformally symmetric manifold
is necessarily simple conformally recurrent.

Simple conformally recurrent manifolds can be characterized as follows:

LEMMA 1 (see [14], Theorem 1). A conformally recurrent manifold is
simple conformally recurrent if and only if (i) C # 0 everywhere (which, in
view of (2), implies

(4) Chijk,i = a1Chijk

for some vector field aj, the recurrence vector of C), (ii) the recurrence
vector is locally a gradient (a;; = aj;), and (iii) the Ricci tensor S is a
Codazzi tensor (Sij; = Sii ;).

The existence of non-simple conformally recurrent metrics with C' # 0
has been established in [15].

In the general case, we have

LEMMA 2 (see [13], Theorem 1). Let (M, g) be conformally recurrent. If
M admits a function p such that (M,q) with g = (exp2p)g is conformally
recurrent, then

(e) PiC"ijk + piCligt + puCMiy =0
everywhere on M, p; = 0;p.

(h) At each point x € M such that C(x) # 0 we have a; = a; — 4p; and
p'pr =0, @; and a; being the recurrence vectors of C and C' respectively.

LEMMA 3 (see [13], Theorem 2). Let (M, g) be conformally recurrent. If
p is a function on M satisfying condition (e), then (M,qg) with g = (exp 2p)g
is conformally recurrent.

LEMMA 4 (see [13], Theorem 3). Let (M,g) and (M,q) be conformally
symmetric. If g = (exp2p)g and p is a non-constant function on M, then
both (M, g) and (M,q) are conformally flat.

The following lemma is a generalization of a result of Matsumoto [9]:
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LEMMA 5. Let (M, g) be a Riemannian or pseudo-Riemannian manifold
with dim M > 3. Then for each t > 1,

VP =0 ifand onlyif V'R =0.
Proof. Suppose that VP = 0. Then, by the definition of P, we have

1
Rhijiqr...q0 = 1 1(ghl5ij,q1...qt — 9njSitar...q) »
whence,
1
Shl7q1...qt = EKJIL..thhl .
. . . _ 1 . . 1
But the last equation, in view of S";, = 5K ;, implies 5K 4, ¢,

%K,lqz...qt- Hence, Shi,q,..q; = 0 and, consequently, V!R = 0. The con-
verse implication is trivial. This completes the proof.

Remark 1. Lemma 5 seems to belong to the folklore. We have included
its proof for completeness.

LEMMA 6. Let g;; = (exp2p)gi;. Then we have ([7], pp. 89-90):

h h
(6) Sij =8+ (n—=2)(pij — pipj) + @ + (n = 2)p"Dy)gi; ,
—h
(7) C ik =C"ji,

where p* = g""p,.

3. Basic examples. The following definitions will be convenient:

Let (M, g) be a pseudo-Riemannian manifold. If its curvature (Ricci)
tensor satisfies VIR = 0 (V'S = 0) for some ¢t > 2 and VI7'R (VI71S)
does not vanish everywhere, then (M,g) is called t-symmetric (Ricci t-
symmetric). Similarly, if for the Weyl conformal (projective) curvature ten-
sor the condition V!C' = 0 (V!P = 0) holds for some t > 2 and Vi~1C
(Vt=1P) does not vanish everywhere, then (M, g) is said to be conformally
(projectively) t-symmetric.

In this section each Latin index runs over 1,2,...,n, and each Greek
index over 2,3,...,n — 1. Moreover, the comma (as well as V) denotes
covariant differentiation with respect to g.

EXAMPLE 1. Let M denote the Fuclidean n-space (n > 4) endowed with
the indefinite metric g;; given by
(8) gijda'dr? = Q(dx")? + kyuda dxt 4 2dxtda™
(9) Q = (Akk,u + C)\M)I'AJZ'H 5
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where [kxy] is an arbitrary symmetric non-singular constant matriz, [cx,]
is an arbitrary symmetric non-zero constant matriz satisfying ko‘ﬁcag =0
with [kM] = [kxu) ™Y, and A is an arbitrary smooth non-constant function
of ' only. Then:

(i) M is essentially conformally symmetric.

(ii) M is Ricci-recurrent and its scalar curvature vanishes everywhere.

(iii) M is not recurrent, but for each x € M such that (VR)(x) # 0 there
exists a vector b which satisfies Rpijkim = bmPBRnijk,. The last condition
states that VR is recurrent.

(iv) If
t—1

(10) A= qu(xl)l,
1=0

where t > 2, q; = const. (i = 0,1,...,t — 1) and q.—1 # 0, then M is
t-symmetric and Ricci t-symmetric.

Proof. One can easily check that in the metric (8) the only Christoffel
symbols not identically zero are

Al 1 n|_1 n|_1

where the dot denotes partial differentiation with respect to coordinates.
Moreover, in view of the formula

1
Ryijr = i(ghk.ij + Gij.hk — Ghj.ik — Gik.hj)

com (UG- L0 HE)

it follows that the only components Rp;;r not identically zero are ([16],
p. 179)

(12) Rl)\y,l = %Q.)\,u~
It can also be found that
(13) Sll = %kaﬁQ.aﬁ

and that all other components of S are identically zero.
By an elementary computation, we can easily show that the only com-
ponents of C; VS, VR and VC not identically zero are [14]

1 1
Cl)\,ul = 5 (Q)\,u - kAu(kaﬁQ.a6)> ) Sll,j = §kaﬁQ.aﬁj7

(14) n—2

1 1 | .
Rixu,; = iQ./\uj; Cirpl,j = 3 <Q.>\uj - mkxu(/ﬂ BQ.aﬁj)) .
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Substituting (9) into (12), (13) and (14), we easily obtain

Sii=(n—2)A, Ry =Akxy+cap Ciapt = Cap,

(15)
Si,j=Mnm—2)A;, Ry =Akxu, Cirpry; =0,

which, since g!! = 0, implies (i) and (ii).

Moreover, using (11), Rixu1,; = A’é}kw and Si1,; = (n — 2)A’5]1-, one
can easily check that the only components of V'R and VS not identically
vanishing are

Rl)\u17q1...qt = A(t)(sl 51 . (5;tk>\u s

]_6 q1 7 q2
( ) Sll,ql...qt = (n - Q)A(t)5;16;2 T 6;t ’

where the prime ((f) resp.) indicates the ordinary derivative (of order t
resp.) with respect to z!.

Assume now that (10) holds. Then, in view of (16), we get VR = 0.
Since, by (10) and (16), V!~'R does not vanish, M is t-symmetric. More-
over, (16) yields V'S = 0, which, together with (10) and (16), shows that
M is also Ricci t-symmetric.

This completes the proof of (iv).

Suppose that M is recurrent. Then, because of (15) and (2) (with R
instead of T'), we obtain cagkx, = ciukag, Which, since ko‘ﬂcag = 0 by
assumption, implies ¢y, = 0, a contradiction. Thus, M cannot be recur-
rent. The second part of (iii) is an immediate consequence of Rix,1,1m =
%A"(LlnRu#Ll- This completes the proof.

Hence, we have

COROLLARY 1. For each n > 4 and for each t > 2, there exist
n-dimensional essentially conformally symmetric non-recurrent Ricci-recur-
rent metrics which are t-symmetric and Ricci t-symmetric.

Remark 2. It is easy to prove that for the metric (8), we have
index of [g;;] = index of [ky,] + 1,

the index of a symmetric matrix being understood as the number of negative
entries in its diagonal form (for details see Remark 1 of [6]).

Remark 3. Obviously, if Q = AkA#:):Ax“ (exp = 0) and [ky,] has the
properties stated in Example 1, then (15) yields

Rl)\}tl - Ak)\p,, Sll — (TL — 2)A’ Cl)\,u,l = 0’
Sll,j = (n - 2)"4/5]17 Rl)\,ul,l = Aléllk’)\'u.

Thus, in view of (10) and (16), we have
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COROLLARY 2. For each n > 4 and for each t > 2, there exist
n-dimensional conformally flat recurrent metrics which are t-symmetric and
Ricci t-symmetric.

Since a parallel tensor vanishes if it vanishes at some point, Lemma 5
yields

COROLLARY 3. A pseudo-Riemannian manifold of dimension n > 3 is
projectively t-symmetric if and only if it is t-symmetric.

Moreover, in view of Corollary 1, we get

COROLLARY 4. For each n > 4 and for each t > 2, there exist
n-dimensional essentially conformally symmetric Ricci-recurrent metrics
which are projectively t-symmetric. Such metrics are necessarily t-sym-
metric.

EXAMPLE 2. Let M = {(z',...,2") € R" : 2! > 0 and n > 4} be
endowed with the metric (8), where

(17) Q = (Aky, + Beyy )z ot

Assume moreover that [ky,] and [cx,] have the properties described in Fu-
ample 1, and A, B are smooth functions of x' only such that A does not
identically vanish, B # const., B # 0 everywhere and A # ¢B (¢ = const.).
Then:

(i) M is simple conformally recurrent.
(ii) M s Ricci-recurrent, non-recurrent and its scalar curvature van-
ishes.
(iii) If B = a(z!)*~!, where t > 2 and a = const. # 0, then V!C = 0
although Vi=1C # 0 everywhere.
(iv) If B is as above and

(t—1)(t+3)
A=——"——""
16(x1)?
then (M, g) admits a conformal change of metric g — g = (exp2p)g such
that (M,q) is locally symmetric.

Proof. Substituting (17) into (12), (13), and (14) we easily obtain
Sii=(n—-2)A, Riyxua = Akxy + Beny,  Ciaun = Bey,
Siiy=Mn—=2)A1, Ry = Ak, + Bicay, Ciauig = Bacay,
which, because of Cix,1,; = (log|B|)'6}Ciapr = aCiapu, shows that M is
conformally recurrent and its recurrence vector is given by a; = (log|B|)'d;.
Hence, in view of (18) and Lemma 1, M is simple conformally recurrent.

Moreover, equations (18) and g'' = 0 show that M is Ricci-recurrent and
that its scalar curvature vanishes everywhere.

(18)
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Assume now that M is recurrent. Then, because of (2) and (18), we get
(BA'—AB')é} ¢y, = 0. But this implies A’—(B’/B)A = 0 and, consequently,
we must have A = ¢B (¢ = const.), a contradiction. Hence, M cannot be
recurrent.

Using (11), (18) and Cixu1,; = B'd}cy, one can now easily check that
the only components of V!C not identically vanishing are

_ n)s1 51 1
Cl)‘/—“a‘]lu-‘]t =B 5(116(12 s 5qtc)\/,L )

which, since B = a(x!)!~! by assumption, completes the proof of (iii).

From (18) it follows that any smooth function of z! only (and in partic-
ular p = 1(t — 1) log 2') satisfies condition (e) of Lemma 2.

Thus, by Lemma 3, (M,g) with § = (exp2p)g = (z")*~1/2g is confor-
mally recurrent.

On the other hand, the recurrence vector of (M, g) is given by a; = tx_—lléjl,
which, in view of Lemma 2, shows that a; = 0.

Hence, (M,g) is conformally symmetric. It remains therefore to prove
that the Ricci tensor of (M, g) is parallel.

Since p; = 9ip =0 (i = 2,...,n), g*' =0 and S;; = (n — 2)A5i15]1-, it
follows that p"S,; as well as A;p = p"p, and Agp = p” . vanish everywhere.
Thus, equations (5) and (6) imply

Sijik = Sije — 2Pk Sij — PiSjk — PjSik + (n — 2)pi gk
+4(n — 2)pipjpr — 2(n — 2)(pipj.k + PjPik + PkPij) s
where the semicolon denotes covariant differentiation with respect to g.
Moreover, using (11) and p; = 0 (i = 2,...,n) again, one can easily check
that the only component of V S not identically vanishing is

511;1 =S, —4p1Su+ (n = 2)p11 +4(n — 2)29? —6(n —2)pip1,1-
But the last expression, in view of (11) and S11 = (n — 2) A, takes the form
(19) S = (n = 2)(p" = 6p'p" + 4(p')° — 44p" + A').

Using now the definitions of p and A one can easily verify that S is parallel.
This completes the proof.

Since in the above metric Rixui,q,..q0 = (A(t)k‘w + B(t)c,\#)éél .. .5;,
Example 2 yields

COROLLARY 5. For each n > 4 and for each t > 2, there exist
n-dimensional non-recurrent simple conformally recurrent Ricci-recurrent
non-t-symmetric metrics which are conformally t-symmetric and conformal
to metrics with parallel curvature tensor.

Remark 4. Assume that (M, g) has the properties described in Exam-
ple 2. If A = 1(z')™% and B = (2') 72, then, as one can easily verify, (M, g)
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is recurrent. Moreover, setting p = —% log 2!, we get a; = 0 and 511;1 =0.
Thus, we have

COROLLARY 6. For each n > 4, there exist n-dimensional non-confor-
mally flat recurrent metrics which are conformal to metrics with parallel
curvature tensor (cf. [10], Corollary 4.2).

Remark 5. Let p= i(t— 1)log z'. Denote by g the metric described in
(iv) of Example 2. Then (M,q), where g = (exp2p)g, is locally symmetric.
Assume that ¢ is a smooth function on M such that (M,g,) with g, =
(exp2q)g is conformally symmetric. Then, by Lemma 4, the condition g =
(exp2(p — q))g; implies ¢ = p+ ¢, where ¢ = const. Hence, by (19), (M,7;)
is locally symmetric too. This yields

COROLLARY 7. For each n > 4 and for each t > 2, there exist
n-dimensional non-recurrent simple conformally recurrent Ricci-recurrent
non-t-symmetric metrics which are conformally t-symmetric and not con-
formal to any essentially conformally symmetric metric.

Remark 6. Nickerson’s result (Theorem C) is a consequence of Lem-
ma 2. Indeed, the definition of a conformally recurrent manifold used in
Nickerson’s paper is given by (4) with a; # 0 at some point. Since the
considered manifold is not conformally flat by assumption, (4) yields C' # 0
everywhere. Assume now that (M,g) with § = (exp2p)g is conformally
symmetric. Then, by Lemma 2, we must have p"p,. = 0, which, since
a; = a; — 4p; and the metric is positive definite, leads immediately to
the assertion.
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