COLLOQUIUM MATHEMATICUM
 VOL. LXII 1991 FASC. 2

on RANDOM SUBSETS OF PROJECTIVE SPACES

```
WOJCIECH KORDECKI (WROCŁAW)
    and TOMASZ ŁUCZAK (POZNAŃ)
```

Let us define a random $P G(r-1, q)$-process $\left\{\omega_{r}(M)\right\}_{M=0}^{\left(q^{r}-1\right) /(q-1)}$ as a Markov chain of subsets of elements of projective space $\operatorname{PG}(r-1, q)$, which starts with the empty set, and, for $M=1,2, \ldots,\left(q^{r}-1\right) /(q-1), \omega_{r}(M)$ is obtained by adding to $\omega_{r}(M-1)$ a new randomly chosen element of $P G(r-1, q)$. Clearly, one may also view a random submatroid $\omega_{r}(M)$ as a subset chosen at random from all M-element subsets of the projective geometry $P G(r-1, q)$. We say that a subset S of $P G(r-1, q)$ is independent if it spans in it a subspace of dimension $|S|-1$. By the rank $\varrho(T)$ of a subset $T \subseteq P G(r-1, q)$ we mean the size of the largest independent set contained in T. In this note we show that for large r typically the $\operatorname{rank} \varrho\left(\omega_{r}(M)\right)$ does not differ from $|M|$ very much.

The analogous problem for $\omega_{r}(p)$-a random set in which each element of $P G(r-1, q)$ appears independently with probability p-was considered by Kelly and Oxley in [2] (see also Kordecki [3]). They proved that if $k(r), 0 \leq k(r) \leq r$, is a function of r for which $\liminf _{r \rightarrow \infty} k(r) / r>0$ and $p^{\prime}(r) / r q^{-r} \rightarrow \infty$ then a.s. $r\left(\omega_{r}\left(p^{\prime}(r)\right) \geq k(r)\right.$, whereas for $p^{\prime \prime}(r) / r q^{-r} \rightarrow 0$ a.s. we have $r\left(\omega_{r}\left(p^{\prime \prime}(r)\right) \leq k(r)\right.$. (Here and below a.s. means "with probability tending to 1 as $r \rightarrow \infty "$.) We shall give a simple argument which shows that a much stronger result holds.

Theorem. If $r-M(r) \rightarrow \infty$ as $r \rightarrow \infty$ then a.s. $\varrho\left(\omega_{r}(M)\right)=M$.
Proof. To simplify computations let us introduce $\left\{\widehat{\omega}_{r}(M)\right\}_{M=0}^{\infty}$ as a nondecreasing sequence of subsets of $P G(r-1, q)$ which starts with the empty set and at each step we add to $\widehat{\omega}_{r}(M)$ a randomly chosen element of $P G(r-1, q)$. Although in this case it may happen that $\widehat{\omega}_{r}(M)=\widehat{\omega}_{r}(M+1)$, clearly $\widehat{\omega}_{r}(M)$ might be identified with $\omega_{r}(M)$ whenever $\left|\widehat{\omega}_{r}(M)\right|=M$. Recall that for every $k=1,2, \ldots, r$ each subspace of $P G(r-1, q)$ of rank k contains

$$
[k]=\frac{q^{k}-1}{q-1}
$$

elements, in particular, $P G(r-1, q)$ consists of $\left(q^{r}-1\right) /(q-1)$ points. Hence the probability that $\left|\widehat{\omega}_{r}(2 r)\right|<2 r$ is less than

$$
r^{2}(q-1) /\left(q^{r}-1\right) \rightarrow 0 .
$$

Thus, we have shown the following fact.
FACt 1. A.s. $\left|\widehat{\omega}_{r}(i)\right|=i$ for every $i \leq 2 r$.
Hence, the asymptotic properties of the first $2 r$ stages of the random $\operatorname{PG}(r-1, q)$-process $\left\{\omega_{r}(M)\right\}_{M=0}^{\left(q^{r}-1\right) /(q-1)}$ are identical with those of $\left\{\widehat{\omega}_{r}(M)\right\}_{M=0}^{\infty}$.

Let $1 \leq M \leq r$. The probability that $\varrho\left(\widehat{\omega}_{r}(M)\right)=M$, i.e. that each new point is picked outside the subspace generated by the already chosen points is given by

$$
\begin{aligned}
\prod_{k=1}^{M}\left(1-\frac{[k]}{[r]}\right) & =\prod_{k=1}^{M}\left(1-\frac{q^{k}-1}{q^{r}-1}\right)=\prod_{k=1}^{M}\left(1-q^{k-r}+O\left(q^{-r}\right)\right) \\
& =\left(1+O\left(M q^{-r}\right)\right) \prod_{k=1}^{M}\left(1-q^{k-r}\right)
\end{aligned}
$$

Moreover, if we assume that $r-M \rightarrow \infty$ then

$$
\begin{aligned}
\prod_{k=1}^{M}\left(1-q^{k-r}\right) & =\exp \left(-\sum_{k=1}^{M}\left(q^{k-r}+O\left(q^{2 k-2 r}\right)\right)\right) \\
& =\exp \left(-q^{-r} \frac{q^{M+1}-1}{q-1}+O\left(q^{2 M+2-2 r}\right)\right) \rightarrow 1
\end{aligned}
$$

Hence a.s. $\varrho\left(\widehat{\omega}_{r}(M)\right)=M$, and due to Fact 1, a.s. $\varrho\left(\omega_{r}(M)\right)=M$.
Now, let us look at the value of $\varrho\left(\omega_{r}(M)\right)$ when M approaches r. More precisely, let $M_{\text {cr }}$ denote the minimal value of M for which $\varrho\left(\omega_{r}(M)\right)=r$ and set $u_{r}=r-M_{\text {cr }}$. Again, instead of studying u_{r} we shall consider the corresponding random variable \widehat{u}_{r} defined for $\left\{\widehat{\omega}_{r}(M)\right\}_{M=0}^{\infty}$.

To find the distribution of \widehat{u}_{r} it is enough to notice that \widehat{u}_{r} is the sum of the random variables $\widehat{u}_{r}^{(k)}$ which count the number of points picked in the subspace generated by the already chosen points when the rank of this subspace equals k. Each $\widehat{u}_{r}^{(k)}$ has a geometric distribution, thus, for example, for the expectation of \widehat{u}_{r} we have

$$
\mathrm{E} \widehat{u}_{r}=\sum_{k=1}^{r-1} \widehat{u}_{r}^{(k)}=\sum_{k=1}^{r-1} \frac{\left(q^{k}-1\right) /\left(q^{r}-1\right)}{1-\left(q^{k}-1\right) /\left(q^{r}-1\right)}=(1+o(1)) \sum_{i=1}^{\infty} \frac{q^{-i}}{1-q^{-i}} .
$$

From the above result and Markov's inequality it follows immediately that \widehat{u}_{r} (and, due to Fact 1, also u_{r}) is bounded in probability.

FACT 2. Let $\gamma(r) \rightarrow \infty$. Then a.s. both \widehat{u}_{r} and u_{r} are less than $\gamma(r)$.
Since the generating function of $\widehat{u}_{r}^{(k)}$ equals $\left(1-q^{-k}\right) /\left(1-s q^{-k}\right)$, the generating function of \widehat{u}_{r} is given by

$$
g(s)=\prod_{k=1}^{r-1} \frac{1-q^{-k}}{1-s q^{-k}}=\left(1+O\left(s q^{-r}\right)\right) \beta \prod_{k=1}^{\infty}\left(1-s q^{-k}\right)^{-1}
$$

where we set $\beta=\prod_{k=1}^{\infty}\left(1-q^{-k}\right)$.
The well known Euler formula (see, for example, [1], p. 19, Corollary 2.2) says that

$$
\prod_{k=0}^{\infty}\left(1-s t^{k}\right)^{-1}=1+\sum_{k=1}^{\infty} \frac{s^{k}}{(1-t)\left(1-t^{2}\right) \ldots\left(1-t^{k}\right)}
$$

for $|s|<1$ and $|t|<1$, so, for $g(s)$ we get immediately

$$
g(s)=\beta\left(1+O\left(q^{-r}\right)\right)\left[1+\sum_{k=1}^{\infty} \frac{s^{k} q^{-k}}{\prod_{i=1}^{k}\left(1-q^{-i}\right)}\right]
$$

Thus we arrive at the following formula for the limit distributions of \widehat{u}_{r} and u_{r}.

FACT 3.

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \operatorname{Prob}\left\{u_{r}=k\right\} & =\lim _{r \rightarrow \infty} \operatorname{Prob}\left\{\widehat{u}_{r}=k\right\} \\
& = \begin{cases}\beta & \text { if } k=0 \\
\beta q^{-k} / \prod_{i=1}^{k}\left(1-q^{-i}\right) & \text { if } k \geq 1\end{cases}
\end{aligned}
$$

Clearly, our results (and model) are much more precise than those used by Kelly and Oxley in [2]. For instance, the limit value of the probability that $\varrho\left(\omega_{r}(p)\right)=r$ follows easily from the Theorem, Fact 2 and the fact that the number of points which belong to $\omega_{r}(p)$ is binomially distributed.

Corollary. Let a be a real number and $p(r)=(r+a \sqrt{r})(q-1) /\left(q^{r}-1\right)$. Then

$$
\lim _{r \rightarrow \infty} \operatorname{Prob}\left\{\varrho\left(\omega_{r}(p)\right)=r\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x
$$

(The above form of the threshold function of $p(r)$ was anticipated by Kordecki in [3], although the limit probability of the event $\varrho\left(\omega_{r}(p)\right)=r$ conjectured in [3] turns out to be incorrect.)

Finally, we should point out that the only property of projective space we have used in our argument is the fact that the subspaces of $\operatorname{PG}(r-1, q)$ form a lattice with the Jordan-Dedekind property in which for each element e of rank k there exist roughly q^{k-1} atoms a such that $a \preceq e$.

REFERENCES

[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
[2] D. G. Kelly and J. G. Oxley, Threshold functions for some properties of random subsets of projective spaces, Quart. J. Math. Oxford Ser. 33 (1982), 463-469.
[3] W. Kordecki, On the rank of a random submatroid of projective geometry, in: Proc. Random Graphs '89, Poznań 1989, to appear.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCEAW
WYBRZEŻE WYSPIAŃSKIEGO 27
50-370 WROCŁAW, POLAND

DEPARTMENT OF DISCRETE MATHEMATICS
ADAM MICKIEWICZ UNIVERSITY
MATEJKI 48/49 60-769 POZNAŃ, POLAND

