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A Cantor-Bendixson theorem for the space w$*
, .
Jouko Viifinfinen (Helsinki)

Abstract. Consider the Baire space 4 = % ie. the product of countably infinitely. many
copies of the discrete space w of natural numbers. The Cantor-Bendixson theorem says that
any closed subset of »” can be uniquely expressed as the disjoint union of a perfect (i.e. closed
and dense-in-itself) set and a countable set. We study the generalized Baire space A7y = of"
obtained from the cartesian product of w, copies of w; by letting basic neighborhoods
of any fiw,~w, be scts of the form N(f, o) = {g: 0, —~ 0, |g(f) =f(f) for f<a} where
< @,. This is an w,-metrizable space in the sense of Sikorski [8]. We study the cardinality of
closed subsets of this space. We show among other things that a natural generalization of the
Cantor-Bendixson theorem to the space ., is consistent relative to the consistency of
a measurable cardinal,

1. Introduction. The purpose of this paper is to use game-theoretic ideas to generalize
Cantor-Bendixson type constructions from the space 4" to the analogous space A7y.
Our motivation comes from logic where the latter space can serve as a domain for the
study of classes of models of cardinality w, (see e.g. [7]).

Throughout the paper we work in the space /7, defined in the above abstract.
However, the results can be generalized to w,-metric spaces (see [8]) which satisfy
a natural completeness condition (considered in [8]) and which have a dense set of
cardinality < 2¢.-

For the uppropriate generalization of the Cantor-Bendixson theorem from the space
& to the space 4, we introduce the concepts of a-perfectness and a-scat-
teredness. An w,-perfect set is a canonical example of a subset of A, of cardinality 2%*.
In Section 2 we introduce a hypothesis 1(w) which implies that any closed subset of Ay
of cardinality at least w, contains an w,-perfect subset. In Section 3 we use forcing
to construct an (w-+1)-scattered subset of 4 of cardinality w,. In Section 4
we show that trees can play in 4" & role similar to the role of Cantor-Bendixson
ranks in A",

The cardinality of a set A is denoted by |4|. The restriction of fe &, to an ordinal
% is denoted by f|a. By a tree we mean a partial order in which every element has
a well-ordered sct of predecessors. A tree may have many roots, ie. minimal elements.
The rank of an element of a tree is the order-type of the set of its predecessors. The set of
elements of a tree T of rank « is denoted by T°. If x is an element of a tree, then
x|a denotes the set of predecessors of x of rank < o. The set of elements of rank < o is

denoted by T|a. The height of a tree T is the least ordinal greater than the ranks of


Artur


188 _ J. Viindnen

elements of T. The supremum of the ranks of elements of T is denoted by y(T). For the
definition of a normal tree we refer to [4]. If T is a tree, oT is the tree of all initial
segments of branches of T ordered by end-extension. If T; and T, are trees and there is
an order-preserving mapping T, — T,, we write T, < T;. A subset of o, is closed if it
contains supremums of ascending chains of its elements, stationary if it meets every
closed and unbounded set, and bistationary if it is stationary and its complement is
stationary. Continuum Hypothesis 2° = w, is denoted by CH and the Generalized
Continvum Hypothesis Vo (2°* = w,.,) by GCH.

The author is indebted to Hugh Woodin for suggesting the proof of Theorem 3 and
discussing its details and to Taneli Huuskonen for reading the manuscript and making
useful comments.

2. Perfectness generalized. Perfectness of a closed subset E of 4" can be characterized
by the following simple game G(E, xo). There are two players I and II. Player I plays
natural numbers in ascending order and player II plays points of E (see Figure 1),
Player I starts the game with some n,. Whenever I has played ng, and (i = 1 or) II has
played x;,j <1, II plays a point x; from E in such a way that

X #x; but X |npg =g 0y
I |
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X2

Fig. 1. G(E, x,)

for j < i. Player II wins the game if he can make all his o moves, otherwise player

I wins. It is easy to see that E is perfect if and only if player II has a winning strategy in
G(E, x,) for all x,eE.
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Fig. 2. G(E, x4, 9)
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We shall generalize the notion of perfectness by simply letting the above game go on
for & moves for some countable ordinal 4. So let E be a subset of 4", and § an infinite
ordinal < w;. The game G(E, x,, 8) is defined as G(E, x,) above except that now
I plays countable ordinals e, for 0 < ¢ < § in ascending order (see Figure 2). At limits
I has to play the supremum of his previous moves. Again II wins if he can make all his
moves, otherwise I wins, i

DerINITION 1. A subset E of A" is 8-perfect if it is closed and player II has a winning
strategy in G(E, xq, 8) for all x,€k,

Note that £ is dense-in-itself in the ordinary sense if and only if it is w-perfect. While
G(E, x,) is determined by the Gale-Steward theorem, there is no reason why
G(E, xo, @) should be determined for infinite . For an example, let 4 cw, be
bistationary and :

) E ={feA" (| f(®) =0 except for a closed set of e A}.

Now G(E,, xo, w-+1) is non-determined for all x,eE,. Indeed, if II had a winning
strategy, A would contain a closed unbounded set, and if I had a winning strategy,
A4 would avoid a closed unbounded set. Note that E,, is a (closed and) perfect set of
cardinality 2°.

It follows immediately from the definition that if E is both (a+1)-perfect and
B-perfect, then it is (or+ f)-perfect. Let us call an ordinal ¢ indecomposable if « <0
implies @+ == 8. Thus d-perfectness implies (§+1)-perfectness for decomposable
ordinals 8. On the other hand, if § is indecomposable, then the set

2 S, = {fe.| the order type of {u|f (@) # 0} is < d}
is d-perfect but not (84 1)-perfect.

Perfect subsets of 4" have cardinality 2. This is not true of A", as the following
example shows. Let

(3) Epw = {fe A"y | [ (#) = 0 except for a finite number of & <w,}.

The set Ey, is clearly (closed and) perfect but has cardinality w, only.

Propostrion 1. Let E he a non-empty 8-petfoct subset of A (. If 8 > , then |E| = 2°.
If & = wy, then |F|=2%",

Proof. Let x,& k. Let v be a winning strategy of Il in G(E, xo, d). By repeatedly
using the o1 first moves provided by ¢ we can build a full binary tree of height w+1
inside K. This proves the first claim. Suppose then t is a winning strategy of II in
G(E, %y, »,). Using again t repeatedly we can build a system x,, se 2%, of points of
E and a system a,, s& 2%, of ordinals in such a way that if s is an initial segment of §,
then x,(f) = x, (f) for f < a, and x,(%) # X (). Now we choose for any fe2“' an
element x;& 4" so that x,(B) = x,(f) whenever B < a, and s is f|,. Since E is c?osed,
all the points x,, fe2%, are in E and are distinct. This proves the second claim. m

Closed subsets of .47, are closely related to trees of cardinality and height w,.
Let E be a closed subset of 4. Let [E] be the tree of functions f|a, where e E and
o<y, ordered by . Then E is the set of uncountable branches of [E]. On the
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other hand, if T is a subtree of w:**, then the set [T] of uncountable branches of T is
a closed subset of 4", Note that if the levels of the tree T are countable, then [T]
cannot contain any (e + 1)-perfect subsets. This follows from the first part of the proof of
Proposition 1. If T happens to be a Kurepa tree, then [T7] is an example of a closed set
of cardinality > w, which contains no é-perfect subsets for § > w. With this remark we
have proved the following observation which indicates an important limitation to any
attempt to generalize the Cantor-Bendixson theorem to the space A7;:

PROPOSITION 2. If there is a Kurepa tree, then A | has a closed subset of cardinality
= w, with no (w+ 1)-perfect subsets.

Another immediate consequence of the relation between closed subsets of /4", and
trees is the equivalence of the following two conditions:

1. 4, has a closed subset of cardinality A.

2. There is a tree of cardinality and height w, with exactly A uncountable branches.

Thus the statement
(CB1) There is no closed subset of .4, of cardinality A where w, < A <2

is equiconsistent with the existence of an inaccessible cardinal (see [5], p. 84).
A'simple diagonal argument shows that if CH is assumed, then there is a subset of
A, which has cardinality 2% and which has no non-empty w,-perfect subsets. On the
other hand, the proof of Theorem 4.8 of [5] shows that if an inaccessible cardinal is
collapsed (in a model of GCH) to w,, then in the resulting model every closed subset of
Ay of cardinality > w, contains a non-empty w,-perfect subset. Thus the statement
(CB2) EBvery closed subset of 4", of cardinality > w, contains a non-empty
,-perfect subset
is equiconsistent with the existence of an inaccessible cardinal. ‘
Let us call a closed subset E of " g-closed if the tree [E] contains a subset D which
is dense (i.e. every te T has an extension in D) and closed under unions of ascending
w-sequences.

LemmA 1. Any perfect o-closed subset of A, is w,-perfect.

Proof Let E be g-closed and perfect. Suppose x,&E is given and I starts the game
with o;. Then I finds an extension d, of x, |, from D. Now there is some x, & E other
than x, which extends d, . This is the first move of I1. The strategy of II is to play all his
moves as extensions of an ascending sequence of elements of D. Since D is closed under
limits of countable ascending sequences, II will be able to play Wy MOves. m

Taneli Huuskonen pointed out that the set of f: w, =3 with f(x) = 2 for finitely
many o only, is o,-perfect but not o-closed.

The 5-kernel Ker (E, 6) of a subset E of 4", is defined as the set of X for which I1
has a winning strategy in G(E, x,, 6). It is easy to see that Ker(E, d) is a closed J-perfect
subset of the closure of E, which contains every d-perfect subset of E. For o < f,
Ker(E, ) = Ker(E, o). The perfect kernel of E in the usual sense is, of course,

-Ker(E, w).
For our next result we need the following set-theoretical hypothesis:
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I{w) There is a normal w,-complete ideal # on w, such that 4+ = {acw,|ag¢s}
has a dense subset in which every descending w-sequence has a lower bound.

R. Laver (unpublished, see [1]) has proved that I(w) becomes true if a measurable
cardinal is Levy-collapsed to @,. On the other hand, the ideal given by I(w) is
precipitous so that the consistency of I(w) implies the consistency of a measurable
cardinal. I(w) implies CH.

THEOREM 1. Assume I(w). If E is a subset of A", of cardinality > @,, then E meets
Ker (E, ).

Prool. Let £ be 4 subset of A7, of cardinality > w,. Let § = E have cardinality 5.
Let .# be an w,-complete normal ideal on S such that #* has a dense subset K which is
closed under descending w-sequences. Let us call xe X, X < S, an J-point of X if every
neighborhood N of x satisfies N n X e.#*. We prove at first that every X €.#* has an
J-point. Suppose not. Then every element x of X has a basic neighborhood N, with
N,nXeJS. Since we have CH, there are but w, basic neighborhoods and we get X e .#,
which is a contradiction.

Let now x4 be an .#-point of S. We show that x, is in Ker (E, ,), that is, player 11
has a winning strategy in G (E, x,, w,). Suppose I plays o, . Then, since x, is an £-point
of S, there is a set X, e K with X, < N(x,, ;). The strategy of II is to choose some
J-point x, of X ;. When I plays a,, IT chooses some X, €K with X, S X, n N(x,, o).
According to the strategy of II he chooses some #-point x, of X,. Since K has
infimums for descending w-sequences, player II can follow this strategy for the whole
length of «, moves. ‘ ’

Note that I(w) implies, by the above theorem, condition (CB2). We shall see later
(Theorem 4) that I(w) implies (CB2) in a particularly strong form.

3. Scatteredness generalized. A space E is scattered if each non-empty subspace
contains an isolated point. It is easy to see that a subset of A" is scattered iff player I has
a winning strategy in G (E, x,) for all x,e€E. Thus a closed subset of ./ splits into its
perfect kernel and a countable scattered part.

DEFINITION 2. A subset E of A", is d-scattered if player I has a winning strategy in
G(E, x4, 8) for all x,eE. The é-scattered part of E, Sc(E, 8), is the set of x,&E for
which I has a winning strategy in G(E, x,, ).

Note that Sc(E, 8) is itself é-scaltered and if E is closed, then E—Sc(E, 9) is closed.
If 6 is indecomposable, then the set S, defined by equation (2) is a d-perfect set which is
(6+ 1)-scattered, '

In 4" every scattered set is countable. In 47, we have the following scattered (even
discrete) sets of cardinality 2°:

@ E, = {fe | /() =0 for p>a}.

The set Ey,, defined by equation (3) is an (w+ 1)-scattered closed set of cardinality
w,. The S-scatteredness of sets of cardinality > w, leads in general outside the range of
ZFC and we have only independence results, The following proposition- gives the
immediately provable cases.
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PROPOSITION 3. Let E be a subset of &°1. If E is countable, then E. is (w+ 1)-scattered.
If E is closed and |E| < w,, then E is w,~scattered.

Proof. Suppose E = {f,| n < w}. The strategy of I is to choose ¢, 1 in such a way
that either x, = f, or f,(8) # x, (f) for some B < &,.y. Then II cannot play x,, without
breaking the rules. Suppose then E = {f,| « < @} is closed. Now [ chooses o, so that
either x, = f; or f;(B) # x,(B) for some B < o Let fe. /'y so that f(f) = x.(B) for
f < a. Since E is closed, fe E, a contradiction. m

The set E , from equation (1) is an example of a closed set which has cardinality 2¢
but which is not -scattered for any & < w;. This can be seen as follows: Suppose I has
a winning strategy = in G(E,, X, 8). There is a forcing notion which adds a closed and
unbounded subset C to 4 but adds no new countable subsets to the universe. In the
forcing extension, II has a strategy, based on C, which beats . But 7 is still a winning
strategy of I in the extension. This contradiction establishes the claim. Actually we have
shown Sc(E,,0) =@.

THEOREM 2. The statement: There is a closed subset E of Ay of size w, such that

Ker(E, o+1) = Sc(E, o+1) =@

is consistent with GCH assuming the consistency of ZFC.

Proof We use countable trees as conditions to force a Kurepa tree. This is
a standard forcing notion (see e.g. Theorem 55 in [4]). Let 2, be the set of conditions
(T, f) where

(P1) T is a countable normal tree of successor ‘height,
(P2) f is a countable partial function from w, onto T,
We order the conditions as follows: (T, f) < (T, f") iff

(P3) T = T|y(T),

®4 dom(f") = dom(f),

P3) @ <f(e if aedom(f’).

If G is a 2,-generic set of conditions over ¥, then
T={T'| (T", f)eG for some f}

is a Kurepa tree. Let E be the closed subset [T] of .4°,. We know already that
Ker(E, o+1) = @ and |E| = w,. To prove Sc(E, w+1) = @, suppose I has a winning
strategy 7 in G(E, xo, w+1). Let E, x, and = be names for f, x, and ¢ such that for
some poeG

®)] Polk(z is a winning strategy of I in G(E, x,, @+1)).
Let py < p, such that for some o,
PolkT(xg) = 0y.

We may assume that po = (Tg, f;) such that y(Tg) > ;. Let p, € pi such that for
some x,

Py ”'xilal =x1|°¢1&x1 #xo&xleE.
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We construct inductively p, = (T,,f,), x, and o, in such a way that y(T) > a,,
PulkFT(Xgs ooy Xpey) = 1,

and
Pulbx, |0, = %, |, & x, x,-1&x,€E.

Now we can construct p, and x, such that p, < p, for all n< @ and

pw ”_ x(’) | a’l = xn I an‘

This contradicts equation (5). w

Tuiorem 3. The statement

There is a closed (w+1)-scattered subset of &', of cardinality w,

is consistent with GCH assuming the consistency of ZFC,

Proof. The proof is an elaboration of the proof of Proposition 2. The set of forcing
conditions we use was suggested by Hugh Woodin. Recall the definition of #, in
the proof of Proposition 2. Suppose (T, f)e 2,. Let G (T) be the following game (which
is similar to G (E, x,, w--1)): Player I plays an ascending sequence (c,), < ,, of ordinals
< 9(T) and player II plays elements of dom(f). Player II starts the game with
some a,. Then I plays ay. Next II has to play a4, such that f(a,) #f(a,) and
Sfla) oy = f(ag) | oty. Then I plays again some o, > ag and II answers with a, such that
J(ay) # f(a,) and [f(ay)| oy = f(ay)]«;, and so on. Suppose (4,, #,)r <m (M < @) has been
played. An clement ¢ of w, extends (a,, 0,), <m if a % a, and f(a)|a, =f(a,)| o, for all
n < . Player II wins if, after (a,, a,), <, has been played, (a,, o,)s <, has an extension.
Otherwise I has won,

Suppose p = (T, /)&%, and 1 is a strategy of I in G(T). A sequence (d,), <m (M < o)
is a (p, 7)-sequence if each a, is in w, and (4,), < is a sequence of moves of II in G(T)
when I plays t. If aew,, a sequence (@) <n (M < ) is a (p, T, a)-sequence if it is
a (p, t)-sequence, and f(a) is an extension of (a,, T(g, ---» @) <m-

A rank-function for (p, ©) is a function ¢ such that if aedom(f) and (a,)y<m is
a (p, v, a)sequence, then @(a, dg,...,a,) is defined and is <o, and for any
(p, T, a)-sequence (dy, ..., tyy ya):

0ty gy ooy ) > 0, Uy ovvs Gy, Anan).

Note that any 7 for which (p, 7) has a rank function g is necessarily a winning strategy.
Indeed, il I could play (¢,)n <« against T and the sequence had a t-extension f'(a), then

o(ay ap) > ... > (a, gy oo ) > -y

which is impossible.

CLam L. If p = (T, f)&#,, © is a winning strategy of I in G(T) and aedom(/f), then
(p, ©) has a rank-function.

Proof. Let R be the set of (p, 7, a)-sequences (o, ..., a,) such that there is no
(p, T, a)-SCQUENCE (g, .., tys Gy 1)- Lot Risy be the set of (p, 7, a)-sequences (ao, .., &)
such that every (p, 7, 4)-5¢quENce (dg, ..., dy, dy+1) is in RE. Finally, let RS (v = (J) be
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the union of R2, o < v. Suppose now (a,, ..., 4,) is a (p, 7, a)-sequence. If(ag, ..., a,)¢ RS,
then a cardinality argument gives an a,+. such that (ag, ..., @, dys1) € RG, . Iterating
this yields a win for II against . This contradiction shows that (aq, ..., a,)€ RS, Let

e(a, ags ...y a) =min{a < | (@, ... a)eERy}.

This ¢ is a rank-function for (T, f). The claim is proved. m
Let 2, be the set of conditions

(T.f. @ 0

where T and f satisfy the above conditions (P1) and (P2) and moreover:

(P6) p(T) is a limit ordinal,
(P7) 7 is a winning strategy of I in G(T),
(P8) o is a rank-function for (T, f), 7).

We order the conditions as follows:
(Tfina<(T.f.7,0)
iff (P3)~(P5) hold and
(P9) T(agy s @) =T (ag; -+
(P10) o(a, ag, ...
CLAM 2. 2, is countably closed.

o Gy) . a,edom (),
,a)=¢'(a. aq, ..., a,) if a,aq,..., a,edom(g’).

if ag, ..

Proof. Suppose

pOZPIZ'“an?"' _(n<U))

is a sequence of elements of 2, and

Po = (Tos fus Tus Q)

Let T={}y<oT, and D = Ju<odom(f,). We let T, be T extended by a top-level
which contains a unique extension t, for each branch {f,(a)| n < w}, ueD. We let
fo(@) =t, for aeD. Then p, = (T,, f,} is in #,. Player I has a natural strategy 7, in
G(T,,) determined by | Jn<,T,: To define a rank-function for (p,,, 7,), let (d,), <m be
a (P, Ty, a)-sequence. For all n < m there is a k < w such that for I 2 k, g, (a, a4, -.., @)
is defined and constant. We let g, (4, aq., ..., @,) be this constant value. Clearly, g, is
a rank-function for (p,, 7,)). Hence t,, is a winning strategy and (T,,, f,. T, €0) €45 The
claim is proved. m
Let G be a 2,-generic set over V. Let

T=\J{Ty| (Tp, /. T, 0)€G for some [, 7, 0},
b,={f@} (T, f, 7, 0)e G for some aedom(f) and some T, 1, 0}.

Cramv 3. T is a Kurepa tree in which each b,, ae w,, is an uncountable branch.
‘It ‘suffices to show that the set

{(T.f, v, 0€2,| y(T) 2, fedom(f)}
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is dense in &, for all @ < and f§ < w,. Since 2, is countably closed it suffices to
prove that any condition (T, f, 7, ) in #, has a proper extension (17, f’, 7', ¢') with
pedom(f’). So let (T, [, 7, @)e#,. Let T' be obtained from T by adding above any
top-level node £ a copy B, of the binary tree 2<“ with an extension to all branches of B,
which are eventually zero. Let s(t) denote the extension of the constant zero branch of
B,. We define f*(a) = s (f(w) for ae dom(f) and let Jf" map arbitrary new elements of w,
to the other top-level elements of T*. At this point we can make sure fedom(f). We
have defined p’ = (1", [ e?,.

Next we deline a strategy « of I in G(T”) as follows. For any sequence (ag, ..., @y—1)
of moves of Il in G(T") from dom(f) we let

T,(a()a LERY} an"l) = T(“O) LARE] an-‘l)'

Suppose then ¢, edom (f")—dom(f). Let te T'so that f'(a,) extends a branch in B, We '
let ©'{dgs .vos ty-1, &) be the smallest ordinal y such that

@)y # sy
It §'(a,) = s(1), we let ©'(ag, ..., Gy-1, a,) =y(T). For any further sequence
(ag, .- . Gy)
we let 7' be determined by some diagonalization strategy based on the countability
of T'.
To define ¢ let aedom(f'). If aedom(f) and
(@gs +er ty—1) €(dom(f))"

is a (p, 7', a)-sequence, we let

o2 O 1y Gyys Gytgs oo

Q’(tl, G0, cer an-—l) = Q((l, Qys « ey a’n—-l)-

If a,edom(f")—dom(f) so that (a, g, ..
0'(a, dgy vy dy—q) >0 and we can let

. Gy-1, 0,) 1s still a (p’, v, a)-sequence, then

@' (a, agy ooy Auys @) = 0.

Note that our delinition of t' ensures that no (a4, ag, ..., Gu=1, Gy, Gn+1) I5- 2
(', 7', a)}sequence. Let then aedom(f')—~dom(f). Now we have full freedom in
defining ¢’ (4, g ..« d,- 1) and we can use Claim 1 to do so. This ends the definition of
(T, /', 7', ¢) The claim is proved, m

Crama 4. Every uncountable branch of T is a b, for some a < w,.

Proof. Suppose b is a branch of T'which satisfies b # b, for all @ < w,. Let b and b,
be names for b and b,. Let p, = (T}, f,» Ty 0,) be 2 sequence of conditions such that
PoZ .. zpy ... and

s |- (8] By # bal B

for all aedom(f). Let p=inf{p,| n <o}, p=(T[ 7, o). Let y = y(T). The branch
b has an element on level 7. So for some n < w and aedom(f,) -

4 ~— Tundomenta. Mathematiene 137.3
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plk(b eventually agrees with b,),

a contradiction. The claim is proved. =

CLAaM 5. &, satisfies the N,-chain condition.

Proof. Suppose W is a subset of 2, of cardinality ¥,. By the 4-lemma (see Lemma
24.4 in [4]) there is a countable 4 < w, and W, & W of size N, such that if

(T,f, T, Q): (T/':f,’ Tl’ Qr)e Wl
are distinct then
T=T, dom(f)ndom(f)=4, [lA=["|4,
{(f@ao)s -~ f (@), &) v(ag, ..., a) =a} = {(f (ag) ... ["(@,), 0)| T(ay, ..., a,) = a},
{(r@. 1), ... f@), )| e(a, ag, ..., a,) = o}
={{/"@. 1 @o), ... /' (@), 9)| €' (4, dgs ..., a,) = a}.

Now it is easy to see that any two elements of W, are compatible. The claim
is proved. m

Claims 2 and 5 imply that 2, preserves cardinals.

We may assume without loss of generality that T is a subtree of w;*“!. Let E be the
set [T] of uncountable branches of T. In view of Claim 4 we may take E to be the sct
{b,| a < w,}. We define a strategy t of I in G(E, b,,, w~+1) as follows:

T(bags ++s bay =0 iff  ©'(ag, ..., a,) =0« for some (T, /', ', ) e G.

Let also for a < w,
0@, bay, .., bo) =0 iff  g'(a,ap,...,a)=0a for some (T, f", 7, 0)eG.

We see that 7 is a winning strategy of I as follows. Suppose I1 is able to play @ moves

bags +.-s by, ... against T in such a way that he can continue his play for one more move
b, Now

0(ay, bag) > ... > 0(ay, bugs ..v» bay > ...,

a coniradiction. Thus 7 is a winning strategy of I in G(E, by, w+1), whatever
bocE. m
The following is our Cantor-Bendixson theorem for the space .47, It shows that

assuming I(w), any closed subset of ., can be made wy-perfect by removing up to w,
points.

TuEOREM 4. If 1(w), then
(CB3) IfE is a closed subset of N, then

E=Ker(E, 0;)USc(E, w,), where [Sc(E, wy) € . .

Proof In view of Proposition 3' we may assume |E| 2 W, Suppose at first
[Sc(E, w,)| > w,. By Theorem 1 Sc(E, w,) meets its w,~kernel. But then it also meets

:Ee colt-kernel of E, a contradiction. So we have established [Se (£, w,)| < w,. Thus
e se
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A =E-Sc(E, w,)

has size 2 . Let fe 4. We shall prove that feKer(E, @,) by producing a winning
strategy of I in G(E, [, w). So suppose I plays o; and let
B=N(f,a)nA.

If |B} 2 wy, we can use Theorem 1 to get x, eKer(B, w,). Then II has a winning
strategy in (B, x,, ) which gives a winning strategy in G(E, x,, »,) and we are
done. So suppose |B| < w. Since B is closed we can use Proposition 3 to get a winning
strategy T of [ in G (A, [, w,) starting with the move «,. We get a contradiction by
showing that = gives rise to a winning strategy of I'in G(E, f, ®,). The strategy of I is to
play = as long as II plays his moves in A. As soon as IT plays some x,&Sc(E, wy),
I starts to use his winning strategy in G(E, x,, w,). This ends the description of the
winning strategy of I. m

We do not know the exact consistency strength of (CB3). It lies somewhere between
the consistency of an inaccessible cardinal and the consistency of a measurable cardinal.

4. Trees and Cantor-Bendixson ranks. The perfect kernel of a closed subset E of
a topological space can be expressed as the intersection of the following descending
chain of closed sets:

E,=E,
(6) Ey.q = limit points of E,,
E,=(VE, w={Jv.
®Ey

This gives rise Lo a notion of rank: If x is not in the perfect kernel of E, there is a unique

trees to represent Ker (E, @) as an intersection of levels, generalizing the hierarchy (6).
Let E be a subset of 47, Ta tree and x,e.4";. We use
G(E, %o, T)
to denote the game which is like G (E, x,, o,) except that I plays countable ordinals «,

and elements ¢, of the tree T. The elements z, have to be chosen in ascending order from
some chain in 7' (Figure 3). Winning is defined as for G(E, xo, @;). Note that if

I iy
Oy by
Xy
Oy [z
X3
G b
X
(E<d) | (€<

Fig. 3, G (E, X0y T)
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T comsists of just one branch of length 6, then G(E, x,, T) is the same game as
G(E, x,, 9) (except thatin G(E, x,, T) I does not have to play consecutive elements of
T, but this is irrelevant). Using the game G(E, x,, T) rather than G(E, x,, ) we can
define T-perfectness, T-scatteredness, Ker (E, T) and Sc(E, T) for any tree T. This is
mainly interesting when T has branches of all lengths < 6, § a limit ordinal, but no
branches of length 6.

The set E, of (1) is T (A)-perfect and (o T (4))-scattered, where T (A) is the tree of
closed sequences of elements of A.

Let B, be the tree of all non-empty descending chains of elements of the ordinal o,
Then (using the notation of (6))

Ker(E, B,) = E,.

Using the fact that any tree T with no infinite branches satisfies T< B, for some «, it is
easy to see that

Ker(E, w)=(){Ker(E, T)| T has no infinite branches}.

The following theorem as well as its proof are adaptations of similar results in [2],
[3] and [6].
THEOREM 5. Let E be a closed subset of N 1. Then

Ker (E, wy) =(\{Ker(E, T)| T has no uncountable branches},
Sc(E, a;l) =1{J{Sc(E, T)| T has no uncountable branches}.
Proof If T has no uncountable branches, then
' Ker (E, o) < Ker (E, T)

for trivial reasons. Suppose then x,¢Ker(E, w,). So II does not have a- winning
strategy in G(E, %4, ®,). Let T, denote the tree of pairs (v, «) where 7 is a winning
strategy of II in G(E, x,, o) and o < w;. We order these pairs by (r, a) < (', o) iff
a < o and 7' coincides with 7 on the first & moves. Let T= oT,. Note that T has no
uncountable branches. If II has a winning strategy t in G(E, xy, T), then a repeated
appeal to T yields an uncountable branch in Ty. Therefore

X ¢ Ker (E, x,, T)

and the first part of the claim is proved.

For the second claim, assume I has a winning strategy © in G(E, x4, wy). Let T; be
the tree of sequences (x,, Xy, ..., X,), Where x,, ..., x, are consecutive moves of I in
G(E, xg, ;) when I plays © (and IT has not lost yet). Let T=oT;. Note that T has no
uncountable branches. Now I has a winning strategy in G(E, x,, T): he just copies
sequences of moves of II into T. Thus Xo€Sc(E, T). m

It is possible to prove representations like in Theorem 5 for arbitrary Ker (E, T) and
. Sc(E, T), but we omit the details (see [6] for similar constructions)
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