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THE “COEXISTENCE PROBLEM” FOR CONSERVATIVE

DYNAMICAL SYSTEMS : A REVIEW

BY

JEAN-MARIE STR ELC YN (ROUEN)

Któż zbada l puszcz litewskich przepastne krainy,

Aż do samego środka, do ja̧dra gȩstwiny?

Rybak ledwie u brzegów nawiedza dno morza;

Myśliwiec kra̧ży ko l o puszcz litewskich  l oża,

Zna je ledwie po wierzchu, ich postać, ich lice,

Lecz obce mu ich wnȩtrzne serca tajemnice:

Wieść tylko albo bajka wie, co siȩ w nich dzieje.

A. Mickiewicz, Pan Tadeusz , ksiȩga IV (1)

1. Introduction. This is an informal and very concise personal account
about apparently simple conservative examples studied numerically in view
of the “coexistence problem”. My aim is to stress the fundamental character
of this problem and to indicate some appropriate examples together with
bibliographical references. I do not attempt to make this review exhaustive.
Taking into account the tremendous development of research in this area,
this is simply impossible, especially in so short a note. Nevertheless, the
reported bibliography together with the references that one can find in the
cited works cover a large part of publications on the subject.

This paper is addressed mainly to people interested in nonlinear dynam-
ics (from a theoretical as well as from a numerical point of view).

Throughout the paper, conservative means preserving a smooth mea-
sure. When the phase space is compact, this measure needs to be finite.
In all reported examples this measure is always either Lebesgue measure
or Liouville measure on a constant energy surface. When speaking about

(1)“Who has explored the deep abysses of the Lithuanian forests up to the very centre,
the kernel of the thicket? A fisherman is scarcely acquainted with the bottom of the sea
close to the shore; a huntsman skirts around the bed of the Lithuanian forests; he knows
them barely on the surface, their form and face, but the inner secrets of their heart are a
mystery to him; only rumour or fable knows what goes on within them.” A. Mickiewicz,
Pan Tadeusz , book IV (translated from Polish by George Rapall Noyes, J. M. Dent&Sons
Ltd., London and Toronto 1917).
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metric entropy, we always mean the entropy with respect to such a measure.
General aspects of numerical study of chaos in conservative dynamical

systems are described from the physicists’ point of view in the book [58]. In
that book one can find many concrete examples with numerically observed
coexistence as well as a good bibliography up to 1983.

Let us indicate also four more recent books [70], [81], [82] and [10],
also written from the physicists’ point of view ([70] is an extended English
translation of [82]).

The background required for reading the present paper is very limited.
Even a very fragmentary knowledge of any of these books is more than
sufficient to understand the major part of this review.

For me, a conservative dynamical system presents coexistence if the phase
space is a union of two subsets, both of positive Lebesgue measure, on one
of them all Lyapunov exponents are zero and on the other the maximal
Lyapunov exponents are strictly positive. Moreover, to avoid “simple co-
existence” we need that both sets be dense in the phase space. In this
last case we will speak about “true coexistence”, shortly TC. The set with
strictly positive Lyapunov exponents is also called a chaotic region and the
behaviour of the system on it is called chaotic.

The coexistence phenomenon was discovered numerically by M. Hénon
and C. Heiles in 1963 and published in their epoch-making paper [40]. From
that time, the incredible amount of numerical computations suggest that
typically TC takes place in conservative dynamical systems. The coexistence

problem consists in proving this. Up to now, one does not know any example

where this is proved . To my knowledge this kind of problem was first stated
by Ya. G. Sinai at the latest in 1969 (see Sec. 2.5 of [17] and Sec. 4 of [19]).

My terminology about “simple coexistence” is in fact misleading because
it is not easy to find an example with this phenomenon. The first explicit
smooth example of this kind was given in 1982 by F. Przytycki ([65]). Other,
piecewise linear, examples with coexistence can be found in [77].

We would like to stress the fact that, except for the above quoted ex-
amples and similar ones, we do not know any other concrete example where
coexistence is proved (2). The lack of methods allowing to prove coexistence
is the main mathematical problem in the area.

This problem is intimately related to the problem of recognizing systems
of linear differential equations having a positive maximal Lyapunov expo-
nent. Even in the two-dimensional case this problem is largely open (cf.
[31], see also [42]).

Thus we have here a truly paradoxical situation, as the famous Pesin
theory ([64], [47], [66]) gives a quite satisfactory description of the behaviour

(2) See Note added in proof.



COEXISTENCE PROBLEM 333

of a system restricted to its chaotic region, at least in low dimensions. As far
as the set of positive Lebesgue measure with vanishing Lyapunov exponents
is concerned, up to now its existence in smooth systems of the kind discussed
in this paper has always been obtained using the Kolmogorov–Arnold–Moser
(KAM) theory.

Let us note that by the Pesin entropy formula ([64], [47]) coexistence
implies that the metric entropy of the system is strictly positive. Except
for some piecewise linear examples and for examples from [65], also this last
property is not proved for any of the concrete examples described in this
survey.

In what follows, I will not consider the problem of proving the existence
of homoclinic orbits and of the associated shifts (cf. [62], [76]), nor the
problem of nonexistence of analytic first integrals (cf. [49]), despite their
evident relation to the coexistence problem. I will not consider any more
the problem of coexistence in the vicinity of a generic elliptic fixed point (cf.
[16], [62], [83]), or for C∞ generic perturbations of the standard twist map
(cf. [34], [56]), although these seem to be the major problems in this area.
I apologize also for the absence of the Newtonian many-body problem (cf.
[1]) in this note; that topic deserves a separate review.

I will consider different examples in the following order: standard maps,
piecewise linear mappings, piecewise smooth mappings and billiards,
smooth mappings, and finally flows, especially Hamiltonian ones. As far
as the mappings are concerned, I will consider only the two-dimensional
case because, at least nowadays, the understanding of the coexistence phe-
nomenon for them seems to be the heart of the problem.

Finally, let us note that a large part of the contemporary studies of non-
linear systems is devoted to dissipative systems and their (strange) attrac-
tors (cf. excellent collection of reprints [24], see also [44]). If we consider
such an attractor as the space itself on which the system acts, forgetting the
ambient space, we are, roughly speaking, in a virtually conservative situa-
tion. In this framework it is natural to ask about coexistence with respect
to the natural measures (invariant or not) on the attractor.

It is a pleasure for me to thank G. Benettin (University of Padova),
L. Galgani and A. Giorgilli (University of Milan), who introduced me to
the subject, as well as to A. Katok (Pennsylvania State University), who
taught me the Pesin theory. I also thank all of them for many years of col-
laboration. I thank D. Ornstein (Stanford University) and J.-P. Thouvenot
(University of Paris 6), who inspired me with the idea of writing this note. I
thank R. Douady (École Polytechnique, Palaiseau), L. M. Eliasson (Stock-
holm University), P. Biler (Wroc law University) and T. Nadzieja (Wroc law
University) for the critical reading of the manuscript. I thank also G. Con-
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topoulos (University of Athens) for his help in bibliographical queries.

2. Standard maps. It seems that the so-called “standard maps” and
their modifications are the most studied, numerically as well as theoretically,
two-dimensional conservative mappings. These maps were introduced for
the first time by the physicists B. V. Chirikov and J. B. Taylor. A general
review concerning these mappings can be found in [59]; besides, the whole
volume where that paper is published contains many other examples of
systems of physical interest with numerically observed TC.

Perhaps the simplest example of such a mapping is the mapping of the
two-dimensional torus T 2 given by the formula

T

(

x

y

)

=

(

x + ε sin 2π(x + y)

x + y

)

, (x, y) mod 1 , ε ∈ R .

When ε = 0, one obtains a linear twist map. When ε 6= 0 one observes
numerically TC. The same is true for the standard map in the proper sense,
i.e. for the map ([17], [18], [58], [75])

(1) T

(

x

y

)

=

(

x + ε sin 2πy

x + y + ε sin 2πy

)

, (x, y) mod 1 ,

where ε ∈ R. More generally, one can consider the mapping

(2) Tf

(

x

y

)

=

(

x + f(y)

x + y + f(y)

)

, (x, y) mod 1 ,

where f is a smooth periodic function of period one.
There are also various modifications of maps of this kind, for example

the mapping

T

(

x

y

)

=

(

x + ε
∑m

k=1 sin πk(x + y)

x + y

)

, (x, y) mod 1 , ε ∈ R , m ≥ 1

studied in [84], where the existence of a homoclinic point for ε > 18 is
proved. Among the rigorous results concerning the standard maps which are
somewhat related to the problem of coexistence let us mention the papers
[34], [56] and [45], [46]. The first two of them contain examples of standard
maps with invariant Cantor set of the Aubry–Mather type with nonvanishing
Lyapunov exponents (found also by M. Herman (unpublished)). Unfortu-
nately, as proved in [45], the Lebesgue measure of the union of all such sets
is always zero. See also [51]–[55] and [73], where the non-integrability versus
integrability problem for the standard map is investigated. Another impor-
tant study of the standard map related to the ideas of the KAM theory can
be found in [61].

3. Piecewise linear mappings. Let us replace in (1) the sine (or f
in (2)) by a continuous piecewise linear function with zero mean and period
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one. Maps of this kind were intensively studied by M. Wojtkowski ([77], [78],
[22]). Using his criterion of positivity of the maximal Lyapunov exponent
([77]–[80], [22]), he gave proofs of the coexistence for many particular cases
in this setting. But he did not succeed in proving TC, which surely takes
place in many examples of this kind. See also [25], where the coexistence is
proved for the area preserving map

T

(

x

y

)

=

(

1 − y + |x|

y

)

of the plane. A study of such examples from the point of view of the existence
of invariant curves as well as of counterparts of the Aubry–Mather theory
is given in [14]. Let us remark that in many other smooth examples it can
be interesting to consider the piecewise linear approximation similar to the
one above (cf. [57]).

4. Piecewise smooth mappings and billiards. First let us consider
the continuous case. The typical example of a continuous and piecewise
smooth mapping is a natural Poincaré section map for a strictly convex
plane billiard whose boundary is of class C1 and is a union of four arcs of
circles. Perhaps this is a simplest genuinely non-linear conservative example
in which one numerically observes TC. These examples were studied in [9],
[41] and [36]. In [36] one can find very interesting pictures of incredible
complexity. See also [27] and [50] for theoretical investigations of strictly
convex billiards.

As far as I know, there are no examples of strictly convex C∞ billiards
with positive metric entropy. The problem of constructing such billiards
can be considered as a variation of the already formulated problem of the
coexistence for C∞ generic perturbations of the standard twist map.

For example, the strictly convex billiard with even real analytic boundary
defined by the formulas

x(t) = cos t + λ cos 2t ,

y(t) = sin t + λ sin 2t ,
0 < λ ≤ 1/4 ,

seems to be a good candidate for having positive metric entropy. See [68]
and [37] for details.

Let us note also another outstanding open problem concerning convex
billiards. It is well known that the billiards in the ellipse are integrable.
More precisely, the envelopes of the reflecting rays inside an ellipse coincide
with the confocal ellipses. Is the ellipse the unique smooth closed convex
curve with the property that the envelopes of the reflecting rays inside it are
always closed convex curves? See [21] for this and other related problems.

As far as the coexistence problem is concerned, the continuity assump-
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tion does not seem to be essential (cf. [47]). When one considers the natural
Poincaré section for not strictly convex billiards, the mapping obtained is
never continuous. A beautiful example of this kind with numerically ob-
served TC is studied in [71]. Other interesting examples of piecewise smooth
maps of the plane which preserve Lebesgue measure can be found in [32].
See also [43] for their theoretical study.

5. Smooth mappings. Besides the standard maps already discussed
and their modifications, another interesting class of maps preserving Lebes-
gue measure can be defined as follows. Just as the mapping (2), one can
consider the diffeomorphisms of two-dimensional torus introduced for the
first time by D. V. Anosov in Sec. 25 of [2] and defined by the formula

Rf

(

x

y

)

=

(

2x + y

x + y + f(2x + y)

)

, (x, y) mod 1 ,

where f is a smooth periodic function of period 1. Rf is a perturbation of
the Anosov map

(

2 1
1 1

)

and one can check that if ‖f ′‖∞ ≤ 1/5 then Rf is still
an Anosov map. Hence there is no coexistence, because for an Anosov map,
the maximal Lyapunov exponent is strictly positive everywhere. But what
happens for large perturbations? The numerical computations indicate, for
example, that if f(t)=ε sin 2πt with |ε| big enough, we are in the presence of
coexistence. More precisely, for −5/2π<ε<−1/2π, (0, 0) is an elliptic fixed
point. As follows from the KAM theory, generically this point is surrounded
by invariant curves which cover a set of positive Lebesgue measure. It is
precisely among the maps of type Rf that F. Przytycki found his example
of coexistence ([65]) already mentioned in Section 1. It seems to me that
these maps have never been studied in the literature except [2] and [65].

An interesting related question is the following. Is it possible to destroy
completely the chaos by sufficiently perturbing the mapping R0? More pre-
cisely, is it possible to find a Lebesgue measure preserving diffeomorphism
of the two-dimensional torus which is isotopic to R0 and of zero metric en-
tropy? By the Pesin entropy formula ([64], [47]), the metric entropy vanishes
if and only if the Lyapunov exponents are zero almost everywhere.

Except for standard maps and other maps related to them, as well as for
maps like Rf defined above, it is difficult to indicate another so interesting
class of conservative mappings with numerically observed TC. There are
plenty of such conservative mappings with numerically observed TC, but
there is no apparent reason to consider one more interesting than another.

The following example is of somewhat different nature. M. Hénon ([39])
studied numerically the quadratic mapping

Tα

(

x

y

)

=

(

x cos α − (y − x2) sin α

x sin α + (y − x2) cos α

)

.
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Tα is a diffeomorphism of R
2 and preserves Lebesgue measure. The origin

is an elliptic fixed point of Tα, and in general this fixed point is surrounded
by invariant curves (KAM). Hénon’s computations suggest that at least in
the vicinity of the origin we observe the presence of TC. Another similar
mapping of the plane

Mα

(

x

y

)

=

(

(x + y3) cos α − y sin α

(x + y3) sin α + y cos α

)

was introduced by R. Cushman ([23]). In a small neighbourhood of the
origin, we return to the already formulated problem of coexistence in the
vicinity of the general elliptic fixed point. As these examples are defined
on R

2 and some points have unbounded orbits, the global picture could be
even much more complicated than in the preceding examples.

6. Flows. As far as flows are concerned, I shall describe now several
apparently simple systems of differential equations in small dimensions with
numerically observed TC. I shall be mainly interested in Hamiltonian flows
on compact energy surfaces.

a) Hénon–Heiles system ([40]). As already stated this is historically the
first studied conservative (Hamiltonian) system with numerically observed
TC. It corresponds to the Hamiltonian

H(p, q) = 1
2 (p2

1 + p2
2 + q2

1 + q2
2) + q2

1q2 −
1
3q3

2 .

For each energy level E, 0 < E < 1/6, the surface of constant energy
E contains the unique compact component ME , and, when speaking of a
Hénon–Heiles system, one means the restriction of this system to ME . One
observes numerically TC on ME . For details see [58], [20], [69] and [8].

b) Störmer problem. This problem arising from the study of electrically
charged particles in a magnetic field is discussed in [13], where one can find
also other references. The lack of place prevents me from a more thorough
discussion of this problem.

c) Unequal-mass Toda lattice. The corresponding Hamiltonian is

H(p, q) = 1
2 (p2

1/m1 + p2
2/m2) + e−q1 + eq1−q2 + eq2 − 3 ,

where m1 > 0, m2 > 0. When m1 = m2 this is a two-particle Toda
lattice, which is completely integrable ([74]). When m1 6= m2 and E is
large enough, G. Casati and J. Ford ([15]) observed numerically TC. This
is particularly interesting because O. I. Bogoyavlensky ([11]) gave serious
theoretical arguments which confirm that for sufficiently large energy E, the
chaotic behaviour takes place in this system. His arguments are described
in much detail in his book [12]. That very important book contains also
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a description of a great number of very interesting dynamical systems and
theoretical arguments for the existence of chaos in them.

d) Double pendulum ([67]). Let us consider in a vertical plane the double
pendulum as in the figure.

gravitational force

After some scaling the Hamiltonian of the double pendulum can be written
as

H(λ, φ)

=
1

1 + µ sin2 φ2

(

1

2
λ2

1 −
l + cos φ2

l
λ1λ2 +

1 + µ + 2µl cos φ2 + µl2

2µl2
λ2

2

)

+
m1gl1

E
((1 + µ)(1 − cos φ1) + µl(1 − cos(φ1 + φ2))) ,

where µ = m2/m1, l = l2/l1 are parameters, g is the gravitational constant
and E is the energy. Although the system is physically simple, the Hamil-
tonian is quite complicated. But already very simple topological arguments
(cf. Sec. 45 of [7]) indicate intrinsic complexity of this system.

Now I pass to conservative systems with quadratic nonlinearities.

e) Orszag system ([63]). This is a simple system of n differential equations

dxi/dt = axi+1xi+2 + bxi−1xi−2 + cxi+1xi−1

where

xi+n = xi , 1 ≤ i ≤ n .

Moreover, one supposes

a + b + c = 0 and abc 6= 0 .

Let us note that the flow induced by this system preserves Lebesgue measure
on R

n and that the “energy” E,

E =
1

2

n
∑

i=1

x2
i ,

is a first integral of this system, i.e. the spheres in R
n centred at the origin

are invariant for this system. Thus the Lebesgue measure on these spheres
is also invariant. For example, for n = 5 and a = b = 1 and c = −2, the
system displays numerically a chaotic behaviour. Unfortunately, the paper
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under consideration is not sufficiently detailed to give a clear evidence about
coexistence. I think that this class of systems is worth a further study.

f) Euler–Poisson equations of motion of a rigid body with a fixed point

in the gravitational field . This is a system of six equations

Adp/dt = (B − C)qr + zγ′ − yγ′′ ,

Bdq/dt = (C − A)rp + xγ′′ − zγ ,

Cdr/dt = (A − B)pq + yγ − xγ′ ,

dγ/dt = rγ′ − qγ′′ ,

dγ′/dt = pγ′′ − rγ ,

dγ′′/dt = qγ − pγ′ ,

where A > 0, B > 0, C > 0, x, y and z are real parameters, and (p, q, r, γ,
γ′, γ′′) ∈ R

6. In what follows we will completely avoid the discussion of the
Hamiltonian aspects of these equations (see [33], where one can find many
references concerning the rigid body problem).

This system always has three first integrals:

E = 1
2 (Ap2 + Bq2 + Cr2) + (xγ + yγ′ + zγ′′) ,

M = Apγ + Bqγ′ + Crγ′′ ,

Γ = γ2 + (γ′)2 + (γ′′)2 .

Only in three classical cases of Euler (A > 0, B > 0, C > 0, x = y = z = 0)
of Lagrange (A = B, x = y) and of Kovalevskaya (A = B = 2C, z = 0) a
fourth integral is known and the Euler–Poisson equations are integrable. It
seems that except for these three cases, in the phase space R

6 we are always
in the presence of TC. Let us consider now the compact invariant manifolds
E = const, M = const, Γ = const > 0. It seems that except the above three
cases as well as the so-called Goryachev–Chaplygin case (A = B = 4C,
z = 0, M = 0), we are always in the presence of TC.

In one particular case A = 3, B = 2 and C = 1, the numerical study of
this problem was given in [33]. The example studied in [33] corresponds to
the following simple mechanical situation. One considers the planar rigid
body formed by four material points of mass one at the vertices of the unit
square, while there is no mass on the edges of the square and the fixed point
is in the middle of an edge.

Let us pass now to systems of hydrodynamical origin.

g) ABC (Arnold–Beltrami–Childress) flow (see [26] and Appendix 2 of
[7]). The system of three differential equations under consideration looks
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very simple:

dx/dt = A sin z + C cos y ,

dy/dt = B sin x + A cos z , (x, y, z) mod 2π ,

dz/dt = C sin y + B cos x ,

where A, B, C are real numbers and (x, y, z) belongs to the three-dimen-
sional torus T 3, i.e. one takes x, y and z mod 2π. The flow induced by this
system preserves Lebesgue measure on T 3. In [26] numerical evidence of the
presence of TC is given when A 6= 0, B 6= 0 and C 6= 0. See also [30] for
further numerical investigations of the ABC flow.

h) Vortex flows. This is the last class of flows I would like to mention
here. Like the Newtonian many-body problem, the problem of many inter-
acting vortices is much more a program of study of infinite richness than a
single well defined problem.

In the simplest case of the planar problem of n interacting vortices, the
corresponding equations of motion in the Kirchhoff form (1876) are

χidxi/dt = ∂H/∂yi ,

χidyi/dt = − ∂H/∂xi ,
1 ≤ i ≤ n ,

with

H = −
1

2π

∑

1≤i≤j≤n

χiχj log lij

where lij =
√

(xi − xj)2 + (yi − yj)2 and χ1, . . . , χn are fixed real numbers
representing the strength of the vortices (x1, y1), . . . , (xn, yn) respectively.
Up to n = 3, the equations of vortex motion are integrable. This is no more
true for n ≥ 4, where chaotic motions and the coexistence are numerically
observed ([6]). In the beautifully written survey articles of H. Aref [3]–[4]
and in [5] one can find a more detailed discussion and references. See also
[28] and [29]. If one considers the interacting vortex motion in bounded
domains, one can observe numerically TC even for two vortices ([48]).

7. Concluding remarks. The reader interested in the topic can find
many other interesting references in the collections of reprints [35] and [60].
Other useful references are compiled in [38] and [72].

The increasing number of publications about chaos is one of the land-
marks of our epoch. It suffices to look at journals like Celestial Mechanics,
Communications in Mathematical Physics, Ergodic Theory and Dynamical
Systems, Journal of Differential Equations, Journal of Statistical Physics,
Physica D, Physical Review A, Physics Letters A, Nonlinearity and many
others. Despite all this, the coexistence problem remains completely open.
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Reçu par la Rédaction le 8.11.1989

Note added in proof (April 1991)

[85] V. J. Donnay, Geodesic flow on the two-sphere, part I: Positive measure en-

tropy , Ergodic Theory Dynamical Systems 8 (1988), 531–553.
[86] V. Donnay and C. Liveran i, Potentials on the two-torus for which the Hamil-

tonian flow is ergodic, Comm. Math. Phys. 135 (1991), 267–302.
[87] Hao Bai -L in (ed.), Chaos II , World Scientific, 1990.

The fundamental paper [85], unfortunately overlooked in the main text, contains
among other things a first example of coexistence in the geometrical setting of smooth
geodesic flows on the two-sphere. [86] contains a first example of coexistence for smooth
natural Hamiltonian systems.

The reprint selection [87], which is a sequel to [35], contains a bibliography of 2244
titles limited basically to the first half of 1989.

Finally, the coexistence was observed numerically by E. Busvelle, R. Kharab and the
author in many Hamiltonian systems on the Lie algebra so(4) (see Appendix 2 of [7]).


