COLLOQUIUM MATHEMATICUM

VOL. LXII

1991

ON A COMPACTIFICATION OF THE HOMEOMORPHISM GROUP OF THE PSEUDO-ARC

BY KAZUHIRO KAWAMURA (TSUKUBA)

1. Introduction. A continuum means a compact connected metric space. For a continuum X, H(X) denotes the space of all homeomorphisms of X with the compact-open topology. It is well known that H(X) is a completely metrizable, separable topological group. J. Kennedy [8] considered a compactification of H(X) and studied its properties when X has various types of homogeneity. In this paper we are concerned with the compact-ification G_P of the homeomorphism group of the pseudo-arc P, which is obtained by the method of Kennedy. We prove that G_P is homeomorphic to the Hilbert cube. This is an easy consequence of a combination of the results of [2], Corollary 2, and [9], Theorem 1, but here we give a direct proof. The author wishes to thank the referee for pointing out the above reference [2]. We also prove that the remainder of H(P) in G_P contains many Hilbert cubes. It is known that H(P) contains no nondegenerate continua ([10]).

NOTATION AND BASIC DEFINITIONS 1.1. Let X be a continuum. Let $f: X \to X$ be a map. The graph of $f = \{(x, f(x)) | x \in X\} \subset X \times X$ is denoted by gr f.

A map $f: X \to X$ is called a *near-homeomorphism* if, for each $\varepsilon > 0$, there exists a homeomorphism $h: X \to X$ such that $d(f, h) = \sup\{d(f(x), h(x)) | x \in X\} < \varepsilon$.

The hyperspace C(X) is the space of all nonempty subcontinua of X with the Hausdorff metric d_H . The ε -neighbourhood of $K \in C(X)$ is denoted by $N_{\varepsilon}(K)$. The map $\varphi : H(X) \to C(X \times X)$ defined by $\varphi(f) = \operatorname{gr} f$ is an imbedding ([8], p. 43).

A compactification G_X of H(X) is defined by $cl_{C(X \times X)} \operatorname{im} \varphi$.

The space $C_{\pi}(X \times X)$ is defined by $C_{\pi}(X \times X) = \{K \in C(X \times X) | \pi_1(K) = \pi_2(K) = X\}$, where π_i is the projection onto the *i*th factor (i = 1, 2).

A surjective map $f: X \to Y$ induces $f^*: C_{\pi}(X \times X) \to C_{\pi}(Y \times Y)$

defined by $f^*(K) = (f \times f)(K)$.

A continuum is called *arc-like* if it is represented as the limit of an inverse sequence of arcs. A continuum X is called *hereditarily indecomposable* if, for each pair A, B of subcontinua of X such that $A \cap B \neq \emptyset$, either $A \subset B$ or $A \supset B$ holds.

A hereditarily indecomposable arc-like continuum is topologically unique and is called the *pseudo-arc* (denoted by P). It is known that P is the unique homogeneous arc-like continuum ([1]).

In what follows, the Hilbert cube is denoted by Q.

The following theorem is fundamental in this paper.

THEOREM 1.2 ([13]). $G_P = C_{\pi}(P \times P).$

2. G_P is homeomorphic to Q. First we prove the following result.

THEOREM 2.1. Let X be an arc-like continuum. Then $C_{\pi}(X \times X)$ is homeomorphic to Q.

Proof. Let $X = \lim_{\leftarrow} (I_n, p_{n,n+1})$, where each I_n is an arc and each $p_{n,n+1}: I_{n+1} \to I_n$ is surjective. Let $p_n: X_n \to I_n$ be the projection onto the *n*th factor.

Step 1. First we prove that $C_{\pi}(X \times X) = \lim_{\leftarrow} (C_{\pi}(I_n \times I_n), p_{n,n+1}^*).$ Notice that $p_{n,n+1}^* \circ p_{n+1}^* = p_n^*$. So the limit of p_n^* 's, $\lim_{\leftarrow} p_n^* : C_{\pi}(X \times X) \to \lim_{\leftarrow} (C_{\pi}(I_n \times I_n), p_{n,n+1}^*)$, is defined.

By [6], Proposition 1.2, $p_{n,n+1}^* : C_{\pi}(I_{n+1} \times I_{n+1}) \to C_{\pi}(I_n \times I_n)$ and $p_n^* : C_{\pi}(X \times X) \to C_{\pi}(I_n \times I_n)$ are surjective for each n. Using this fact, we can see that $\lim p_n^*$ is a homeomorphism.

Step 2. Next we show that if I is an arc, then $C_{\pi}(I \times I)$ is homeomorphic to Q. It is clear that $C_{\pi}(I \times I)$ has the following property:

(1) If K and L are subcontinua of $I \times I$ such that $K \subset L$ and $K \in C_{\pi}(I \times I)$, then $L \in C_{\pi}(I \times I)$.

Using (1), we can see that $C_{\pi}(I \times I)$ is an AR in the same way as in [7], Theorem 4.4 (see also Remark, p. 29 of [7]). Using the method of [5], Lemma 4.4, we have

(2) for each $\varepsilon > 0$, there exists a map $g : C_{\pi}(I \times I) \to C_{\pi}(I \times I)$ such that $d(g, \mathrm{id}) < \varepsilon$ and $\mathrm{im} g$ is a Z-set in $C_{\pi}(I \times I)$.

Hence $C_{\pi}(I \times I)$ has the disjoint *n*-cell property for each *n*, so by Toruńczyk's characterization theorem [14], $C_{\pi}(I \times I)$ is homeomorphic to Q.

Step 3. $p_{n,n+1}^* : C_{\pi}(I_{n+1} \times I_{n+1}) \to C_{\pi}(I_n \times I_n)$ is a cell-like map. To show this, first we prove that

(3) $p_{n,n+1}^*$ is a monotone map.

Take $K \in C_{\pi}(I_n \times I_n)$ and let $\Lambda_K = p_{n,n+1}^{*-1}(K)$. For each $A, B \in \Lambda_K$, $A \cap B \neq \emptyset$, because $\pi_1(A) = \pi_1(B) = \pi_2(A) = \pi_2(B) = I_{n+1}$. So there exist order arcs α_A , β_B from A to $A \cup B$ and from B to $A \cup B$ respectively. It is easy to see that $\alpha_A \cup \alpha_B \subset \Lambda_K$. Hence Λ_K is an arcwise connected continuum.

Consider the hyperspace $C(\Lambda_K)$ (note that $C(\Lambda_K) \subset C(C(I_n \times I_n)))$). Since Λ_K is a continuum, $C(\Lambda_K)$ has the trivial shape ([11], p. 180). Let $\sigma : C(C(I_n \times I_n)) \to C(I_n \times I_n)$ be the union function defined by $\sigma(\mathcal{A}) = \bigcup \mathcal{A}$ for each $\mathcal{A} \in C(C(I_n \times I_n))$.

Take any $\mathcal{A} \in C(\Lambda_K)$. Then $p_{n,n+1}(\mathcal{A}) = K$ for each $A \in \mathcal{A}$, and hence $p_{n,n+1}^*(\sigma(\mathcal{A})) = p_{n,n+1}(\bigcup \mathcal{A}) = K$. This means $\sigma(C(\Lambda_K)) \subset \Lambda_K$, and it is easy to see that $\sigma(\{A\}) = A$ for each $A \in \Lambda_K$. Hence $\sigma(C(\Lambda_K)) = \Lambda_K$ and $\sigma|C(\Lambda_K)$ is a retraction onto Λ_K . The trivial shape is preserved under any retraction, so Λ_K has the trivial shape. (See [12], Lemma 2.1, for that argument.)

 $\operatorname{Remark.}$ In fact, Λ_K is locally connected, and so $C(\Lambda_K)$ and Λ_K are AR's.

By Steps 2 and 3, each $p_{n,n+1}^*$ is a near-homeomorphism (see [4], pp. 105–106). Hence by [3] and Step 1, $C_{\pi}(X \times X)$ is homeomorphic to Q.

Combining Theorem 1.2 and Theorem 2.1, we have

COROLLARY 2.2. G_P is homeomorphic to Q.

3. The remainder of G_P

DEFINITION 3.1. Let X be a continuum. A continuous map $\mu : C(X) \rightarrow [0, 1]$ is called a *Whitney map* if it satisfies the following conditions:

1) $\mu(X) = 1$ and $\mu(\{x\}) = 0$ for each $x \in X$.

2) If $A, B \in C(X)$ satisfy $A \subsetneq B$, then $\mu(A) < \mu(B)$.

DEFINITION 3.2. Let X be a hereditarily indecomposable continuum, and fix a Whitney map $\mu : C(X) \to [0, 1]$.

1) Let p be a point of X. The order arc $\alpha_p : [0,1] \to C(X)$ is defined by $\alpha_p(0) = \{p\}$ and $\mu(\alpha_p(t)) = t$ for each $0 \le t \le 1$. By the hereditary indecomposability of X, α_p is uniquely determined ([7], (8.4), or [11], (1.61)).

2) Let $\alpha : X \times [0,1] \to C(X)$ be the map defined by $\alpha(p,t) = \alpha_p(t)$ for $(p,t) \in X \times [0,1]$. Then α is continuous ([11], (1.63), pp. 113–114).

LEMMA 3.3. Let $\varphi : H(P) \to C(P \times P)$ be the map defined in 1.1. Then im $\varphi = \{K \in C_{\pi}(P \times P) \mid \text{for each } p \in P, \#(P \times p \cap K) = \#(p \times P \cap K) = 1\},\$ where #A denotes the cardinality of a set A. Proof. It is clear that for each $f \in H(P)$ and for each $p \in P$, $\#(P \times p \cap \text{gr } f) = \#(p \times P \cap \text{gr } f) = 1$. Conversely, take any $K \in C_{\pi}(P \times P)$ such that for each $p \in P$, $\#(P \times p \cap K) = \#(p \times P \cap K) = 1$. By Theorem 1.2, $C_{\pi}(P \times P) = G_P$, hence there exists a sequence $(f_n) \subset H(P)$ such that $\text{gr } f_n \to K$ (convergence in the Hausdorff metric). We claim that

(1) (f_n) is equicontinuous.

Suppose not. Then there exists an $\varepsilon_0 > 0$ such that for each $n \ge 1$, there exist $x_n, y_n \in P$ and a subsequence (f_{k_n}) such that $d(x_n, y_n) < 1/n$ and $d(f_{k_n}(x_n), f_{k_n}(y_n)) \ge \varepsilon_0$. We may assume that $\lim x_n = \lim y_n = p$ and $\lim f_{k_n}(x_n) = x$, $\lim f_{k_n}(y_n) = y$. Then $(p, x) = \lim(x_n, f_{k_n}(x_n)) \in K$ and similarly $(p, y) \in K$. But $x \neq y$, which contradicts the hypothesis.

By (1) and the Ascoli–Arzelà theorem, the sequence (f_n) converges uniformly to a continuous map f. So $K = \operatorname{gr} f$. Since $\#(P \times p \cap K) = 1$, we have $f \in H(P)$. This completes the proof.

THEOREM 3.4. For each $\varepsilon > 0$, there exists a homotopy $H : G_P \times [0, 1] \rightarrow G_P$ which satisfies the following conditions.

(1) H is an ε -homotopy and $H_0 = \mathrm{id}$.

(2)
$$H(G_P \times (0,1]) \subset G_P - H(P).$$

Proof. Fix a Whitney map $\mu: C(P) \to [0,1]$. Take a small $t_0 > 0$ such that

(3) $0 < \operatorname{diam} A < \varepsilon$ for each $A \in \mu^{-1}(t_0)$.

Then $H: G_P \times [0,1] \to G_P$ is defined by

$$H(K,t) = \bigcup \{ x \times \alpha_y(t \cdot t_0) \mid (x,y) \in K \}.$$

We prove that $H(K,t) \in G_P$ for each (K,t). Take $(x_n, z_n) \in H(K,t)$ and assume that $(x_n, z_n) \to (x, z)$. There exist $(x_n, y_n) \in K$ such that $(x_n, z_n) \in x_n \times \alpha_{y_n}(t \cdot t_0)$. We may assume that $y_n \to y$. Then $(x_n, y_n) \to$ (x, y) and by the continuity of α , $(x, z) \in x \times \alpha_y(t \cdot t_0) \subset H(K, t)$. Hence H(K,t) is compact. It is clear that H(K,t) is connected and contains K. So $H(K,t) \in C_{\pi}(P \times P) = G_P$. Using the continuity of α again, we see that H is continuous. By (3), H is an ε -homotopy, and by Lemma 3.3, condition (2) is satisfied.

THEOREM 3.5. For each open subset U of $G_P - H(P)$, there exists an imbedding $i: Q \to U$ of Q into U.

Proof. Let V be any open subset of $G_P - H(P)$. There exists an open subset V of G_P such that $V \cap (G_P - H(P)) = U$. Since H(P) is dense in G_P , we can find $f \in H(P) \cap V$. Take $\varepsilon > 0$ sufficiently small so that $N_{\varepsilon}(\operatorname{gr} f) \subset V$. Let (p_n) be a sequence in P such that $p_n \to p \in P$. Take a sequence (K_n) of subcontinua of P such that

(1)
$$f(p_n) \in K_n \text{ and } \dim K_n \to 0 \text{ as } n \to \infty.$$

For each $n \ge 0$, let $\alpha_n : [0,1] \to C(K_n)$ be the order arc such that

(2)
$$\alpha_n(0) = \{f(p_n)\} \text{ and } \alpha_n(1) = K_n.$$

Let $Q' = I^{\infty}$. We define a map $i : Q' \to V$ by

$$i((t_n)) = \operatorname{gr} f \cup \bigcup_{n \ge 0} \{p_n\} \times \alpha_n(t_n) \quad \text{ for } (t_n)_{n \ge 0} \in Q'.$$

Then in the same way as in [7], Theorem 5.1, i is an imbedding. But $\operatorname{im} i \cap H(P) = \{\operatorname{gr} f\}$ by Lemma 3.3, and we can take a Hilbert cube $Q \subset Q'$ such that $i(Q) \subset V \cap (G_P - H(P)) = U$. This completes the proof.

Remark 3.6. H(P) has no interior points in G_P by Theorem 3.4. Therefore $G_P - H(P)$ is not completely metrizable, and hence is not a Q-manifold.

REFERENCES

- R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), 729–742.
- [2] P. L. Bowers, Dense embeddings of nowhere locally compact separable metric spaces, Topology Appl. 26 (1987), 1–12.
- [3] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483.
- [4] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Regional Conf. Ser. in Math. 28, Amer. Math. Soc. Providence, R.I., 1975.
- [5] D. W. Curtis and R. M. Schori, Hyperspaces which characterize simple homotopy type, Gen. Topology Appl. 6 (1976), 153-165.
- [6] K. Kawamura, Span zero continua and the pseudo-arc, Tsukuba J. Math. 14 (1990), 327–341.
- [7] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36.
- [8] J. Kennedy, Compactifying the space of homeomorphisms, Colloq. Math. 56 (1988), 41-58.
- J. Kennedy Phelps, Homogeneity and groups of homeomorphisms, Topology Proc. 6 (1981), 371–404.
- W. Lewis, Pseudo-arc and connectedness in homeomorphism groups, Proc. Amer. Math. Soc. 87 (1983), 745–748.
- [11] S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, 1978.
- [12] —, Induced universal maps and some hyperspaces with fixed point property, Proc. Amer. Math. Soc. 100 (1987), 749–754.
- [13] M. Smith, Concerning the homeomorphisms of the pseudo-arc X as a subspace of $C(X \times X)$, Houston J. Math. 12 (1986), 431–440.

K. KAWAMURA

 [14] H. Toruńczyk, On CE-images of the Hilbert cube and the characterization of Qmanifolds, Fund. Math. 106 (1980), 31-40.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA TSUKUBA-CITY, IBARAKI 305 JAPAN

> Reçu par la Rédaction le 24.10.1989; en version modifiée le 30.8.1990

330