

Functors preserving tameness

by

J. A. de la Peña (México)

Abstract. Let $\Lambda=k[Q]/I$ be a basic and connected finite-dimensional algebra over an algebraically closed field k. For each dimension vector $z\in N^{Q_0}$, we denote by $\operatorname{mod}_A(z)$ the variety of Λ -modules of dimension type z and by $\operatorname{ind}_A(z)$ the constructible subset of indecomposable modules. We prove that Λ is a tame algebra if and only if for each $z\in N^{Q_0}$, any constructible subset C of $\operatorname{ind}_A(z)$ is at most one-dimensional provided different modules in C are not isomorphic. We apply this criterion to show that tameness is preserved by Ext functors and under suitable assumptions by Galois covering functors.

Let k be an algebraically closed field. Let Λ be a finite-dimensional, basic and connected k-algebra. Following [11], we write $\Lambda = k \lfloor Q \rfloor / I$, where Q is a finite oriented graph (= quiver) and I is an admissible ideal of the path algebra $k \lfloor Q \rfloor$.

By $\operatorname{mod}_{\Lambda}$ we denote the category of finite-dimensional left Λ -modules. We may identify the Λ -modules with representations of Q satisfying the relations of I. If $M \in \operatorname{mod} \Lambda$, we set $\dim M = (\dim M(x))_{x \in Q_0}$, where Q_0 is the set of vertices of Q. A vector $z \in N^{Q_0}$ is called a dimension vector.

An algebra Λ is said to be *tame* if for every dimension $z \in N^{2o}$, there is a finite family of $\Lambda - k[t]$ -bimodules M_i which are free as right k[t]-modules such that every indecomposable Λ -module of dimension z is isomorphic to $M_i \otimes_{k[t]} S$ for some i and some simple k[t]-module S (see [3, 4, 7, 8, ...]).

Let $z \in N^{Q_0}$ be a dimension vector. By $\operatorname{mod}_A(z)$ we denote the variety of Λ -modules of dimension type z (see [4, 9, 10, 15, 16, 19]). The indecomposable modules in $\operatorname{mod}_A(z)$ form a constructible subset denoted by $\operatorname{ind}_A(z)$. In this note we show that an algebra Λ is tame if and only if for each dimension $z \in N^{Q_0}$, any constructible subset C of $\operatorname{ind}_A(z)$ is at most one-dimensional provided different modules in C are not isomorphic.

This characterization is well-suited for applications. Applying it, we show that tameness is preserved by Ext functors (Section 2) and under a suitable assumption by the Galois covering functors (Section 3). It is possible to give other (similar) applications.

1. A criterion for tameness.

1.1. Let $z = (z(x))_{x \in Q_0} \in N^{Q_0}$ be a dimension vector. The variety of Λ -modules of dimension z is the closed subset $\text{mod}_{\Lambda}(z)$ of the affine space $\prod_{(x \stackrel{\alpha}{\sim} y) \in Q_1} k^{z(x)z(y)}$ (where

 $Q_1 = \text{set of arrows of } Q$) formed by the tuples $X = (X(\alpha))_{\alpha \in Q_1}$ such that for any relation $\varrho = \sum_{i=1}^r \lambda_i \alpha_{j_i}^{(i)} \dots \alpha_1^{(i)} \in I(x, y)$ the $z(x) \times z(y)$ -matrix $X(\varrho) = \sum_{i=1}^r \lambda_i X(\alpha_{j_i}^{(i)}) \dots X(\alpha_1^{(i)})$ is zero.

The affine algebraic group $G(z) = \prod_{x \in Q_0} Gl_{z(x)}(k)$ acts on the variety $\operatorname{mod}_A(z)$ in such a way that two points (= modules) belong to the same orbit if and only if they are isomorphic.

Let $\operatorname{ind}_A(z)$ denote the subset of $\operatorname{mod}_A(z)$ formed by the indecomposable modules. Then $\operatorname{ind}_A(z)$ is a constructible subset of $\operatorname{mod}_A(z)$ [4]. We recall the argument: let W be the constructible subset of $\operatorname{mod}_A(z) \times (\prod_{x \in Q_0} k^{z(x)z(x)})$ formed by those pairs (X, f) such that $f \in \operatorname{End}_A(X)$, $f^2 = f$ and $O_X \neq f \neq 1_X$. Consider the canonical projection $p \colon \operatorname{mod}_A(z) \times (\prod_{x \in Q_0} k^{z(x)z(x)}) \to \operatorname{mod}_A(z)$. Then p(W) is constructible. Since $\operatorname{ind}_A(z) = \operatorname{mod}_A(z) \setminus p(W)$, this set is also constructible. For the elementary notions of algebraic geometry that we use the reader may see [14, Chapters I, II] and [22, Chapter I].

- **1.2.** Let $A = k \langle t_1, \ldots, t_m \rangle$ be the free associative algebra generated by t_1, \ldots, t_m . Let M be a A-A-bimodule which is finitely generated free as A-module. Let $z \in N^{Q_0}$ be the dimension vector such that z(x) is the rank of the free right A-module M(x). The functor $M \otimes_A (-) : \operatorname{mod}_A \to \operatorname{mod}_A$ induces a regular map $f_M : \operatorname{mod}_A (1) \to \operatorname{mod}_A (z)$ (see [4]). The variety $\operatorname{mod}_A (1)$ may be identified with k^m . Therefore, $\operatorname{Im} f_M$ is a constructible subset of $\operatorname{mod}_A (z)$ and $\operatorname{dim} \operatorname{Im} f_M \leq m$.
- **1.3.** Theorem. Let $\Lambda = k [Q]/I$ be a finite-dimensional k-algebra. The following are equivalent:
 - (a) A is tame
- (b) For each dimension $z \in N^{Q_0}$, there is a constructible subset C of $\operatorname{ind}_A(z)$ with $\dim C \leq 1$ and such that $G(z) C = \operatorname{ind}_A(z)$.
- (c) For each dimension $z \in N^{20}$, if C is a constructible subset of $\operatorname{ind}_A(z)$ which intersects each orbit of G(z) in at most one point, then $\dim C \leq 1$.

Proof. (a) \Rightarrow (b): Let $z \in N^{Q_0}$. Let M_1, \ldots, M_s be the A-k [t]-bimodules such that M_i is a free finitely generated k [t]-module and any $X \in \operatorname{ind}_A(z)$ is isomorphic to $M_i \otimes_{k[t]} S$ for some i and some simple k [t]-module S. Therefore, the functor $M_i \otimes_{k[t]} (-)$ induces a regular map f_i : $\operatorname{mod}_{k[t]}(1) \to \operatorname{mod}_A(z), \ i=1,\ldots,s$. The set

$$C = \bigcup_{i=1}^{s} \left(\operatorname{Im} f_{i} \cap \operatorname{ind}_{A}(z) \right)$$

is a constructible subset of $\operatorname{ind}_{A}(z)$ with $\dim C \leq 1$ and $G(z)C = \operatorname{ind}_{A}(z)$.

(b) ⇒ (c): This follows from Lemma 1.4.

(c) \Rightarrow (a): Assume that Λ is not tame. By [7, 8] (see also [3]), the algebra Λ is wild. That is, there exists a Λ - $k \langle u, v \rangle$ -bimodule M which is free finitely generated as right $k \langle u, v \rangle$ -module and such that the functor $M \otimes_{k \langle x, y \rangle}$ (-): $\operatorname{mod}_{k \langle u, v \rangle} \to \operatorname{mod}_{\Lambda}$ preserves indecomposability and reflects isomorphisms.

Let $z \in N^{Q_0}$, where z(x) is the rank of the free $k \langle u, v \rangle$ -module M(x). We get a regular map $f_M \colon \operatorname{mod}_{k\langle u, v \rangle}(1) \to \operatorname{mod}_A(z)$. By definition, $\operatorname{Im} f_M$ is a constructible subset of $\operatorname{ind}_A(z)$ which intersects each orbit of G(z) in at most one point. Moreover, f_M is injective. Therefore, dim $\operatorname{Im} f_M = 2$.

1.4. LEMMA (compare with [7, Lemma]). Let V be an algebraic variety and G be an algebraic group acting on V. Let U_1 , U_2 be two constructible subsets of V satisfying:

(i) $GU_1 = V$,

(ii) U2 intersects each orbit of G in at most one point.

Then dim $U_2 \leq \dim U_1$.

Proof. We may assume that U_2 is irreducible. Consider the following algebraic maps:

$$\begin{array}{ccc}
(g, u) & G \times U_1 \xrightarrow{\varphi} V, & (g, u) \mapsto gu \\
\downarrow & & \downarrow \\
u & & U_1
\end{array}$$

Take an irreducible component Z of $\varphi^{-1}(U_2) \subset G \times U_1$ and $W_1 = \overline{\pi(Z)}$. Then the maps $f = \operatorname{res} \varphi \colon Z \to U_2$ and $p = \operatorname{res} \pi \colon Z \to W_1$ are dominant. By [22, Chap. I (6)], there is an open dense subset Y of Z such that for any $y \in Y$

$$\dim f^{-1}(f(y)) = \dim Z - \dim U_2$$
 and $\dim p^{-1}(p(y)) = \dim Z - \dim W_1$.

Let $y \in Y$. We show that $p^{-1}(p(y)) \subset f^{-1}(f(y))$. In fact, assume that $y = (g, u) \in Z$ and let $y' = (h, u) \in p^{-1}(p(y))$. Therefore, gu = f(y) and hu = f(y') both lie in U_2 . Since $hg^{-1}(f(y)) = f(y')$, we have f(y) = f(y'), that is, $y' \in f^{-1}(f(y))$. We get that $\dim p^{-1}(p(y)) \leq \dim f^{-1}(f(y))$ and $\dim U_2 = \dim Z - \dim f^{-1}(f(y)) \leq \dim W_1 \leq \dim U_1$.

1.5. The following result on algebraic varieties will be used in the following sections. It is a particular case of [10, (4.2)].

LEMMA. Let V be an algebraic variety over an uncountable algebraically closed field k. Let $(C_n)_{n\in\mathbb{N}}$ be a family of constructible subsets of V such that $\bigcup_{n\in\mathbb{N}} C_n = V$. Then there is a number $N\in\mathbb{N}$ such that $V=\bigcup_{n\leq N} C_n$.

2. Ext-functors preserve tameness.

2.1. The purpose of this section is to prove the following:

PROPOSITION. Let Λ be a finite-dimensional k-algebra over an uncountable algebraically closed field k. For each $n \in \mathbb{N}$, let Γ_n be a finite-dimensional k-algebra, let T_n be a finite-dimensional Γ_n - Λ -bimodule and $s_n \in \mathbb{N}$. Assume that every indecomposable $X \in \operatorname{mod}_{\Lambda}$ is isomorphic to $\operatorname{Ext}^{s_n}(T_n, Y)$ for some $n \in \mathbb{N}$ and $Y \in \operatorname{mod}_{\Gamma_n}$. If each Γ_n is a tame algebra, then Λ is tame.

Not all functors have such a nice behaviour as the following example shows.

Let Λ be a wild algebra and let Λ be the hereditary k-algebra with quiver $\bullet \rightrightarrows \bullet$. Therefore Λ is tame. We will construct a functor $F : \operatorname{mod}_{\Lambda} \to \operatorname{mod}_{\Lambda}$ such that every indecomposable $X \in \operatorname{mod}_{\Lambda}$ is isomorphic to FY for some Λ -module Y. Let $(X_{\lambda})_{\lambda \in k}$ be a set of representatives of the isoclasses of finite-dimensional indecomposable Λ -modules. Let $(S_{\lambda})_{\lambda \in k}$ be a set of representatives of the isoclasses of simple regular Λ -modules. Set $S_{\lambda}^* = \operatorname{Hom}_k(S_{\lambda}, k)$. Consider the Λ - Λ -bimodule

$$M = \bigoplus_{\lambda \in k} (X_{\lambda} \otimes_{k} S_{\lambda}^{*}).$$

Let $Y \in \text{mod}_A$. Then $Y = Y_p \oplus Y_r \oplus Y_l$, where Y_p (resp. Y_r , Y_l) is a direct sum of

icm[©]

preprojective (resp. regular, preinjective) A-modules. We define $FY = M \otimes_A Y$, and similarly in morphisms. Since

$$FS_{\mu} \simeq \bigoplus_{\lambda \in k} [X_{\lambda} \otimes_{k} \operatorname{Hom}_{A}(S_{\lambda}, S_{\mu})] \simeq X_{\mu},$$

we see that $F: \text{mod}_A \to \text{mod}_A$ is well defined and satisfies the desired property. If the field k is countable, it is easy to give examples where the proposition fails,

2.2. Let Λ and Γ be two finite-dimensional k-algebras. Let A = k [t]. Let T be a finite-dimensional Γ - Λ -bimodule and let M be a Γ - Λ -bimodule which is a finitely generated free right Λ -module. Fix $s \in N$. Consider the functor

$$\operatorname{Ext}_{\Gamma}^{s}(T, M \otimes_{A}(-)): \operatorname{mod}_{A} \to \operatorname{mod}_{A}.$$

Let $\dots \to P_n^{\underline{\partial}_n} \to P_{n-1} \to \dots \to P_1^{\underline{\partial}_1} \to P_0^{\underline{\partial}_0} \to T \to 0$ be a finite-dimensional projective resolution of Γ - Λ -bimodules. Set $\partial_n^* = \operatorname{Hom}_\Gamma(\partial_n, M)$ (and $\partial_0^* = 0$). For each $\alpha \in Q_1$, we have induced morphisms $\bar{\alpha} \in \operatorname{End}_\Gamma(T)$ and $\alpha_s \in \operatorname{End}_\Gamma(P_s)$ such that $\alpha_s \partial_s = \partial_s \alpha_{s+1}$ and $\partial_0 \alpha_0 = \bar{\alpha} \partial_0$. Then the induced linear maps $\bar{\alpha}_s \in \operatorname{End}_k(\ker(\partial_{s+1}^* \otimes_A X)/\operatorname{Im}(\partial_s^* \otimes_A X))$ yield a left Λ -module structure on $\ker(\partial_{s+1}^* \otimes_A X)/\operatorname{Im}(\partial_s^* \otimes_A X)$.

The following is an elementary fact but we will need later some details of the proof. Lemma. Ext_r^s(T, $M \otimes_A X$) \cong ker $(\partial_{s+1}^* \otimes_A X)/\text{Im}(\partial_s^* \otimes_A X)$ as left Λ -modules.

Proof. Consider the natural transformation

$$\varphi_T : \operatorname{Hom}_{\Gamma}(T, M) \otimes_A X \to \operatorname{Hom}_{\Gamma}(T, M \otimes_A X),$$

$$f \otimes x \mapsto \varphi_T(f \otimes x) : T \to M \otimes_A X, \quad t \mapsto f(t) \otimes x.$$

In fact φ is natural in the three variables. Clearly, φ_T is an isomorphism if T is projective.

If $s \ge 1$, we get the following commutative diagram:

The calculation of the homology in the middle terms gives the result. The case s=0 is similar.

2.3. We keep the notation of 2.2.

LEMMA. Let $z \in N^{Q_0}$. The set

$$\mathscr{E}(z) = \{X \in \operatorname{mod}_A(z) \colon X \simeq \operatorname{Ext}^s_\Gamma(T, M \otimes_A S) \text{ for some simple A-module } S\}$$

is constructible in $\operatorname{mod}_A(z)$. If C is a constructible subset of $\mathscr{E}(z)$ which intersects each orbit of G(z) in at most one point, then $\dim C \leq 1$.

Proof. Consider the complex of finitely generated free right A-modules

$$U = \operatorname{Hom}_{\Gamma}(P_{s-1}, M) \xrightarrow{f = \hat{\sigma}_{s}^{*}} V = \operatorname{Hom}_{\Gamma}(P_{s}, M) \xrightarrow{g = \hat{\sigma}_{s+1}^{*}} W = \operatorname{Hom}_{\Gamma}(P_{s+1}, M),$$

together with the morphisms $\alpha_i^* \in \operatorname{End}_A(\operatorname{Hom}_\Gamma(P_i, M))$, $\alpha \in Q_1$. Let $u = \operatorname{rank}_A U$, $v = \operatorname{rank}_A V$ and $w = \operatorname{rank}_A W$.

The set $Z = \{(a, b) \in k^{uv} \times k^{uw}: a = f \otimes_A S, b = g \otimes_A S \text{ for some simple A-module S}$ is constructible and dim $Z \leq 1$.

Let $0 \le v' \le u' \le v$ be such that $u'-v'=|z|=\sum_{x\in Q_0}z(x)$. Set v''=v-v'. Let F(u',v') be the subset of $Z\times k^{u'v'}\times k^{vv''}\times k^{v'v}\times k^{v'u'}\times k^{u'|z|}$ formed by the tuples $((a,b),\mu,v,\gamma,i,h)$ such that the diagrams:

are exact and commutative. Clearly, F(u', v') is constructible. Moreover, given a tuple $((a, b), \mu, \nu, \gamma, i, h) \in F(u', v')$, there are uniquely determined maps $\bar{\alpha} \in \operatorname{End}_k(k^{|z|})$ induced by α_s^* ($\alpha \in Q_1$). These maps yield a structure of left Λ -module on $k^{|z|}$; we denote this module by $X((a, b), \mu, \nu, \gamma, i, h)$.

Given $Y \in \text{mod}_A(z)$, we denote by ${}^{\oplus}Y$ the left Λ -module on $k^{|z|}$ induced by Y. Then the set

$$G(u', v') = \{((a, b), \mu, \nu, \gamma, i, h, Y) \in F(u', v') \times \operatorname{mod}_{A}(z) : X((a, b), \mu, \nu, \gamma, i, h) \simeq {}^{\oplus}Y\}$$

is constructible. Consider the canonical projection π_7 : $F(u', v') \times \operatorname{mod}_A(z) \to \operatorname{mod}_A(z)$. Then $E(u', v') = \pi_7(G(u', v'))$ is constructible and

$$\mathscr{E}(z) = \bigcup_{\substack{0 \leqslant v' \leqslant u' \leqslant v \\ u'-v' = |z|}} E(u', v')$$

is constructible in $\operatorname{mod}_A(z)$. Let C be a constructible subset of $\mathscr{E}(z)$ which intersects each orbit of G(z) in at most one point. It suffices to show that $\dim(C \cap E(u', v')) \leq 1$. Thus we may assume that $C \subset E(u', v')$ and that C is irreducible. Consider the canonical projections

$$F(u', v') \times \operatorname{mod}_{A}(z) \xrightarrow{\pi_{7}} Z$$

$$\operatorname{mod}_{A}(z)$$

Take an irreducible component D of $\pi_7^{-1}(C)$ and set $Z' = \overline{\pi_1(D)}$. Then the restriction maps $p_7 \colon D \to C$ and $p_1 \colon D \to Z'$ are dominant. Let $y \in D$. We show that $p_1^{-1}(p_1(y)) \subset p_7^{-1}(p_7(y))$. Let $y = ((\alpha, \beta), \mu, \nu, \gamma, i, h, Y)$ and $((\alpha, \beta), \mu', \nu', \gamma', i', h', Y') \in p_1^{-1}(p_1(y))$. Then, by definition, $Y, Y' \in C$ and $\mathcal{Y} \times \mathcal{Y}' \in \mathcal{Y}'$. Therefore, Y = Y'. That is, $y' \in p_7^{-1}(p_7(y))$. As in the proof of Lemma 1.4 this implies that

$$\dim C \leq \dim Z \leq 1$$
.

2.4. Proof of Proposition 2.1. Since Γ_n is tame, for each $d \in N$, there exists a family of $\Gamma_n \cdot k[t]$ -bimodules $M_1^{(n,d)}, \ldots, M_{s(n,d)}^{(n,d)}$ such that every indecomposable Γ_n -module Y with $\dim_k Y = d$ is isomorphic to $M_j^{(n,d)} \otimes_{k[t]} S$ for some j and some simple k[t]-module S. By 2.3, for each $z \in N^{20}$, $n, d \in N$ and $1 \le j \le s(n,d)$, the set

$$\mathscr{E}(z, n, d, j) = \{X \in \text{mod}_{A}(z) \colon X \simeq \text{Ext}_{\Gamma_{n}}^{s_{n}}(T_{n}, M_{j}^{(n,d)} \otimes_{\Gamma_{n}} S)$$
for some simple $k \lceil t \rceil$ -module $S \}$

is constructible and every constructible subset $C \subset \mathscr{E}(z, n, d, j)$ which intersects each orbit of G(z) in at most one point satisfies $\dim C \leq 1$. By hypothesis, $\operatorname{ind}_A(z) = \bigcup_{n,d,J} (\mathscr{E}(z,n,d,j) \cap \operatorname{ind}_A(z))$. By 1.5, there are finite sets of indices $n_i \in \mathbb{N}$, $d_i \in \mathbb{N}$, $1 \leq j_i \leq s(n_i,d_i)$ such that $\operatorname{ind}_A(z) = \bigcup_{l} (\mathscr{E}(z,n_i,d_i,j_l) \cap \operatorname{ind}_A(z))$. Therefore, if $C \subset \operatorname{ind}_A(z)$ is a constructible subset which intersects each orbit of G(z) in at most one point, then $\dim C \leq 1$. Our criterion 1.3 implies that A is tame.

- **2.5.** Let A be a finite-dimensional k-algebra. A module $T \in \text{mod}_A$ is called a *tilting module* if the following conditions are satisfied (see [1, 13, 18]):
 - (a) $\text{Ext}_{A}^{i}(M, -) = 0$ for $i \ge 0$.
 - (b) $\operatorname{Ext}_{A}^{i}(M, M) = 0$ for i > 0.
 - (c) There exists an exact sequence

$$0 \rightarrow A \rightarrow T_0 \rightarrow T_1 \rightarrow \dots \rightarrow T_r \rightarrow 0$$

where $T_i \in \operatorname{add}(T)$.

Let $T \in \text{mod } A$ be a tilting module and $B = \text{End}_A(T)$. Let \mathcal{X}_i be the full subcategory of mod_A formed by the modules with concentrated ith T-extension, that is,

$$\operatorname{obj} \mathscr{X}_i = \{ X \in \operatorname{mod}_A \colon \operatorname{Ext}_A^j(T, X) = 0 \text{ if } j \neq i \}.$$

Let \mathscr{Y}_i be the full subcategory of mod_B formed by the modules with concentrated ith T-torsion, that is,

obj
$$\mathcal{Y}_i = \{Y \in \text{mod}_B : \text{Tor}_j^B(Y, T) = 0 \text{ if } j \neq i\}.$$

THEOREM [1, 18]. In the above situation, the functors

$$\operatorname{Ext}_{A}^{i}(T, -) \colon \mathscr{X}_{i} \to \mathscr{Y}_{i} \quad and \quad \operatorname{Tor}_{i}^{B}(-, T) \colon \mathscr{Y}_{i} \to \mathscr{X}_{i}$$

are equivalences of categories, inverse to each other.

COROLLARY. In the above situation, assume that k is uncountable and every indecomposable B-module belongs to \mathcal{Y}_i for some $i \in N$. If A is tame, then B is tame.

The hypotheses of the Corollary are satisfied if A is hereditary.

- 3. Functors defined by the action of groups.
- **3.1.** Let $\Lambda = k[Q]/I$ be a finite-dimensional algebra.

PROPOSITION. Assume that k is an uncountable algebraically closed field. For each $n \in \mathbb{N}$, let Γ_n be a finite-dimensional k-algebra and $F_n \colon \operatorname{mod}_{\Gamma_n} \to \operatorname{mod}_{\Lambda}$ be a right exact functor. Assume that each indecomposable Λ -module is a direct summand of $F_n(Y)$ for some $n \in \mathbb{N}$ and some Γ_n -module Y. If each Γ_n is a tame algebra, then Λ is tame.

Proof. As in the proof of 2.1 in 2.4, it is enough to show the following: Let M be a Γ_n -k[t]-bimodule which is finitely generated free as right k[t]-module. Then the set

$$\mathcal{F}(z) = \{ Y \in \text{mod}_{A}(z) : Y \text{ is a direct summand of } F_{n}(M \otimes_{k[t]} S) \}$$
 for some simple $k[t]$ -module $S\}$

is constructible and if C is a constructible subset of $\mathscr{F}(z)$ which intersects each orbit of G(z) in at most one point, then dim $C \leq 1$.

Since F_n is right exact, there is a Λ - Γ_n -bimodule N such that $F_n = N \otimes_{\Gamma_n}(-)$. Then $F_n(M \otimes_{k[t]} S) \cong (N \otimes_{\Gamma_n} M) \otimes_{k[t]} S$. By [4], there is a finite family of Λ -k [t]-bimodules L_1, \ldots, L_s which are finitely generated free as right k [t]-modules and such that for each simple k [t]-module S, we have $(N \otimes_{\Gamma_n} M) \otimes_{k[t]} S \cong L_t \otimes_{k[t]} S$ for some t. Therefore, it is enough to show our claim for each of the sets

$$\mathscr{F}^{l}(z) = \{ Y \in \operatorname{mod}_{A}(z) \colon Y \text{ is a direct summand of } L_{i} \otimes_{k[t]} S \}.$$
 for some simple $k \lceil t \rceil$ -module $S \}$.

Let $e_i \in N^{Q_0}$ be such that $e_i(x)$ is the rank of the free k[t]-module $L_i(x)$. Let f_i : $\operatorname{mod}_{k[t]}(1) \to \operatorname{mod}_{A}(e_i)$ be the regular map induced by $L_i \otimes_{k[t]}(-)$. Then $Z = \operatorname{Im} f_i$ is a constructible subset of $\operatorname{mod}_{A}(e_i)$ with $\dim Z \leq 1$.

Let K_1 be the subset of

$$Z \times (\prod_{x \in Q_0} k^{e_t(x)}) \times \operatorname{mod}_A(z) \times (\prod_{x \in Q_0} \operatorname{Hom}_k(k^{z(x)}, k^{e_t(x)}))$$

formed by the tuples (X, f, Y, j) satisfying:

$$f \in \text{End}_A(X)$$
, $f^2 = f$ and $0 \to Y \xrightarrow{j} X \xrightarrow{f} X$ is exact.

Clearly, K_1 is constructible. Therefore, the subset K of $Z \times \text{mod}_{A}(z)$ formed by the pairs (X, Y) such that Y is a direct summand of X, is constructible. Consider the canonical projections

$$K \stackrel{\pi_1}{\to} Z$$

$$\stackrel{\pi_2}{\to} \downarrow$$

$$\mathscr{F}^l(z)$$

Then $\mathscr{F}^i(z)=\operatorname{Im} \pi_2$ is constructible. Let C be a constructible subset of $\mathscr{F}^i(z)$ intersecting each orbit of G(z) in at most one point. By the Krull-Schmidt Theorem the induced regular map $\operatorname{res} \pi_1\colon \pi_2^{-1}(C)\to Z$ is finite. This implies that $\dim C \leq \dim \pi_2^{-1}(C) \leq \dim Z = 1$.

3.2. For the terminology used in the next result see [2, 5, 12, 17].

PROPOSITION. Let $\Lambda = k \lfloor Q \rfloor / I$ be an algebra over an uncountable algebraically closed field k of characteristic $p \geqslant 0$. Let $F: (\tilde{Q}, \tilde{I}) \rightarrow (Q, I)$ be a Galois covering of bounded quivers given by the action of a p-residually finite group Π which acts freely on \tilde{Q} . Suppose that $\tilde{\Lambda} = k \lfloor \tilde{Q} \rfloor / \tilde{I}$ is locally support-finite. Then $\tilde{\Lambda}$ is tame if and only if Λ is tame.

Proof. Let F_{λ} : $\operatorname{mod}_{\lambda} \to \operatorname{mod}_{\lambda}$ be the push-down functor. Consider a sequence $(\Gamma_n)_{n \in \mathbb{N}}$ of finite full subcategories of $\widetilde{\Lambda}$ such that $\bigcup_n \Gamma_n = \widetilde{\Lambda}$ and if $\widetilde{\Lambda}(x, \Gamma_n) \neq 0$ or $\widetilde{\Lambda}(\Gamma_n, x) \neq 0$, then $x \in \Gamma_{n+1}$. The restriction functor ε_n^n : $\operatorname{mod}_{\lambda} \to \operatorname{mod}_{\Gamma_n}$ has a left adjoint ε_n^n : $\operatorname{mod}_{\lambda} \to \operatorname{mod}_{\lambda} \to \operatorname{mod}_{\lambda}$ such that $\varepsilon_n^n \in \widetilde{\varepsilon}_n^n = \operatorname{id}_{\operatorname{mod}_{\Gamma_n}}$ (see [6]). Therefore the functor

$$F_n = F_1 \varepsilon_{\lambda}^n : \operatorname{mod}_{\Gamma_n} \to \operatorname{mod}_{\lambda}$$

is right exact.

Let Y be an indecomposable Λ -module. Since $\tilde{\Lambda}$ is locally support-finite, by [6, 2.5] the pull-up F, Y decomposes as F, $Y \simeq \bigoplus_{i \in I} X_i$, where X_i an indecomposable finite-dimensional $\tilde{\Lambda}$ -module. Thus $F_{\lambda}F$, $Y \simeq \bigoplus_{i \in I} F_{\lambda}X_i$. Since Π is p-residually finite and acts freely on $\tilde{\Lambda}$, Y is a direct summand of $F_{\lambda}F$, Y (see [5]). Therefore Y is a direct summand of $F_{\lambda}X_i$ for some $i \in I$.

There is a number $n \in \mathbb{N}$ such that $\operatorname{supp} X_i \subset \Gamma_n$. Then by [5, Lemma 2], $X_i \simeq \varepsilon_\lambda^{n+1} \varepsilon_\lambda^{n+1}(X_i)$. Thus Y is a direct summand of $F_{n+1}(\varepsilon_\lambda^{n+1}(X_i))$.

If $\tilde{\Lambda}$ is tame, by [4], each Γ_n is tame. Therefore, 3.1 implies that Λ is tame. For the converse, assume that Λ is tame. By [4], it is enough to show that each Γ_n is tame. Consider the right exact functor

$$H_n = \varepsilon^n F_* : \operatorname{mod}_A \to \operatorname{mod}_{\Gamma_n}.$$

Let Y be an indecomposable Γ_n -module. Thus $X = F_{\lambda} \mathcal{E}_{\lambda}^n Y \in \text{mod}_{\lambda}$. We get

$$H_nX = \varepsilon^n_{\underbrace{\mathfrak{g} \in \Pi}} (\bigoplus_{g \in \Pi} \mathfrak{g}(\varepsilon^n_{\lambda} Y)) \cong \bigoplus_{g \in S} \varepsilon^n_{\underbrace{\mathfrak{g}}} (\varepsilon^n_{\lambda} Y) = Y \oplus (\bigoplus_{g \in S^-(1)} \varepsilon^n_{\underbrace{\mathfrak{g}}} (\varepsilon^n_{\lambda} Y)),$$

where S is the finite set of $g \in \Pi$ such that supp $g(\mathcal{E}_{\lambda}^{n} Y) \cap \Gamma_{n} \neq \emptyset$. Again, 3.1 implies that Γ_{n} is tame.

Remark. The Proposition removes the hypothesis " Π acts freely on the isoclasses of indecomposable finitely generated $\tilde{\Lambda}$ -modules" of the main theorem of [5].

3.3. For the terminology used in the next result see [20].

PROPOSITION. Let G be a finite group of automorphisms of Λ such that chark $\not \mid o(G)$ and consider the associated skew group algebra $\Lambda[G]$. If Λ is tame, then $\Lambda[G]$ is tame.

Proof. Consider the functor $F = \Lambda[G] \otimes_{\Lambda}(-) : \operatorname{mod}_{\Lambda} \to \operatorname{mod}_{\Lambda[G]}$ which is exact and such that every module $X \in \operatorname{mod}_{\Lambda[G]}$ is a direct summand of F (res X), where res: $\operatorname{mod}_{\Lambda[G]} \to \operatorname{mod}_{\Lambda}$ is the forgetful functor. Similar arguments to those given before show that $\Lambda[G]$ is tame whenever Λ is so.

COROLLARY. Let G be an abelian finite group of automorphisms of Λ such that $\operatorname{char} k \not\mid o(G)$. Then Λ is tame if and only if $\Lambda[G]$ is tame.

Proof. By [20], the group of characters X(G) of G acts on $\Lambda[G]$ and $\operatorname{mod}_{A[G][X(G)]} \simeq \operatorname{mod}_A$. The proposition gives the result.

References

- D. Baer, Tilting sheaves in representation theory of algebras, Manuscripta Math. 6 (1988), 323-347.
- [2] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.

- [3] W. W. Crawley-Boevey, On tame algebras and Bocses, Proc. London Math. Soc. 56 (1988) 451-483.
- [4] P. Dowbor and A. Skowroński, On the representation type of locally bounded categories, Tsukuba J. Math. 10 (1986), 63-72.
- On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
- [6] Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
- [7] Yu. A. Drozd, On tame and wild matrix problems, in: Matrix Problems, Kiev 1977 (in Russian), 39-74.
- [8] Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258.
- [9] P. Gabriel, Indecomposable representations II, Symp. Math. 11 (1973), 81-104.
- Finite representation type is open, in: Representations of Algebras, Lecture Notes in Math. 488, Springer, 1975, 132-155.
- [11] Auslander Reiten sequences and representation-finite algebras, in: Representation Theory I. Lecture Notes in Math. 831, Springer, 1980, 1-71.
- [12] The universal cover of a representation-finite algebra, Lecture Notes in Math. 903, Springer, 1981, 68-105.
- [13] D. Happel, On the derived category of a finite dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389.
- [14] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, Berlin-Heidelberg-New York 1977.
- [15] V. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92.
- [16] H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, in: Representation of Algebras, London Math. Soc. Lecture Notes 116 (1986), 109-145.
- [17] R. Martinez and J. A. de la Peña, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292.
- [18] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113–146.
- [19] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm.
 Algebra, to appear.
- [20] I. Reiten and Ch. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra 92 (1985), 224-282.
- [21] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [22] I. R. Shafarevich, Basic Algebraic Geometry, Grundlehren Math. Wiss. 213, Springer, Berlin-Heidelberg-New York 1977.

INSTITUTO DE MATEMÁTICAS, U.N.A.M. Ciudad Universitaria 04510 México, D.F. México

> Received 10 October 1989; in revised form 13 February 1990