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1. Introduction. Let M be a Riemannian manifold with a possibly
indefinite metric g. A tensor field T of type (p,q) on M is called recurrent
([12]) if

i1...1 hi...h i1...7 hi...h
(1) T Zpklmkq,lT ! Piiegy — A sz;l,..k ™ Piedgl = 0

1--- q

where the comma denotes covariant differentiation with respect to g. If

i1...1 hi...h 01...1 hi...h
(2) T py kgL = T gk, T Ggam = 0,

1

then the tensor field T is called birecurrent. One can easily verify that (1)
implies (2), but the converse is false in general. Moreover, (1) yields that
at each x € M such that T'(x) # 0 there exists a unique covariant vector b
(called the recurrence vector of T') which satisfies

) Til...ipjlqu’l(aj) = (;U)Tz‘l...z‘pjl.._jq (x).

Analogously, if T'(x) # 0, then (2) yields that there exists a unique covariant
tensor of type (0,2) (called the tensor of birecurrence) which satisfies

(4) T 50 Gadm(X) = @y ()T, 5 ()

A Riemannian manifold of dimension n > 2 is called Ricci-recurrent ([11])
(birecurrent [8]) if its Ricci tensor is recurrent (if its curvature tensor is
birecurrent). Following Adati and Miyazawa ([1]), an n-dimensional (n > 4)
Riemannian manifold (M, g) will be called conformally recurrent if its Weyl
conformal curvature tensor

1
(5) Chijk = Rpijr — m[gi]‘th — gikRnj + gniRij — gnjRik]
(n — 1)(n — 2) gijghk gikGhj

is recurrent. In [12] the metric form of conformally recurrent Ricci-recurrent
manifolds has been obtained.
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In [2] and [9] the concept of conformally birecurrent manifold was intro-
duced. Those are Riemannian manifolds of dimension n > 4 with birecur-
rent Weyl conformal curvature tensor. That class contains all birecurrent
manifolds of dimension n > 4 as well as conformally recurrent ones. The
existence of essentially conformally birecurrent manifolds, i.e., conformally
birecurrent manifolds satisfying Chjk,im 7 0 which are neither conformally
recurrent nor birecurrent, was established in [3], [7], [5] for n =4, n = 2p
and n = 2p — 1 respectively. In all known examples the Ricci tensor is
recurrent.

In this paper we shall deal with conformally birecurrent and Ricci-
recurrent manifolds M with both the Weyl conformal curvature tensor and
the Ricci tensor nowhere vanishing. We shall prove that if dim M > 4, then
in some neighbourhood of a generic point there exists a non-trivial null par-
allel vector field. Moreover, an algebraic form of the curvature tensor will be
given. These are generalizations of some results of [12]. In the next paper
([6]) we shall consider conformally birecurrent manifolds admitting some
vector fields. Among other things we shall prove that for n > 4, if around
a generic point there exists a non-trivial null parallel vector field, then in
some neighbourhood the Ricci tensor is recurrent. Throughout this paper
all manifolds are assumed to be connected and smooth and their metrics are
not assumed to be definite.

2. Preliminaries. In the sequel we shall need the following lemmas.
LEMMA 1. The Weyl conformal curvature tensor satisfies
Chijk = —Cinjk = Cjkni, Crji = C i = C 45 =0,

Chijk + Chjki + Chrij =0,
n—3 1
— IRyin—Rip i — ———
n—2 | PF TR T o0 )

LEMMA 2 ([1], eq. 3.7 and [4], p. 91). The Weyl conformal curvature
tensor satisfies

(6) C"ijkr = (9ijRx —ginRj)|

1
(7) Chijig + Chiktj + Chitjx = ﬁ[ghjcrikl,r + gnkC" ity

™ I ™ ™
+ 90 C" ik — 9i5C" mitr — 9ikC higr — 9t C hjk,r] -

LeEmMMA 3 ([10], Proposition 2). Let M be a Riemannian manifold of
dimension n > 4. Assume that Rjjm) = Binfij on a subset U with
nowhere vanishing Ricci tensor, and Chijk im] = AimChijr on a subset V
with nowhere vanishing Weyl conformal curvature tensor. Then By, = 0
on U and Ay, =0 on V.

We shall often assume the following hypothesis:
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(A) (M, g)is a conformally birecurrent Ricci-recurrent manifold of dimen-
sion n > 4 with Weyl conformal curvature tensor and Ricci tensor
both nowhere vanishing.

Under hypothesis (A), in view of (4) and (3) we have
(8) Chijkeim = @imChijik ,
9) Riji=bRij, Rijim=bmRj,

where by, = bl,m + bib,, .
As a consequence of (8), (9), (5) and Lemma 3, we get

PROPOSITION. Under hypothesis (A) we have

(10) Chijk,im — Chiji,mi =0,
(11) Rijim — Rijmi =0,
(12) Rhijkim — Rhijkmi =0.

Hence, the tensors a;,, and by, defined by (8) and (9) are symmetric.

LEMMA 4. Under hypothesis (A), the manifold M is birecurrent iff aj, =
bim everywhere on M.

Proof. The “only if” part is obvious. On the other hand, by differen-
tiating (5) twice and making use of (8) and (9) we get R; = bR, R, =
bim R and

1
Rhijkim — @imRhijr = m(blm — Qi) |:ginhk: — gikRnj + gniRij

R
— gnjRik — m(gi]’ghk — gikghj):| .
This completes the proof.

LEMMA 5 ([10], Proposition 1). Let M be a Ricci-recurrent manifold such
that by(z) # 0 for some x € M. Then

(13) Ry R"; = RR;;
on M.

LEMMA 6. Under assumption (A) we have on M
(14) (aim — bim )R™Crijs =0,
(15) (aim — bim)R=10.

Proof. By a direct calculation, in view of (5), (11), (13) and the Ricci
identity, we find
(16)  RrmC"ijk + RriC ik
3—n
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which, by contraction with ¢™* and the use of Lemma 1, implies

3—n
1 e rijs — 4t — TIE
(17) R™C\j 2(n—1)(n—2)R(g]R nR;;)
Differentiating (17) covariantly and taking into account (9) and (17) we get
(18) R™Chijsg = iR Chrijs .

Differentiating (18), in virtue of (8), (9) and (18), we obtain (14). More-
over, substituting (17) into (14), we have (aim, — bim)R(Rgi; — nR;;) = 0.
Transvecting with R’ and applying (13) we easily obtain (15). This com-
pletes the proof.

LEMMA 7. Under assumption (A) we have on M
(@i — bim ) Rpyr C"3550°, = 0.

Proof. (15) and (16) yield
(19) (@im — bim) (RrnC"ijk + RriC" jie) = 0.
Permuting cyclically the indices n, j, k in (19) and adding the resulting equa-
tions to (19) we get
(20) (@1, — bim) (Ren C"ijke + RrjCitn + RpCT i) = 0.
Since R"; , = b,R"; = %biR, which follows from (9), by transvecting (20)
with b, = g¥"b,,,, in virtue of (15), we obtain

(21) (alm - blm)(ancrijsbsp - RTerinsbsp) =0
Symmetrizing in (j,7) and taking account of (19) we find
(22) (alm — blm)(ancrijsbSp + RTnCTjisbsp) =0.

Finally, adding (21) with ,n interchanged to (22) and using (19), we get
our lemma.

Assume that there exists x € M such that

(B) aim () — bim(z) # 0.
LEMMA 8. Under hypotheses (A) and (B) we have
R=0
and

RpC"iji + RinC" i = 0
in some neighbourhood of x.

Proof. In view of hypothesis (B) this is a simple consequence of (15)
and (16).

LEMMA 9. Under assumptions (A) and (B) we have
(23) arpRTxRtSCSijl =0



RICCI-RECURRENT MANIFOLDS 303

in some neighbourhood of x.

Proof. Substituting (6) into (7) and applying Lemma 8 we have
Chijk,g + Chikij + Chitj i

1
m[ghg’(Rik,l — R k) + gnie(Ra; — Rija)

+ gni(Rije — Rik,j) — 9ij(Rhiky — Rnik) — gie(Ruij — Rnji)
— git(Rhj e — Ruk,j)] -

Differentiating and making use of (8) and (9) we get

(24) a1m Chijk + ajmChiki + akm Chil;

— (91 (Rikbim — Ritbkm) + gnk (Ritbjm — Rijbim)

+ gni(Rijbem — Rikbjm) — 9ij (Rhkbim — Rhibrm)
— Gik(Rnibjm — Rhujbim) — Git(Rujbkm — Rukbjm)]
which, by transvection with Ckpqt, yields

I T T
(25) almchijrc pqt — ajmchilrc pqt + armC pthhilj

= m[(ghjblm — Gnibjm) RirC" pgt — (9ijbim — Girbjm) BirC" pgt
+ Chpqt (Ritbjm — Rijbim) — Clipgt (Rnibjm — Rnjbim)

+ (—gnjRit + griRij + 9ij Rni — 9itRuj ) brmC" pat] -

Changing in (25) the indices (h,i,7) to (t, ¢, p) respectively we get
(26)

r r r
almctqprc jih — Cme,cvtqlrct jih + a'rmC jithqlp
1

—5 [(9tpbim — 9t1bpm) RgrC” jin — (9qpbim — 9qibpm) RerC” jin
+ Ctjih(qubpm - qublm) - quih(Rtlbpm - Rtpblm)
+ (=gipRq + guRyp + gap Rt — g Riep)brmC" jin] -
Interchanging j and [ gives
(27)

ajmctqprcrlih - ametquCTlih + armcrlihc’tqu
1

n— 2 [(gtpbim — 9t5bpm) Rgr C" 1in — (9gpbim — 9qibpm) RerC" 1in
+ Ctlih(qubpm - qubjm)

— Caiin(Rejbpm — Ripbjm)
+ (_gtquj + g1 Rgp + ggpRej — gqutp)bTmCTlih] .
Adding (25) to (27) and subtracting (26) we get

(28)  apm (CrgirC" jin — CrqirC"1in)

= armCTjithqlp - armcrpqtchilj - armcrlihctqu
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1
+ m[(gh]’blm - ghlbjm)RirCqut - (gijblm - gilbjm)thCqut

+ Chpgt (Rithjm — Rijbim) — Cipgt (Rnibjm — Rpjbim)
+ (—gnjRit + g Rij + 9ij Rui — it Ryj ) brmC pgr
+ (gtpbjm - gtjbpM)Rqrcrlih - (gqpbjm - gqupm)RtrCrlih
+ Cuin(Rgjbpm — Repbjm) — Catin(Rijbpm — Ripbjm)
+ (=9t Rqj + 9tj Rap + gapRej — 9qj Rip)brmC uin
— (9tpbim — 911bpm ) RerC" jin + (9gpbim — 9q1bpm)RerC” jin
= Cjin(Rabpm — Rgpbim) + Cyjin(Rubpm — Ripbim)
— (=gtpRa + guRep + ggpRit — 9q1 Rip)brmC" jinl s
since Ctq1rC" jin = ChijrC 14t

On the other hand, applying the Ricci identity, (10), (5) and Lemma &,
we have

(29) CrijiC" gt + ChrjiC"igt + ChirtC" jgt + ChijrC gt
—1
B m[ghQRtrcﬁﬂ — gntRyq" Criji + RpgCtiji — RptCoiji
+ githrChrjl - githrChrjl + Riqchtjl — Ritchqjl
+ gqutrChirl - gthqTChirl + quchitl — Rthhiql
+ iRt Chijr — g1t Rg" Chijr + RigChijt — RitChijq] -

Symmetrizing (28) in (h,i) and (I, j), substituting (29), then contracting
the resulting equation with ¢"¢ (cf. [11], Lemma 9) and applying Lemmas
58, we get

(30) _ametrCrijl

n—3

= n_2 [blijrCTtip + bmeirCthl

+ bijerTtpi + bimerCTtlj]
n—3
n—2

1

+ m[Rw((n — 2)brmC" tp1 + 26, C" pit)
— Rll((n — 2)brmC’“tpj + 2brmC’pjt)
+ RtlbrmCiji + Rtjbrmcrlip + Rtibrmcrpjl] )

which, by further transvection with R, implies (23).

. n—3 r
Rptb,«mc ijl + 2mbtmerC a5l

LEMMA 10. Let ajm, Tpjin, bjm, Wpjin be numbers satisfying

(31) Tyjin = =Tjpin,  Whpjih = —Wipin,
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(32) ajmTorin — AkmLpjin = 0imWpkin — bemWhpjin -
Then ajmTprin = 0jmWpkin-

Proof. Symmetrizing (32) in (p,j) and using (31) we get
(33) @imTpkin + @pmTikin = 0jmWipkin + bpmWikin
whence, by interchanging j and k,

(34) armTpjin + apmTrjin = Okm Wpjin + bpm Wijin -
Adding (32), (33), (34) and applying (31) we get the assertion.

LEMMA 11. Under assumptions (A) and (B) the relations

n—3
(35) armC"ije = W(Rijbkm — Ritbjm),

(36) (n - 3)(quRtrerih - btqurerih + bhmRirCqut - bimtherqt)
= ijm(thCTiqt + Rqrcrtih> + RijbrmCThqt
- thbrmCTiqt + Rtjbrmcrqih - qubrmcrtih y

and
(37) _ametrCrijl + atmerCrijl
n—3
= n_29 (blijrCTitp - bijerritp + btmerCrijl - bmetTCTijl)
n—3
+ 2,n _ 2 (bimRtrCijl + btmerCTijl + bmei’l”Cthl)
n
+ —9 (RijbrmCTlpt - Rilbrmcrjpt)
1

+ m(RtlbrmCiji - Rplbrmcrjti + Rtj brmcrlip

- Rpjbrmcrlit + Rtibrmcrpjl - Rpib'rmcwtjl)
are satisfied in some neighbourhood of x.

Proof. Differentiating (6), then using (8), (9) and Lemma 8 we get
(35). Contracting (28) with ¢'? and making use of (35), Lemmas 7 and 8 we
obtain (36). Finally, alternating (30) in (¢, p), we have (37), which completes
the proof.

LEMMA 12. Under conditions (A) and (B), if armR"p, = 0, then
atqurC”"ijk =0on M.

Proof. Assume a,,(z) # 0. Transvecting (24) with R!,, in virtue of
Lemmas 5 and 8, we get

aijprCTkih - akaprCTjih
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-1
= 5 [bim (Bpn Bii — BpiRin) — bum (RpnBji — BpiRjn)]
It is easy to see that if we put
-1
j(Rthm' — RyiRin) = Workin

then, in view of Lemma 8, the assumptions of Lemma 10 are satisfied. Thus
we have

T
RpTC kih — Tpkih 3

-1
(38) aijprCTkih = mb]m<Rthkz - RpiRkh) )
whence, alternating in (p, k) and (h, i), we get
(39) ajm(RprCrkm — thCrikp) =0.

Applying this in (36), permuting cyclically the indices h, i, j and adding the
three resulting equations we obtain
(40) 2(” - 3)(bhmRiTCqut + biijrCrhqt + bijh/rCTiqt)

= RtjbrmCTqih - qubrmCTtih + Rthbrmcrqji

- thbrmCthi + RtibrmCthj - qubrmCTthj .

Now, changing in (36) and (40) the indices (q,t, j,i, h) to (I, 7,i,t,p) respec-
tively and substituting the obtained expressions into the first and second
rows of the right-hand side of (37) we get

(41) atmerCrijl - ametrCrijl = Rijbrmorlpt - Rilbrmcrjpt .

On the other hand, applying the Ricci identity to (10) and transvecting with
a"y, in virtue of (35) and (11), we find

n—3
aTthslmCsijk = 9 (RijbrtRTklm - RikatRlem) .

Hence, by the use of (5), (35) and Lemma 8, we have

(atm+(n — 3)bem) RirC"iji — (asr + (n — 3)by) Ry C" ik
- (n - 3)(Rijbrt0rklm - Rikbrtcrjlm)

n—3
n—2
Since (41) and (38) hold, the right-hand side of the above equation vanishes.
Symmetrizing the resulting equation in (m,i), in virtue of Lemma 8, we
obtain (am + (1 — 3)bim)RirC"ijr = 0. Assume that at some z € M we

have agm, + (7 — 3)byy,, = 0. Then (B) and (38) lead to
b
n—2

+

[bem (RijRit — RikRj1) — bu(RijRim — RikRjm)] -

(n = 3)RprC" kin, = (RiiRph — RinRpi)
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whence, by covariant differentiation and the use of (8) and (9), we have

1
n—2
Comparing the last result with (38) we get R, C"gin, = 0 at z. This com-
pletes the proof.

LeEMMA 13. Under hypotheses (A) and (B) suppose that R,;C" jp; = 0.
Then

(42) RijbrmC"ipt — RitbpmC" jpr = 0.

If, moreover, apy(x) # 0, then

(n = 3)aimRprC" i, = bim (Rii Rpn — Rin Rpi) -

n—3
(43) arpl g Crijt =~ bp(Rij Ry — RaRe;)

on some open U.

Proof. We set My,ijx = bpmC"iji. Then My = —Mpr; and
Mijk + Mpjki + Mpgi; = 0. In view of the assumptions, (36) and (37) can
be rewritten as

(44) RijMyhgt — RujMmigt = RijMmgni — Rej Mpmihi
(45) N(Rij Mmipt — RitMmjpt) + RuuMpmjpi — Rpi M jti

+R; Miip — Rpj Mot + Res Mppji — RpiMejr = 0.
Changing in (44) the indices (i, 7, h, q,t) to (t,i,p, j,1) respectively and ap-
plying the obtained expression to the last two terms in (45) we get
(46) (n = 1) (RijMpipe — Ryt M jpt)

+ RuMopjpi — RpiMojti + RejMmiip — Rpi Moiir = 0.
Alternating (46) in (¢,p) and (j,1) we have

(n — 1)(Rij Mpipt — RiMpjpt + RipMmsij — Rit Mipij)
— RyMyijp + Rpj Myt — Rip Mgy + Rt Mpp = 0.

Applying (44) to the first pair of terms in the (second) brackets we find that
the bracketed expression vanishes and, consequently,

(47) RyMopijp — RpiMmije = Rij My — Rpj Mmie -

Moreover, commuting in (47) ¢ into j and [, 7,4 into j,14,[ respectively, we
obtain

Ry M yjpi — RpiMpjvi = R Mojpr — RpiMpju

Ry Mpiip — Rpj Mt = Rei Mpmijp — Rpi Mot -

Finally, commuting in (44) the indices (j, g, h, %) into (i, p, j,1), we get

(49) Rii M jpt — Rji Minipt = RiiMoppji — Rpj My -

(48)
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Substituting (48) into (46) and taking into account equation (49) we obtain
(50) (n — 2)(Rig Mpupt — RiMmjpt) =0,

whence (42) follows.
On the other hand, transvecting (29) with a", and making use of (35)
and (42), we find
arpRTthijl - arpRTthijl
n—3
= 5 [bap(RijRu — RaRej) — bup(RijRg — RaRgj)]
which, in virtue of Lemma 10, implies (43).

Now we assume the following hypothesis:

(C) (M,g) is a conformally birecurrent and Ricci recurrent manifold of
dimension n > 4 with Weyl conformal curvature tensor and Ricci
tensor both nowhere vanishing. Moreover, there is x € M such that

A () — by (x) # 0.

LEMMA 14. Under hypothesis (C) let R;C" jiy = 0. Then
(51) armBR =0
on some open V 3 x.

Proof. We can assume aj,(x) # 0. Then, by Lemma 13, (43) is
satisfied on some U > x. For the set of points at which by, vanishes (51) is
obvious. Let y € U and by, (y) # 0. Transvecting (43) with C*,5. we have
arpR"4Cyi51C% ape = 0. Suppose that at y
(52) Csijlcsabc =0.

Differentiating (7) covariantly, making use of (8), then transvecting the ob-
tained equation with C?4., in virtue of (52), we get
1
armcrabcchijk = 77,7—3
Hence, by further transvection with a”, and symmetrization in (m, p), we
have

(Chabcarmcrijk - CiabcarmCThjk) .

n—4

n—3 (armCTabcaspCSijk + arpCTabcasmCSijk) =0.
This yields a,,C";r = 0 at y, which, in virtue of (35), is equivalent to
(53) R;ibrm — Rixbjm = 0.

Since by, (y) # 0, one can choose at y a vector t* such that bkpt’“tp = e,
le| = 1. Transvecting (53) with t¥t™ we get

(54) Rij = ekikj .
Applying this to (43) gives (51) at y. This completes the proof.
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LEMMA 15. Suppose that (C) and ajm(x) # 0 hold. Then

(55) armBR =0
and
(56) RiyC"jiu =0

in some neighbourhood of x.

Proof. This follows immediately from Lemmas 9, 12 and 14.

3. Main results. We are now in a position to prove

THEOREM 1. Suppose that under hypothesis (C) the inequalities R;j;(x)
# 0 and Rij;m(x) # 0 hold. Then rank R;; =1 and in some neighbourhood
of x there exists a non-trivial null parallel vector field.

Proof. Suppose aj,(z) = 0. Then, by (35), we have (53) at =, which
implies rank R;;(z) = 1. Thus assume that a;,(z) # 0. Then, by Lemma
15, we have (55) in some neighbourhood of z. Substituting (55) into (43)
we easily obtain rank R;;(x) = 1. Because of the recurrence of the Ricci
tensor its rank must be constant on M. But it was proved by Roter (cf.
[12], Proposition 1) that if a manifold admits a (0,2) symmetric recurrent
tensor of rank 1 and the recurrence vector is locally a gradient, then M
admits locally a parallel vector field. Together with (11), (54), (9) and (15),
this completes the proof.

Remark. The null parallel vector field we look for is of the form
v; = exp (—1b) ks,
where k; is defined by (54), b ; = b;, b; is the recurrence vector of R;;.

COROLLARY. Under the assumptions of Theorem 1 the scalar curvature
of M vanishes.

LEMMA 16. Suppose that under hypothesis (C) the inequalities ay, () #
0, Riji(x) # 0, Rijim(x) # 0 hold. Then

(57) Qnpjigt =RnpCliiqt — BhjChpiqt + RipChijqt — RijChpqt
+ RypChijt — RqiChipt + RipChiqj — RijChiqp =0
in some neighbourhood of x.
Proof. Applying (56) and (42) to (28) we obtain
(58) apm (CtqirC" jin — CtqrC" 1in)

T T r
= armc jithqlp - armc pthhilj - a’r‘mc lihctqu

1
+ m[chpqt(Rilbjm - Rz]blm) - Cipqt(Rhlbjm - thblm)

+ (—gnjRit + griRij + 9ij Rni — GitRpj ) brmC" pgr
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+ Ctlih(qu bpm - qubjm) - quih(Rtjbpm - Rtpbjm)
+ (95 Rap — 9q5 Rip)brmC"1in
- Ctjih(qubpm - qublm) + quih(Rtlbpm - Rtpblm)
— (9uRgp — 9 Rip)brmC" jin] -

Transvecting (58) with a!, and using (56) and (35) we get

r s I s
aTmC jihast ptq — armc pqtasvc jhi

1
+ 5 500" m (= Rij Chpgt + BnjClipgr + RapCrjin — RepClojin)

+

n_9 [(athij - aithj)brmCqut - asvcstih(qubpm - qubjm)
+ asvcsqih(Rtjbpm - Rtpbjm) - (athqp - aqutp)brmerih] =0.
Alternating in (p, j) and using (42) we find

T s T s
- armC jihast pqt +armC pihasvc jqt

r s T s
+ armC pqtasvc Jih — armc thast pih

1
+ n— 2asvbsm(thCjiqt - th Cpiqt + Ripchth - Rijchpqt
+ RgpChijt — RyjChipt + RipChiqs — RijChigp)
2
+ 5 2050 Ctin (Rajbpm — Rapbjm) + asoCqin(Bejbym — Repbjm)] = 0,

which, by (35) and Theorem 1, yields

asvbsm(thCjiqt - th Cpiqt + Ripchth - Rijchpqt
+ RapChijt — RqjChipt + RipChiqj — Ry; Chiqp) =0.

Assume that at some z € M

(59) A5 b® =

We shall prove that at «

(60) b = 0.

Transvecting (58) with a’,, by (35), (42), (55) and (56), we get
n — 3)2

61 = (Rabjo — Rigbue) — bin(Rutby — Raghu)]

T r
+ aj'ubrmc lih — alvbrmc jih

n—3
_.I_
n

— 2bsvbsm(_gthil + g Rij + gij Rni — gaRrj) =0,

since rank I?;; = 1.
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On the other hand, transvecting (42) with b,,, we have Rijbrmbs, C™ e =
0. Therefore, transvecting (61) with &7, we find

brvbrm(Rhlbip - Rilbhp) — (n - 3)brvbrp(Rhlbim - Rilbhm) 5
whence we easily obtain
(62) (n — 4)byyb" , (Rpibip — Ritbpp) =0,

since byy,b" = by b"y,. Finally, transvecting (62) with b',, we get (60).

Now, in view of (60), relation (61) can be rewritten as

(n—3)?

ﬁ[bhm(Rilij — Rijbiy) — bim (Rribjo — Rijbiw)]

+ajvbrmCTlih - alvbrmcrjih =0.
On the other hand, transvecting (24) with b%,, we have
almbrvcrjih - ajmbrvcrlih
1
= (b (Rithjm — Rijbim) — biy(Rhibjm — Rijbim)] -

Comparing the last two results we get

(n —4)[bam (Ritbjo — Rijbiy) — bim (Ruibjo — Rpjbiw)] =0,

whence, multiplying by Rgp, in virtue of (54), we obtain

(63) (n — 4)(Rblij — ijblv)(Raibhm — Rahbim) =0.
Thus (24) and (63) imply
(64) a1mChijk + ajmChikt + akmChity = 0.

Moreover, from (35) it follows that a,,,C" i,k = 0.
Finally, transvecting (64) with C*,,, we can follow step by step the
proof of Lemma 9 to obtain

(65) CiqirC" jin — CiqjrCiin = 0.
Now, (57) follows from (29), (65) and (56). This completes the proof.

THEOREM 2. Under hypothesis (C) let the inequalities ajm(z) # 0,
Riji(z) # 0, Rijim(z) # 0 hold. Then, in some neighbourhood of x, the
curvature tensor takes the form

(66) thh]’ == ktkhqu - ktkquh + k’qkjsth - qu’hst]’ 5
where Sqj = p"p°Ryqjs, P kr =1 and R;; = ek;k;, |e| = 1.

Proof. Substituting (54) into (57), then alternating in (h,p,j) and
making use of [13], Lemma 4, we get

(67) kpcqthj + khcqtjp + kjcqtph =0.
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Since the scalar curvature vanishes and (54) is satisfied, from (67), by a
direct calculation, we have

kquthj + thqtjp + ijqtph =0.

Now, with the help of the last result, we can follow step by step a proof of
Walker ([15], p. 45 and [14], p. 155) to obtain (66).
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