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J. A, de ]a Pefia (México)

Abstract. Let A =k[Q]/I be a basic and connected finite-dimensional algebra over an
algebraically closed field k. For each dimension vector ze N, we denote by mod,,(z) the variety of
A-modules of dimension type z and by ind ,(z) the constructible subset of indecomposable modules.
We prove that A is a tame algebra if and only if for each ze N9, any constructible subset C of
ind 4 (z) is at most one-dimensional provided different modules in C are not isomorphic. We apply
this criterion to show that tameness is preserved by Ext functors and under suitable assumptions
by Galois covering functors.

Let k be an algebraically closed field. Let A be a finite-dimensional, basic and
connected k-algebra. Following [11], we write A = k[Q]/I, where Q is a finite oriented
graph (= quiver) and I is an admissible ideal of the path algebra k[Q].

By mod, we denote the category of finite-dimensional left A-modules. We may
identify the A-modules with representations of Q satisfying the relations of I. If
MemodA, we set dimM = (dim M (x)),.q,, Where @, is the set of vertices of Q.

A vector ze N9 is called a dimension vector.

An algebra 4 is said to be tame if for every dimension ze N2, there is a finite family
of A-k[t]-bimodules M; which are free as right k[z]-modules such that every
indecomposable A-module of dimension z is isomorphic to M; ®,;S for some i and
some simple k[t]-module S (see [3, 4, 7, 8,...1).

Let ze N be a dimension vector. By mod , (z) we denote the variety of A-modules of
dimension type z (see [4, 9, 10, 15, 16, 19]). The indecomposable modules in mod , (z) form
a constructible subset denoted by ind,(z). In this note we show that an algebra A is
tame if and only if for cach dimension ze N2, any constructible subset C of ind , (z) is at
most one-dimensional provided different modules in C are not isomorphic.

This characterization is well-suited for applications. Applying it, we show that
tameness is preserved by Ext functors (Section 2) and under a suitable assumption by
the Galois covering functors (Section 3). It .is possible to give other (similar)
applications.

1. A criterion for tameness.
LL Let z = (2(X)se0, € N® be a dimension vector. The variety of A-modules of

dimension z is the closed subset mod,(z) of the affine space H(xﬁ,y)eglk'(’f“(y’ (where
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Q, = set of arrows of Q) formed by the tuples X = (X ()ucg, such that for any rela-
tion g = Y =1 Al ...aP el (x, y) the z(x) x z(y)-matrix X (9) = Y51 AX (@?)... X @f)
is zero.

The affine algebraic group G(z) = ﬂxEQUGl,(,,) (k) acts on the variety mod 4 (2) in such
a way that two points (= modules) belong to the same orbit il and only if they are
isomorphic.

Let ind , (z) denote the subset of mod,, (z) formed by the indecomposable modules.
Then ind,, (7) is a constructible subset of mod,, (z) [4]. We recall the argument: let W be
the constructible subset of mod,(z) x ([Trego k***%) formed by those pairs (X, /)
such that feBnd,(X), f2 =/ and Oy #f s 1y. Consider the canonical projec-
tion p: mod,(2) X ([[eeoo k*®*®)—»mod 4(z). Then p(W) is constructible. Since
ind ,(z) = mod 4 (z)\p (W), this set is also constructible. For the clementary notions of
algebraic geometry that we use the reader may see [14, Chapters I, IT] and [22, Chapter I].

12.Let 4 = k{t,, ..., t,,> be the [ree associative algebra generated by 1y, ..., f,,. Let
M be a A-A-bimodule which is finitely generated free as 4-module. Let z& N be the
dimension vector such that z (x) is the rank of the free right A-module M (x). The functor
M®,(-): mod, »mod, induces a regular map f: mod,(1)—mod,(z) (scc [4]).
The variety mod, (1) may be identified with k™. Therefore, Imf,, is a constructible
subset of mod,(z) and dimImf, <m.

1.3. THEOREM. Let A = k[Q1/I be a finite-dimensional k-algebra. The following are
equivalent:

(a) A is tame. :

(b) For each dimension ze N?, there is a constructible subset C of ind (z) with
dimC < 1 and such that G(z) C = ind ,(z).

(c) For each dimension ze N%, if C is a constructible subset of ind,(z) which
intersects each orbit of G(z) in at most one point, then dim C < 1.

Proof. (a)=(b): Let ze N%. Let M,, ..., M, be the A-k []-bimodules such that M,
is a free finitely generated k [t]-module and any X eind 4 (z) is isomorphic to M, @, S
for some i and some simple k[t]-module S. Therefore, the functor M; ®p; (-) induces
a regular map f;: mody(1)—mod,(z), i=1,...,s. The set

s

C = J (Imf; nind, ())
P=1
is a constructible subset of ind,(z) with dim C' <1 and G(2)C == ind 4 (2).

(b)=(c): This follows from Lemma 1.4.

(c)=(a): Assume that A4 is not tame. By {7, 8] (see also [3]), the algebra A is wild.
That is, there exists a A-k {u, v)-bimodule M which is free finitely gencrated as right
k<{u, vy-module and such that the functor M ®j.y. s (-): MOdy (4, vy~ mod,, preserves
indecomposability and reflects isomorphisms.

Let ze N%, where z(x) is the rank of the free k (u, v)-module M (x). We get a regular
map fi: mody ¢y, sy (1) = mod 4 (2). By definition, Imf}, is a constructible subsct of ind , (z)

which intersects each orbit of G(z) in at most one point. Moreover, f, is injective.
Therefore, dimImf,; = 2. m
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1.4. LEMMA (compare with [7, Lemma]). Let V be an algebraic variety and G be an
algebraic group acting on V. Let Uy, U, be two constructible subsets of V satisfying:

@ GU, =V,

(i) U, intersects each orbit of G in at most one point.

Then dimU, < dimU,.

Prool We may assume that U, is irreducible. Consider the following algebraic
maps:
W) GxUSV, (g, u)rgu
I "

u Ui
Take an irreducible component Z of ¢~ *(U,) =G x U, and W, = n(Z). Then the
maps f = res ¢: Z - U, and p = resn: Z— W, are dominant. By [22, Chap. 1 (6)], there
is an open dense subset Y of Z such that for any yeY

dim £~ (f(y) =dimZ—dim U, and dimp~*(p(y)) = dim Z—dim W;.

Let ye Y. We show that p~ 1 (p(») =/ ~*(f(y)). In fact, assume that y = (g, y)€ Z and
let y' = (h,uyep~*(p(y). Therefore, gu=7(y) and hu=f(y) both lie in U,.
Since hg™!(f() =f(¥), we have f(y) =/(¥), that is, y'ef ~*(f(»). We get that
dimp~*(p(y) < dimf "' (f(y) and dimU,= dim Z—dimf = (f () < dim W, <
dimU;. m

1.5. The following result on algebraic varieties will be used in the following sections.
It is a particular case of [10, (4.2)].

LEMMA. Let V be an algebraic variety over an uncountable algebraically closed field k.
Let (C,)yen be a family of constructible subsets of V such that | Juen C, = V. Then there is
a number NeN such that V=|J,<xC, ®

2. Ext-functors preserve tameness.

2.1. The purpose of this section is to prove the following:

PROPOSITION. Let A be a finite-dimensional k-algebra over an uncountable algebraical-
ly closed field k. For each neN, let T, be a finite-dimensional k-algebra, let T, be
a finite-dimensional T',-A-bimodule and s,&N. Assume that every indecomposable
X emod,, is isomorphic to Extif, (T,, Y) for someneN and Yemodr.,. If each I', is a tame
algebra, then A is tame.

Not all functors have such a nice behaviour as the following example shows.

Let A be a wild algebra and let. A be the hereditary k-algebra with
quiver e =3 8. Therefore 4 is tame. We will consiruct a functor F: mod,—mod, such
that every indecomposable X emod, is isomorphic to FY for some A-module Y. Let
(X )1 be a sel of representatives of the isoclasses of finite-dimensional indecomposable
A-modules. Lot (S;)1ex be a set of representatives of the isoclasses of simple regular
A-modules. Set S¥ = Hom,(S,;, k). Consider the A-A-bimodule

M= @(Xz®hsf)~

Aek

Let Yemod,. Then Y=Y,® Y, ®Y, where Y, (resp. ¥, Y) is a direct sum of

3 -~ Fundamenta Mathematicae [37.3
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preprojective (resp. regular, preinjective) A-modules. We define FY=M ® Y, and
similarly in morphisms. Since

FS[L = @ I:Xi. ®kH0mA(Si.= Sp)] = X,n

Aek

we see that F: mod,—mod, is well defined and satisfies the desired property.
If the field k is countable, it is easy to give examples where the proposition fails.
22. Let A and I" be two finite-dimensional k-algebras. Let 4 = k[¢t]. Let T be
a finite-dimensional I-A-bimodule and let M be a I'-A-bimodule which is a finitely
generated free right A-module. Fix seN. Consider the functor

Ext} (T, M ® 4(-)): mod ,—~mod,,.

Let...»P# P,y —...> P % P8, T - 0 be a finite-dimensional projective resol-
ution of I'-A-bimodules. Set 95 = Hom/(8,, M) (and 0% = 0). For each aeQ,, we have
induced morphisms deEndq(T) and o,eEnd.(P) such that od, = d0+; and
dgetg = @d;. Then the induced linear maps & End, (ker (0% ; ® , X)/Im (3% ® , X )) yield
a left A-module structure on ker (9% ; ® , X)/Im (3 ® , X).
The following is an elementary fact but we will need later some details of the proof,
LemMa. Extr (T, M ® 4 X)  ker (0%, ® , X)/Iin (8% ® , X) as left A-modules.
Proof. Consider the natural transformation

¢7: Homp (T, M) ® , X - Hom, (T, M ® , X),

f®x—pr(f®x): T-M®,X, tf(t)®x.

In fact ¢ is patural in the three variables. Clearly, ¢ is an isomorphism if T is
projective.

If s> 1, we get the following commutative diagram:

Hom, (Py-1, M)®,X E&X, Hom,(P,, M)®, X 22X, Hom,(P,,,, M)®, X

~1Wr,-. NJ« (pF,

Hom,(Ps—y, M ® 4 X) * Homp (P, M ® , X) ~——— Hom(Ps4q, M ® , X).

Nl Pryys

The calculation of the homology in the middle terms gives the result. The case s = 0 is
similar, w

2.3. We keep the notation of 2.2.
LeMMA. Let ze N2, The set
&(z) = {X emod,,(2): X = Ext}(T, M @, S) for some simple A-module S}

is constructible in mod,(z). If C is a constructible subset of & (2) which intersects each
orbit of G(2) in at most one point, then dim C < 1.

Proof Consider the complex of finitely generated free right 4-modules

U = Homp (P,—, M)2=%, ¥ ='Hom, (P,, M) 2224, W = Hom, (P, ,,, M),
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together with the morphisms of € End,(Hom, (P, M)), aeQ;. Let u=rank,U,
p = rank,V and w = rank ;W.

The set Z = {(a, b)e k™ x k"™: a=f®,5,b =g ®,S for some simple 4-module 5}
is constructible and dimZ < 1.

Let 0<v < <v be such that &' —v =zl =Y cq,z(x). Set v =v—v. Let
Fu, o) be the subset of Z x k" x k" x k" x k™ x k!l formed by the tuples
(@, b), p v ¥, i, b) such that the diagrams:

0 — ku’ B kY _'_’, k¥ kY A ku_l’, - 0
00—k 5 K 3K 50 0o KRS ko0
l\‘ ku’ }u

are exact and commutative. Clearly, F (', v') is constructible. Moreover, given a tuple
((a, b), v, ¥ 1, h)eF(u, v'), there are uniquely determined maps #eEnd, (k'*) induced
by a* (e @,). These maps yield a structure of left 4-module on k'"!; we denote this
module by X ((a, b), u, v, 7, i, h). ‘

Given Yemod, (z), we denote by ®Y the left A-module on k'*! induced by ¥. Then
the set

G, v)={((a, b), u, v, 7, &, B Y)eF(u, v)) x mod,(2): X (@ b), g v, v, i, B) = ®Y}
is constructible. Consider the canonical projection m;: F (', v') x mod 4{z)—mod(2).
Then E@, ') = n, (G, v)) is constructible and

E@,v)

is constructible in mod, (z). Let C be a constructible subset of & (z) which intersects each

orbit of G (2) in at most one point. It suffices to show that dim (CREW,v) <L T%ms
we may assume that C < E(«', v) and that C is irreducible. Consider the canonical

projections

F(#,v) x mod,(2)™ Z
Y l

mod, (2)

Take an irreducible component D of =7 1(C) and set Z' = 7, (D). Then the restriction
maps p,: D-+C and p;:D—Z' are dominant. Let y?D. We S}lO\/V ./th:t
it 7t . Let y = (@ ), s v 7 i, b, Y) and (@ B, ¢, V>0, 15 7,
pit(pa(3) = b7t (p7(3)- Let y : LT
Y)epi ' (p, (). Then, by definition, ¥, Y'eC and ®y ~ ®y". Therefore, ¥ = Y". That

is, y'ep7*(p+()). As in the proof of Lemma 1.4 this implies that

dimC <dmZ<1. m


Artur


182 J. A. de la Pefia

24. Proof of Proposition 2.1. Since I', is tame, for each deN, there exists
a family of I,-k[t]-bimodules M{"P, ..., M%) such that every indecomposable
I',-module Ywith dim, Y= d is isomorphic to M% @ ;S for some j and some simple
k[t]-module §. By 2.3, for each ze N%, n,deN and 1 <j < s{n, d), the set
&(z,n, d,j) = {X emod(2): X = Exty, (T,, M{"* ®r,5)
for some simple k[t]-module S}

is constructible and every constructible subset C = £(z, n, d, j) which intersects cach
orbit of G(z) in at most one point satisfies dimC < 1. By hypothesis, ind,(z)
=Unay(€(z n, d,j) nind,(2)). By 15, there are finite sets of indices meN, d;eN,
1<j;,<s(m,d) such that ind,(z)=|J,(&(z, n;, d;,j)nind,(z)). Therefore, if
C < ind, (z) is a constructible subset which intersects each orbit of G (z) in at most one
point, then dim C < 1. Our criterion 1.3 implies that 4 is tame. =

2.5. Let A be a finite-dimensional k-algebra. A module Temod , is called a tilting
module if the following conditions are satisfied (see [1, 13, 18]):

(a) Exty(M, -)=0 for i» 0.

(b) Extl (M, M)=0 for i > 0.

(c) There exists an exact sequence

0= A= Ty~ T —...>T,—0

where T,eadd(T).
Let Temod A be a tilting module and B = End,,(T). Let &, be the full subcategory
of mod, formed by the modules with concentrated ith T-extension, that is,
obj&; = {X emod ;: Bxt} (T, X) =0 if j # i}.
Let %, be the full subcategory of mod, formed by the modules with concentrated ith
T-torsion, that is,~
obj ¥, = {Yemody: Tor} (Y, T) = 0 if j # i}.
THEOREM [1, 18]. In the above situation, the functors

Exty(T,-): &,~»¥, and TorP(-, T): Y~

are equivalences of categories, inverse to each other. m

COROLLARY. In the above situation, assume that k is uncountable and every
indecomposable B-module belongs to %, for some i N. If A is tame, then B is tame. m

The hypotheses of the Corollary are satisfied if A is hereditary.

3. Functors defined by the action of groups.

3.1. Let A=k[Q)/I be a finite-dimensional algebra.

PROPOSITION. Assume that k is an uncountable algebraically closed field. For each
neN, let I', be a finite-dimensional k-algebra and F,: mody, —»mod, he a right exact
functor. Assume that each indecomposable A-module is a direct summand of F,(Y) for some
neN and some T'-module Y. If each I, is a tame algebra, then A is tame.
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Proof. As in the proof of 2.1 in 24, it is enough to show the following:
Let M be a I',-k[t]-bimodule which is finitely generated free as right k [{]-module.
Then the set

F (z) = {Yemod,(2): Y is a direct summand of F,(M ®,45)
for some simple k[{]-module S}

is constructible and if C is a constructible subset of # (z) which intersects each orbit of
G(z) in at most one point, then dimC < 1.

Since F, is right exact, there is a 4-I',-bimodule N such that F, = N ®r, (). Then
F,(M ®iS) = (N @1, M) @y S. By [4], there is a finite family of A-k []-bimodules
Ly, ..., L, which are finitcly gencrated free as right k [¢]-modules and such that for each
simple k [t]-module S, we have (N ® r, M) ®y; S =¥ L; Qg S for some i. Therefore, it is
enough to show our claim for each of the sets

Fi(z) = {Yemod,(2): ¥ is a direct summand of L, ®yS
for some simple k[t]-module S}.
Let ¢,e N be such that e/(x) is the rank of the free k[f]-module L,(x). Let
Ji: modygy (1) - mod 4 (¢;) be the regular map induced by L; ®y(-). Then Z = Imf; is

a constructible subset of mod,(e) with dimZ < 1.
Let X, be the subset of

Z % ([T #*%) x mod,(z) x ( [T Hom, (k*®, k=)

xeQo x6Qo
formed by the tuples (X, [, Y, )) satisfying:
JeBnd,(X), f*=/f and

Clearly, K is constructible. Therefore, the subset K of Z x mod ;4 (z) formed by the pairs
(X, Y) such that Y is a direct summand of X, is constructible. Consider the canonical
projections

0-Yh X5 X is exact.

K32z
n:l
F'(2)
Then #'(z) = Imm, is constructible. Let C be a constructible subset of & ‘(2)
intersecting each orbit of G(z) in at most one point. By the Krull-Schmidt Theorem
the induced regular map resw,:m;'(C)—Z is finite. This implies that dimC
Ldimny N (C) S dimZ = 1. w
3.2. For the terminology used in the next result see [2, 5, 12, 17].
PROPOSITION. Let A = k[Q1/I be an algebra over an uncountable algebraically closed
field k of characteristic p = 0. Let F:(J, )= (Q, I) be a Galois covering of boundefl
quivers given by the action of a p-residually finite group II :vhich acts freely on Q.
Suppose that A = k{01/I is locally support-finite. Then A is tame if and only
if A is tame.
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Proof Let F,:mod;—mod, be the push-down functor. Consider a sequence

(T e Of finite full subcategories of A such that | J, [, = A and if AQx, I)#0 or -

A(T,, ) # 0, then xeI'y4 ;. The restriction functor ¢": mod;z —modr, has a left adjoint

£} modF,,—>mod/T such-that &" &} = idmoa,. (see [6]). Therefore the functor
F,=F,¢: modr,—»mod,

is right exact.

Let Y be an indecomposable A-module. Since A is locally support-finite, by [6, 2.5]
the pull-up F,Y decomposes as F,¥ =~ @1 X, where X; an indecomposable finite-
dimensional A-module. Thus F,F, Y=~ @ F,X,. Since II is p-residually finite and
acts freely on A, Yis a direct summand of F,F,Y (see [5]). Therefore Y is a direct
summand of F,X; for some iel. ) )

There is a number neN such that suppX;c<l,. Then by [S, Lemma 2],
X, ~ el 't I(X). Thus Y is a direct summand of F,.y(e7" (X))

If A is tame, by [4], each I', is tame. Therefore, 3.1 implies that 4 is tame. For the
converse, assume that A4 is tame. By [4], it is enough to show that each I', is tame.
Consider the right exact functor

H, =¢"F,:mod, »mody,.
Let Y be an indecomposable I',-module. Thus X = F,¢} Yemod,. We get
HX=e(@E)= @6 =YO( @ £EY),
gell ges geS—{1)

where S is the finite set of g & IT such that supp (e} Y) n I, % &. Again, 3.1 implies that
I, is tame. m

Remark. The Proposition removes the hypothesis “IT acts freely on the isoclasses of
indecomposable finitely generated A-modules” of the main theorem of [5].

3.3. For the terminology used in the next result see [20].

PROPOSITION. Let G be a finite group of automorphisms of A such that chark f o(G)
and consider the associated skew group algebra A[G]. If A is tame, then A[G] is tame.

Proof. Consider the functor F = A[G] ® 4(-): mod, —mod ;¢ Which is exact and
such that every module Xemod,s is a direct summand of F(resX), where

res: mod g —>mod, is the forgetful functor. Similar arguments to those given before
show that A[G] is tame whenever 4 is so. m

COROLLARY. Let G be an abelian finite group of automorphisms of A such that
chark ¥ o(G). Then A is tame if and only if A[G] is tame.

Proof By [20], the group of characters X(G) of G acts on A[G] and
mod 4 e x(en = mod,. The proposition gives the result. m
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