COLLOQUIUM MATHEMATICUM

VOL. LXII

1991

A NOTE ON COUNTABLE CONNECTED LOCALLY CONNECTED URYSOHN ALMOST REGULAR SPACES

V. TZANNES (PATRAS)

вy

In [5] G. X. Ritter poses the question whether there exists a countable, connected, locally connected, Urysohn, almost regular space. This question has been answered in the affirmative in [1], [2] and [4].

In this note we give another example of such a space, using a different method: Starting from an arbitrary countable, connected, locally connected, Urysohn space ([3], [5]), we construct a new countable, connected, locally connected, Urysohn space S extendable to a countable, connected, locally connected, Urysohn and almost regular space S^* . This extension is constructed by adjoining a specific (extending) family of countable open non-accumulating filterbases on S.

A topological space X is called *Urysohn* if any two distinct points of X have disjoint closed neighbourhoods, and *almost regular* if there exists a dense subset of X at every point of which the space X is regular.

A) The space S. Let T be a countable, connected, locally connected Urysohn space and let p be a fixed point of T.

To every point $t \in T$ we attach a copy R_t of the space $R = T \setminus \{p\}$, identifying the point t with p.

In the set

$$I^1(T) = T \cup \bigcup_{t \in T} R_t$$

we define the following topology: The points in R_t , $t \in T$, keep their own bases of open neighbourhoods. For a point $t \in T$, let B(t) denote a basis of open neighbourhoods of t in T. If we set $B^-(p) = \{H = U \setminus \{p\} : U \in B(p)\}$ and $B_t^-(p)$ is the copy of $B^-(p)$ in R_t , then a basis of open neighbourhoods of $t \in T$ in $I^1(T)$ is

$$B^{1}(t) = \left\{ U \cup \bigcup_{s \in U \setminus \{t\}} R_{s} \cup H_{t} : U \in B(t), \ H_{t} \in B_{t}^{-}(p) \right\}.$$

It can be easily proved that $I^1(T)$ is countable, connected, locally connected and Urysohn.

In the same manner we construct the spaces $I^1(R_t) = R_t \cup \bigcup_{s \in R_t} R_s$, and in the set $I^2(T) = T \cup \bigcup_{t \in T} I^1(R_t)$ we define a topology in exactly the same manner as in $I^1(T)$.

By induction, we construct the spaces $I^3(T), \ldots, I^n(T), \ldots$, and we consider the set $S = \bigcup_{n=1}^{\infty} I^n(T)$. Observe that in the set J consisting of the initial space T and of all copies of $R = T \setminus \{p\}$ attached to the spaces T, $I^1(T), \ldots, I^n(T), \ldots$, the relation " $L \leq M$ if M is attached to L" is a partial order such that the set of all predecessors of any element of J is well-ordered by \leq . Hence (J, \leq) is a tree whose first level is the initial space T.

In S we define the following topology: $U \subseteq S$ is basic open in S if $U \cap I^n(T)$ is open in $I^n(T)$ for every n = 1, 2, ..., and there exists a natural number m such that for every $s \in U \cap (I^{m+1}(T) \setminus I^m(T))$ the tree whose first level is the copy R_s attached to s, is included in U. It can be easily proved that S is countable, connected, locally connected and Urysohn.

B) The space S^* . Let G be the set of all countable open non-accumulating filterbases of S "generated" by chains (i.e. well-ordered subsets) meeting every level of J. Thus, if $p \in G, p = \{p_k\}, k = 1, 2, \ldots$, then each p_k is an open set of S identified with the tree whose first level is the copy $p_k \cap I^{n+k-1}(T)$ attached to a point $t_{k-1} \in I^{n+k-2}(T)$. (For n = k = 1 we set $I^0(T) = T$.) Hence, $\operatorname{cl}_S p_k = p_k \cup \{t_{k-1}\}, p_{k+1} \subseteq \operatorname{cl}_S p_{k+1} \subseteq p_k$ for every $k = 1, 2, \ldots$, and $\bigcap_{k=1}^{\infty} p_k = \emptyset$.

Let G^* be the subset of G such that if $p = \{p_k\}, k = 1, 2, ...,$ then the points $t_{k-1}, k = 1, 2, ...,$ to which the sets p_k are attached correspond to a constant sequence in T.

Consider the set $S^* = S \cup G^*$. It can be easily proved that if U is an open subset of S and $U^* = U \cup \{p \in G^* : U \text{ includes a member of } p\}$, then $B = \{U^* : U \text{ open in } S\}$ is a basis for a topology in S^* . By the definition of G^* it follows that S^* is Hausdorff (for, if $p, q \in G^*$ and $p \neq q$ then there exist $p_k \in p$, $q_n \in q$ such that $p_k \cap q_n = \emptyset$, and if $p \in G^*$ and $x \in S$ then there exist $p_k \in p$ and an open neighbourhood U of x such that $p_k \cap U = \emptyset$).

Obviously, for every open set U^* of S^* , we have

(a)
$$\operatorname{cl}_{S^*} U^* = \operatorname{cl}_S U \cup (U^* \setminus U)$$

PROPOSITION. The space S^* is countable, connected, locally connected, Urysohn and almost regular.

Proof. S^* is countable because G^* is countable; connected, because S is connected and dense in S^* ; locally connected, because if U is open connected in S, then U^* is open connected in S^* (since U is dense in U^*); Urysohn, because S is Urysohn and from (a), if $x \in \operatorname{cl}_{S^*} U^* \setminus U^*$ then $x \in \operatorname{cl}_S U \setminus U$; regular at every $p \in S^* \setminus S$, because if U^* is an open set containing p, then there exists a natural number k such that $p_{k+1} \subseteq \operatorname{cl}_S p_{k+1} \subseteq U$, which implies $p \in p_{k+1}^* \subseteq \operatorname{cl}_{S^*} p_{k+1}^* \subseteq U^*$ (since, from (a), $\operatorname{cl}_{S^*} p_{k+1} = \operatorname{cl}_S p_{k+1} \cup (p_{k+1}^* \setminus p_{k+1}))$). Finally, S^* is almost regular, because for every open subset U^* of S^* , $U^* \cap (S^* \setminus S) \neq \emptyset$, that is, $S^* \setminus S$ is dense in S^* .

REFERENCES

- S. M. Boyles and G. X. Ritter, A connected locally connected countable space which is almost regular, Colloq. Math. 46 (1982), 189–195.
- [2] S. Iliadis and V. Tzannes, Spaces on which every continuous map into a given space is constant, Canad. J. Math. 38 (1986), 1281–1298.
- [3] F. B. Jones and A.H. Stone, Countable locally connected Urysohn spaces, Colloq. Math. 22 (1971), 239-244.
- [4] R. G. Ori and M. Rajagopalan, On countable connected locally connected almost regular Urysohn spaces, Gen. Topology Appl. 17 (1984), 157–171.
- [5] G. X. Ritter, A connected, locally connected countable Urysohn space, ibid. 7 (1977), 65–70.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITY OF PATRAS 261 10 PATRAS, GREECE

> Reçu par la Rédaction le 28.8.1989; en version modifiée le 30.8.1990