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But then {8 < 4! L(f, %, B, Ao)} is cofinal below A,. By closure considerations yet
again, {f <JAo: Myl= L(f, %, B, Ao)} is cofinal below 1o. Then {f < i, {y <y
L(f, %, B, )} is cofinal below 1,} is cofinal below 4,. It is then easy to find a set 4 such
that 4 is cofinal below 4,, 4 contains none of its limit points, and, if {og: 6 < Ao} is an
increasing enumeration of the elements of A, then, for any & < Ay, L(J, x, Uy Oggy)
holds. This A satisfies the premises of the theorem, and hence its conclusion. m
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On the l-equivalence of metric spaces
by

Jan Baars and Joost de Groot (Amsterdam)

Abstract. In this paper we present topological properties of metric spaces which are preserved
by l-equivalence. Furthermore, we present an isomorphic classification of the function spaces C,(X)
where X is any countable metric space with scattered height less than or equal to c,

0. Introduction. By a space we mean a Tikhonov space. For a space X we define
C(X) (C*(X)) to be the set of all continuous (bounded continuous) real valued functions
on X. We can topologize these function spaces in several natural ways. Whenever we
endow C(X) (C*(X)) with the compact-open topology we denote it by Co(X) (CH(X)),
and if we endow C(X) (C*(X)) with the topology of pointwise convergence we denote it
by C,(X) (C}(X)).

In [10] van Mill proved that for a countable metric space X which is not locally
compact we have C}(X)~ o, where o, = (1= and [ = {xel x; =0 for all but
finitely many i} (I* denotes separable Hilbert space). Furthermore in [5] it was proved
that under the same conditions ‘C,(X)=o0,. It is easily seen that for an infinite
countable discrete space X, C,(X) =~ R®. The gap between “discrete” and “not locally
compact” was filled in by Dobrowolski, Gul’ko and Mogilski in [7]. They proved that
for every countable metric nondiscrete space X, C}(X) = C(X)~ 0,. After these
results it is interesting to study linear homeomorphism between the function spaces
C,(X) (C}(X)), for countable metric spaces X.

In [12] Pelant gives an example of two countable metric spaces X and Y, which are
both not Jocally compact, such that C¥(X) and C}(Y) are not linearly homeomorphic.
In [5], Baars, de Groot, van Mill and Pelant gave an example of two countable metric
spaces X and ¥, which are both not locally compact, such that C,(X) and C,(Y) are not
linearly homeomorphic. In [3] Baars and de Groot presented an isomorphic clas-
sification of the function spaces C,(X), for zero-dimensional locally compact separable
metric spaces X. These classification results depend strongly on results in [1] of
Arkhangel’skii and on the isomorphic classification of the function spaces Co(X), where
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X is any countable compact metric space, which was proved by Bessaga and Pelczynski
in [6].

In this paper we present topological properties of metric spaces which are
preserved by l-equivalence. We show that these properties are sufficient to give an
isomorphic classification for the function spaces C,(X), where X is any countable metric
space with scattered height less than or equal to . In addition we give an example
which shows that these properties are not sufficient outside this class of spaces.

1. Preliminaries. In this section we present some definitions and results (some old
and some new) which we use in the next sections. First we state some definitions and
a proposition from [1].

Let ¢: C(X)— C(Y) be a linear function, where X and Y are Tikhonov spaces. For
every ye Y, the support of y in X with respect to ¢ is defined to be the set supp (y) of all
xeX satisfying the condition that for every neighborhood U of x, there is an
feC(X) such that f (X\U) < {0} and o (f)(y) #0. For a subset 4 of Y, we denote
{J {supp (! ye A} by supp A. Whenever ¢ is a linear bijection, we can consider the
support of a point in Y with respect to ¢ and the support of a point in X with respect
to @~ 1. It will always be clear which support we mean. Finally, a subset A of X is said to
be bounded if for every fe C(X), f(4) is bounded in R.

1.1. ProposiTiON ([1], Arkhangel'skii). Let X and Y be spaces, and let ¢:
C,(X)=C,(Y) be a continuous linear mapping. If A is a bounded subset of Y, then
supp A is bounded in X (in particular, if X is metric, then supp A is compact).

Another result in [1] is that if X and Y are metric and ¢: C,(X)~C,(Y)
is a continuous linear mapping, then ¢ considered as a map from C,(X) to Co(Y)is
also a continuous linear mapping. Hence every linear homeomorphism between C,(X)
and C,(Y) can also be considered as a linear homeomorphism between C,(X) and
Co(Y). In the sequel we shall use this result without explicit reference.

Whenever spaces X and Yare homeomorphic, we denote that X ~ ¥, and whenever
linear spaces E and F are linearly homeomorphic, we denote that by E ~ F.

When dealing with function spaces endowed with the topology of pointwise
convergenge, it is possible to give a precise description of supports (cf. Lemma 1.2).
We would like to thank J. Pelant for providing us with this description of sup-
ports.

Let X and Y be Tikhonov spaces, ¢: C,(X)— C,(Y) a continuous linear map and
yeY fixed. Notice that the map ¥,: C,(X)—R defined by () =@y is
continuous and linear. So /, & L(X), the dual of C,,(X). Since the evaluation mappings
&, (x€X) defined by £,(f) =7 (x) for fe C,(X) form a Hamel basis for L(X) (et [11]),
for Y, # 0 there are xj, ..., x,€X and 4, ..., 4,eR\{0} such that ¥, = Yi=1 A
(notice that whenever ¢ is a bijection, i, # 0 for every y€ Y). This means that for every

feC,(X), o(f)(y) = Li=1 Af (x). Then
1.2, LEMMA. supp(y) = {X, -.., X,}.

Proof. Let xesupp(y) and suppose that x¢{x,, ..., x,}. Since X\{x,, ..., %} is
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open, there is feC,(X) such that f(x)=0 for every i<

() = Yi=1 A4S (x)=0. Contradicti())n. ’ » . eI 0. B
Now let i < n be fixed and U an open neighborhood of x;. Let V= U\{x, ..., xi—

Xi+1, ---» X} Notice that V is an open neighborhood of x,. Let fe C, (X) be a Urysohn’

function with f (X\V) =0 and f(x) = 1. Then ¢ (/)()) = Yi=1 A4S Ex,-) =], # 0. Since

X\U < X\V we also have f(X\U) =0 and we are done. m l

1.3. CoroLLARY. Let X and Y be Tikhonov spaces, ye Y, ¢: C,(X)=C,(Y) a con-
tinuous linear map and f, geC,(X). If f and g are equal on supp(y), then o (N
=0y =

Another useful property of supports with respect to the topology of pointwise
convergence is given in the following

1.4. PROPOSITION. Let X and Y be Tikhonov spaces and ¢: C,(X)—C,(Y) be
a linear homeomorphism. Then for every xe X we have x € supp supp (x). (In other words,
for every xeX there is yesupp(x) such that xesupp( »))

Proof. Let xeX and suppose x¢suppsupp(x). Since suppsupp(x) is fini-
te (Lemma 1.2), there is a Urysohn function feC,(X) such that f(x)=1 and
f (supp supp (x)) = 0. By Corollary 1.3 it follows that ¢ (f) = 0 on supp(x) and again by
Corollary 1.3 it then follows that f(x) = ¢~ *(¢(f))(x) = 0. Contradiction. =

We now come to another subject. Let X be a space. For every ordinal o we define
X®, the ath derivative, by transfinite induction as follows:

(2 X = X. ‘

(b) If « is a successor, say o = f+ 1, then x& X® iff x is an accumulation point of X,

(©) If o is a limit ordinal, then X® = [y, X%

We say that X is scattered if there is an ordinal o with X® = @& and we define the
scattered height »(X) to be the smallest ordinal o such that X® =@,

For every pair of ordinals a<f let [o, f]={y a <y<pB} with the or-
der-topology.

We have the well-known

1.5. THEOREM (Sierpinski-Mazurkiewicz [9]). Let X be a countable compact metric
space and m finite. Then X =~ [1, w*m) if and only if #(X) = a+1 and X contains
m points.

In the following theorem we state classification results from Bessaga and
Pefczynski (see Theorem 1 of [6]) and from [3].

L.6. TaoorEM. Let o € a € f < wy. Then the following statements are equivalent:

(@) Co([1, al) ~ Co([1, AI).
() C,([1, €]} ~ C,([1, B

(i) p < a®.

An ordinal o is a prime component if the following holds: whenever « = f+4 for
ordinals f and &, then §=0 or d =«


Artur


28 J. Baars and J. de Groot

Anotber useful lemma which can easily be obtained from results 'in [6] is (cf.
Lemma 3.7 in [3]):

1.7. LemMA. Let y: Cy([1, @*7)— Co([1, @) be a linear embedding with u, v > 1
and u a prime component. Then p<v.

Finally, whenever (X, d) is a metric space, xeX and ¢>0, we put B(x,¢)
={yeX| d(x, y) <e}.

2, Some topological properties preserved by l-equivalence. Two spaces X and Y are
said to be l-equivalent whenever C,(X) and C,(Y) are linearly homeomorphic (cf.
Arkhangel'skii [2]). In this section we present topological properties of metric spaces
which are preserved by l-equivalence, i.e. properties such that if X and Y are l-equivalent
and X has this property, then Y has this property.

Let X be a space and X, = X. For every ordinal we define the set X with respect
to the pair (X, X,) by transfinite induction as follows:

(1) X =X,.

(2) If & is a successor, say « = f+1, then x e X" iff for every neighborhood U of x,
UnX® is not compact. :

(3) If « is a limit ordinal, then X = (), ., X.

The following lemma will be used frequently, but will not always be mentioned.

2.1. LEMMa, Let X be a space and X, a closed subspace of X. Then for every ordinal
.o, X9 is closed.
Proof We prove this by transfinite induction on o. The case o = 0 is a triviality.
First suppose that o is a successor, say & = S+ 1. Let xe X\ X' Then there is an open
neighborhood U of x such that U n X' is compact. Then U n X' = @. Therefore X
is closed. Secondly, if ¢ is a limit ordinal, then X® = [, <, X", so by our inductive
hypothesis, X'@ is closed. m )

2.2. LEMMA. Let X be a paracompact space, X, closed in X and o > 1 an ordinal. Let
Ve X be open such that Vn X = @. Then there is a locally finite family {V,| seS}
consisting of open sets such that V=\Js.sV, and for every seS, there is p < a with
V.0 X® compact.

Proof. Case 1: a is a successor, say o = fi+1.

Since Vn X% =@, for every xe¥, there is a neighborhood U, of x such that
U,n X% is compact. For every xeV find W, open with xe W, = W, = U,. Since
{W,| xeV} U {X\V} is an open cover of X, there is a locally finite open refinement
{0,| seS}. For every seS, let V,=0,n V. Then {V;| seS} is a locally finite family
consisting of open sets such that V= | J;csV;. In addition, if seS and V, = @ there is
xeV with ¥, < W,. Then V,n X® = U, ~nXW, So 7,~ X is compact.

Case 2: « is a limit ordinal.

Then % = {X\X®™| B < a} U {X\V} is an open cover of X. So there is a locally
finite open family {0,] seS} such that {O;| seS} refines %. For every seS let
V;=VnO,. Then {V,| se S} is a locally finite family of open sets such that V = { Jses V.-
Now fix seS and suppose V, # @. Then there is § <« such that ¥, = X\ X", which
implies V,.nX¥ = 0. u
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We now define the following notions. Let X and Y be spaces. Let X, be closed in
X and ¥, be closed in Y. Let ¢: C,(X)~ C,(Y) be a linear bijection and o an ordinal.
We define the pair (X, X,) to be (¢, a)-relative to the pair (Y, Yp) if the following holds: ’

If U and Vare open in X and W is open in ¥ such that suppU)nW=@ and

suppWa U UV, then Wn Y™ £ @ implies Vn X® = @,
We define (X, X,) and (Y, Y;) to be l-equivalent pairs if there is a linear homeomorphism
¢: C,(X)—C,(Y) such that (X, X,) is (¢, O)-relative to (Y, Y) and (Y, Y,)is (o™ 1, 0)-
relative to (X, X,). Note that two spaces X and Yare l-equivalent spaces if and only if
(X, ) and (Y, @) are l-equivalent pairs. :

Before we prove an important lemma which uses the notion of ¢-relativeness, we
first prove the following

2.3. LeMMA. Let X and Y be normal spaces. Let K be compact and nonempty in Y and
suppose {V,| n = N} is a decreasing base for K in Y, Let {4, s€8} be a locally finite
family in X. Furthemore, let ¢: C,(X)—> C,(Y) be a continuous linear mapping. Then
there are meN and s,, ..., s, €S such that (supp V,) 0 Usgess.... s} A5 = @

Proof. Suppose the contrary. Then there are distinct 5;€8 (ieN) and points

© x;esupp ¥ A, Suppose x;esuppy; with y;e V. Notice that L= {y,| ieN}UK is

compact, so by Proposition 1.1, supp L is bounded. It follows that {x,| ieN} is also
bounded. However, since {4,| ie N} is locally finite, {x;| ie N} is a closed and discrete
set. Contradiction. m

Remark. In a metric space, every nonempty compact subset has a countable
decreasing open base. )

24. LEMMA. Let X and Y be metric spaces, X, closed in X and Y, closed in Y. Let
¢ C,(X)~ C,(Y) be a continuous linear bijection such that (X, X, o) 8 (@, O)-relative to
(Y, Yo)- Then for every ordinal o, (X, X,) is (¢, @)-relative to (Y, Yo).

¢ Proof. We prove the lemma by transfinite induction on «. Since (X, X,) is
(o, O)-relative to (¥, Y;), the case o = 0 is established. So assume the lemma is true for
every ordinal f < « with & > 1. Suppose the lemma is false for «. Then there are U and
V open in X and W open in Y such that (suppU)nW=@, suppWe U U,
W Y® @ and Vn X = @. By Lemma 2.2, there is a locally finite family {¥;| se S}
consisting of open sets such that V= ( J,.s ¥, and for every se S there is # <  such that
V,nX® is compact. Let ye W Y™ and {W, |meN} be a base for y in Wsuch that for
every meN, W,,, < W,. By Lemma 2.3, there are meN and s, ..., 5,8 with
Y suppW,n ) ¥ =0.

SE {81000 o8m)

Now let 4 = | JI. | ¥,. There is § < a such that 4~ X is compact. Also, notice
the following: A and U are open in X, W,, is open in ¥; (supp U) N W, = & (because
W, c W and (suppU)n W= @) and suppW, c UuAd (by (1) and the fact that
suppWe Uu V). Since yeW,nY® our inductive hypothesis implies that
An X" @ By the remark following Lenuma 2.3, there is an open base {4,] seN} for

" AnX"® such that 4,., = A,. Since yeY® and W, is a neighborhood of y,

Wors 0 Y s not compact, so in ¥ there is a closed discrete subset {y,| seN}
contained in W, ~ Y%, Let {O,| seN} be an open discrete family in W, such
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that y,€0,. Then by Lemma 2.3, there is se N with
)] suppA,n () 0,=0.
izs
Now let U'=UuUA,, V' = A\4;+, and W = O,. Then U’ and V' are open in
X and W' is open in Y. We also have -

(suppU) " W' = (supp U UsuppA)n 0, =&  (by 2}

and
supp W csuppW,, c Uuvdc U UV

Furthermore, y,e W' n Y% and
V' AX® = A\ +1) N XP < (A\Ays)) 0 XP = .

This contradicts our inductive assumption. m

2.5. THEOREM. Let X and Y be metric spaces, X, closed in X and Y, closed in Y.
Suppose that (X, X,) and (Y, Y,) are l-equivalent pairs. Then for gvery ordinal o we have

(a) X¥ =@ if and only if Y =0,

(b) X is compact if and only if Y® is compact.

Proof. Let ¢: C,(X)—C,(Y) be a linear homeomorphism such that (X, Xo) is
(¢, O)-relative to (Y, ¥y) and (¥, Yp) is (¢~ *, O)-relative to (X, X,). For (a), by applying
Lemma 2.4 and the definition of (¢, «)-relativeness to U = @&, V=X and W= Y, we get
X9 =0 if Y¥9=0,

For (b) suppose that Y™ is compact and X™ is not. Since X' # @, by (a) we have
Y™ 3 @. Let {W, | meN} be an open decreasing base in Y for Y such that for every
meN, W+, < W,. Furthermore, let {x,,| me N} be closed and discrete in X, Let
{0,,Ime N} be an open discrete family in X such that x,,€0,,. Then by Lemma 2.3 there
is meN such that (supp W,) N ()i>mO; = O.

Now let U = W,,, V= Y\W,4, and W= 0, Then U and V are open, W is open,
(suppUyn W= and supp W< Y=U U V. In addition

VAY® =Y\W,o 1 nY¥ =0 and WnX®=0,nX" =@

Contradiction with Lemma 24. m

2.6. COROLLARY. Let X and Y be metric spaces, X, closed in X and Y, closed in Y.
Suppose (X, X ) and (Y, Y,) are l-equivalent pairs. Let o be an ordinal. Then X' is locally
compact if and only if Y® is locally compact.

Proof. Notice that X is locally compact if and only if X®**!" =g, So the
Corollary is a direct consequence of Theorem 2.5 (a). m

We now give examples of l-equivalent pairs. Therefore let o be an ordinal, and
X and Y l-equivalent metric spaces. We prove that if « is a prime component, then
(X, X™) and (Y, Y®) are l-equivalent pairs. For that we first need the following result
which undoubtedly is known. )

2.7. LeMMA. Let X be a first- countable space and o < w, an ordinal such that
X® £ @. Then there is K < X such that K ~[1, o).
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Proof. We prove the Lemma by transfinite induction on o, For o = 0, it is a triviality.
Now suppose the lemma is true for every ordinal § <o, with «> 1. Let xe X©.

Case 1: o is a successor, say o = f+1.

Then there is a sequence (x,), in X® such that x,—~x. Let {U,| neN} be
a decreasing open base at x such that x,e V, = U\U,,,. Notice that Vn is open, so
V® = ¥, n XP. Therefore, x,€ V¥. So by the induction hypothesis, therne is K ; V,
such that K, =[1, w"]. Notice that for every n#m, K,NnK = Q.n Le;
K =& 1K,u{x}. Then by Theorem 1.5, K ~ [t, o7]. o

Case 2: « is a limit ordinal.

Let (8,), be an increasing sequence converging to «. Since xeX®. there is

a decreasing open base {U,| neN} for x such that if V, = U\U,+,, then VS,’;’ 5 @. By
the induction hypothesis there is K, < V., such that K, ~ [1, @], Then by Theorem
15, K= K,u{x} is as required. m ’

2.8. PrROPOSITION. Let cce {0, 1} and let X and Y be I-
(X, X®) and (Y, Y¥) are l-equivalent pairs.

Proof. Notice that X® is closed in X. Let ¢: C,(X)-C,(Y) be a linear
homeomorphism. It suffices to prove that (X, X®) is (p, O)relative to (Y, Y@@,
Therefore let U and V be open disjoint in X and W open in Y such that
(supp U)n W= and supp W= Uu V. Suppose that WA Y® =@ and 7n X©@ = g,

Case 1: a=0.

Since V=@, we have supp W< U. Therefore by Proposition 1.4,

equivalent metric spaces. Then

W < supp supp W < supp U.

Since (supp U)n W= @ this gives W= @. Contradiction.

Case 2: a=1.

Since VnX™ =@, V=7V consists of isolated points, say -V= {x,| seS}. Let
yeWn YW and {W,,| me N} a decreasing open base for y in W, By Lemma 2.3, there is
meN and s, ..., 5,€S such that supp W, n {x,| s¢{s,, ..., 5,}} =@.

Now let V' = {x,,, ..., X,,}. Since supp W, = U U V", it follows that

W, = supp supp W, = supp (U L V") = supp U U supp V.

Since W, nsupp U =@, we have W, csupp V. Because V” is finite, W, is finite.
Contradiction. m

2.9. PROPOSITION. Let o < @, be a prime component and let X and Y be l-equivalent
separable metric zero-dimensional spaces. Then (X, X®) and (¥, Y®) are l-equivalent pairs.

Prool. Notice that X* is closed in X and that for every U clopen in X,
U® = U X Let ¢: C,(X) C,(Y) be a linear homeomorphism. It suffices to prove
that (X, X®) is (¢, O)-relative to (Y, Y. Therefore let U and ¥ be open in X and
W open in Y su_ch that (suppU)nW=@& and supp W Uu V. Suppose that
W Y® 2@ and VP X® = @, By Proposition 2.8 we assume o > w. Let ye Wn X®
and let {W,| meN} be a decreasing clopen base for y in W,

Cram. There is a discrete clopen family {V,| meN} such that V< | pen ¥,
and for every meN there is f < a with (V) =@.
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Indeed, since 7n X® = @, {X\XP| B <o} u{X\V} is an open cover of X. Since
X is separable metric zero-dimensional, this cover has a clopen disjoint refinement
{V;| ieN}. Let % = {V; | V.~V @}. Notice that % is discrete and that ¥ =| ) %. Now
let V;e%. Since V,nV# @, ¥, & X\¥, so there is § < « such that ¥, < X\X. Now
VP =V,nX®c X\XP~XP =@ and the claim is proved.
Again by Lemma 2.3, there is me N such that
supp W,,n (J ¥, = 2.

Let V' = { i, V. Notice that ¥’ is clopen, V' nX® =@ for some p <« and

suppW,, c Uu V". Since W& = W, n Y® 5 @, by Lemma 2.7 there is a set K c W, -

such that K =~ [1, @°]. Let L= supp K n V'. By Proposition 1.1, L is compact. Also, L is
nonempty. Indeed, if (supp K) n V' = @, then supp K < U, and therefore by Proposition
1.4, K = suppsupp K < supp U. Since (suppU)nK =@, K = @. Contradiction.

For every fe Cy(V'), define f*eCo(X) by f*| V' =fand f*|X\V’' =0, and for
every feCy(W,), define f*eC,(Y) by f*|W,, =fand f*|Y\W,, = 0. Furthermore, let
r:V'=L and s: W, - K be retractions (see [8]).

Define yr: Co(K)—>Co(L) by ¥(f)=¢ *((fos)*)IL and 6: Co(L)~Co(K) by
8(f)=e@((fon™)|K. Observe that ¥ and 6 are linear.

CLam. B(y () =f for every feCy(K).

Indeed, suppose not, say o{( (f)or)*)|K #f=(fos)*|K. Then by Proposi-
tion 13, (W(f)or)*|suppK # ¢~ 1((fo9)*¥)|suppK. Since (fos*|Y\W, =0 and
supp U = Y\W,,, it follows that ¢~ ((f 0 s)*)| U = 0. Furthermore, since U\V' = X\V*, we
have ((y (f)or)*)JU\V' = 0. So it follows that

v = (@ (Non)) L o~ (fo 1) L=y (f).
Contradiction and the claim is proved.

From the claim we conclude that  is a linear embedding. Since L< V', we have
I = @, s0 by the Cantor-Bendixson theorem L is countable metric and therefore by
Theorem 1.5, there is y < f and neN such that La [1, w’on]. Since by Theorem 1.6
Co([1, w'ond) ~ Cy([1, »”]), we have a linear embedding ¥: C,([1, @*])— Co([1, w]).
By Lemma 1.7 and the fact that o is a prime component it follows that « < 9. But this
gives a contradiction because y < f < a. m

Remark. (a) For « < w, not a prime component, there are l-equivalent countable
metric spaces X and Ysuch that X = @, Y® » @ (see Example 2.4 of [4]). So (X, X®)
and (Y, Y®) are not lequivalent pairs.

(b) From the proof of Proposition 2.9 it follows that any linear homeomorphism
between C,(X) and C,(Y) gives that (X, X®) and (¥, Y®) are l-equivalent pairs. The
question arises whether “being l-equivalent pairs” is independent of the choice of linear
. homeomorphism.

Let o, § < w, be ordinals with o a prime component. By X®# we denote the set
X® with respect to the pair (X, X*). Notice that if § is a successor, say f = y+1, then
we have XA = (X@n)©0.1
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2.10. CoroLLARY. Let X and Y be l-equivalent separable metric zero-dimensional
spaces and let «, B < w, be ordinals with « a prime component. Then

(2) XA =@ if and only if Y®P =@,
(b) X® is compact if and only if Y®P is compact.
If ae{0, 1}, then the above is also true for X and Y metric.
Proof This follows directly from Propositions 2.8, 2.9 and Theorem 2.5. =

2.11. CorOLLARY. Let X and Y be l-equivalent separable metric zero-dimensional
spaces and let o < w, be a prime component. Then

(@) X® =@ if and only if Y® =@,
(b) X is compact if and only if Y is compact.
If a€{0, 1}, then the above is also true for X and Y metric.
Proof. This is an application of Corollary 2.10; take 8 =0. m
Remark. Corollary 2.11 partially answers a question in [4].

3. An isomorphic classification. In this section we give an isomorphic classification
of function spaces of countable metric spaces which have scattered height less than or
equal to w. Since the case of finite spaces is easy, we deal with infinite spaces only,

Let X be a space. For ordinals, &, f§ < ,, we define the following:

X, f)=0iff X=A =g, ~

X (o, B) =1 iff X*P is nonempty and compact, and

X («, f) =2 iff X is not compact.

3.1. LeMmMA. For every neN, X" c x(.n—1) ¢ x(@.n-1), .

Proof. We prove the lemma by induction on n. For n =1 we have

X000 = x(O) _ (L0 « y . x©0.0
Suppose the lemma is true for every n < m with m > 1. Then
X(O,m) = (X(O,m—i))(ﬁ,l) - (X(l.m—l))(o, 1) X(I,m—l),

X(l,m—-l) = (X(l.m—Z))(O. 1) - (X(O.m—l})((), 1) X(O,m—i)‘ ™

Before we are going to deal with function spaces of countable metric spaces, we first
deal with the countable metric spaces itself.

3.2. CorOLLARY. Let X be a countable metric space such that there is ne N with
X(0,n) =0. Let ng=min{n| X(0,n) =0}. Then n, =min{n| X (1, n) =0} is well
defined and ng=n, or ng=n,+1. m

Proof By Lemma 3.1, X" < X" 5o that n, < ny,. Again by Lemma 3.1,
XOm+l) o x50 that ny<n,+1. m

33. LeMMA..Let A and B be closed in X with A< B and suppose that
A(0,1) = B(0, 1) = 1. Then there is a decreasing clopen base {U,| neN} for BV in
X such that Uy =X and (U\U,+1) N A is not compact for every neN.

Proof Since B® Y is compact, there is a decreasing clopen base {¥,| ne N} for
BOY jn X. We now inductively find the U,. Let U; = X and suppose we have found
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U,, ..., U, for some neN. Since A0.D = BO-D U s a neighborhood of A, But then
U, A is not compact, from which it follows that there is an infinite closed discrete set
Ein U,n A. Since B is compact, without loss of generality we may assume that
EnB%Y =@, so there is i > n such that ¥; < X\E. If we now let U,y =V, then
Ec(U\Uss)n4. &

3.4. COROLLARY. Let meN.

(a) If X0, m)=X(1, m) = 1, there is a clopen decreasing base {U,| neN} for
X©m i X, such that Uy =X and (U\U,41)(1, m—1) =2 for every neN.

0 Fx,m=x0m+l)=1 there is a clopen decreasing base {U,| ne N} for
XM iy X such that U, = X and (U\Uy+1)(0, m) =2 for every neN.

Proof This is a direct consequence of Lemmas 3.1 and 33. m

3.5. LeMMA. Let A and B be closed in X with A < B. If A and B are locally compact
but not compact, then X can be written as X = ®% 1 X, such that for each i, X; 0 Aand
X,n B are compact and nonempty.

Proof Since B is locally compact but not compact and X is zero-dimensional, we
can write X = @ ; K, with K; n B compact for every ieN. Since A = B, AnK;is
compact for every i. Since 4 is not compact, there are infinitely many i’s such that
An K, is not empty. By taking finite unions of the K;’s in the right order, we obtain the
desired decomposition of X. m

3.6. COROLLARY. Let meN.

(@ If X©0,m)=0 and X(1,m—1)=2, then X = @2 A; with A;(0,m—1)
=A,(1, m—1) =1 for every ieN.

o If X(U,m=0 and X0O0,m=2,
= A,(1,m—1) =1 for every ieN.

Proof This a direct consequence of Lemmas 3.1 and 3.5. w

37. LemMa. Let A and B be closed in X with A < B. If A is compact and nonempty
and B is locally compact but not compact, then X =X, @® X, with

then X = @®%.4; with A;0,m)

(1) X, n B compact and nonempty and

2 X,nd=0.

Proof. As in the proof of Lemma 3.5, X = ®f%, K; with K;n B compact and
nonempty for each i. Since 4 is compact, there is i, such that 4 N @; >, K; = 3. Now
let X, =K, ®...0K;, and X; = ®i>, K;. u

3.8. COROLLARY. Let meN L {0}.

@ If XO0,m=2 X0, m+t))=0 and X(I,m)= 1, then X =A@®B with
A©,m)=1 and B(l,m)=0.

) If X(1,m)=2, X(1,m+1)=0 and X0, m+1)= 1, then X = A® B with
A(l,m)=1 and B(O,m+1)=0.

Proof. This is a direct consequence of Lemmas 3.1 and 3.7. m

Remark. Notice that in Corollary 3.8 (a) we also have 4(1, m) = 1, B0, m+ =0,
B(0,m)=2 and if m#0, B(l,m~1)=2, of. Lemma 3.1.

In addition, in Corollary 3.8(b) we have A(0,m+1)=1, B(l,m+1)=0,v

B(1,m) =2 and B(0, m) =2, cf. Lemma 3.1.
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We now come to the subject function spaces. Let X; (i = 1, ..., 4) be spaces and let

E; _be a linear subspace of C,,(X)) (i=1,..., 4). Let ¢ = (¢, ©4): EyxE,»E;xXE, be

a linear mapping. We define ¢ to be a linear k-mapping whenever the following holds:
For all f;eE; such that f;(X)) = (—1/k, 1/k) (i=1,2) we have

e(f, X)) = (-1, 1)

We define ¢ to be a linear k-homeomorphism whenever ¢ is a linear homeomor-
phism such that both ¢ and ¢! are linear k-mappings. Whenever there is a linear
k-homeomorphism between E; x E, and E;x E, we write E, x E,£E, x E,. By this
definition we have also defined linear k-homeomorphism between E; and E, and
between E; and E; x E, by identifying E, with E; % {0} (i = 1, 2). It is easily seerzl that
the composition of a linear k-homeomorphism and a linear l-homeomorphism is
a linear kl-homeomorphism.

For a space X and a subspace A of X we define C,,_,(X) to be the linear subspace
of C,(X) consisting of those functions which vanish on 4. Whenever 4 = {a} for some
point aeX, we write C,,(X) instead of C, 5 (X).

3.9. LEMMA. Let X be a countable metric space and A a closed subspace of X. Then
C, (02 C,4(X) x C,(4).

Proof. Define o: C,(X)—C,(4) by o(f) = f]A. Let r: X — 4 be a retraction (see
[8]) and define &: C,(4)— C,(X) by £(f) = for. Define ¢: Co(X)—Cp s (X) x C,(4)
by ¢(f) = (f—&e(/), e()) and ¥: C,4(X) X C,(A)~C,(X) by ¥ (f; g) =f +¢(a).

Then ¢ is a linear homeomorphism with ¢~ = (see [3]). It is easily seen that
both ¢ and Y are linear 2-mappings. m

For a space X and a compact subspace A of X, let Zy, 4 be the space obtained from
X by identifying A to a single point a.

(i=3, 4).

3.10. LEMMA. Let X be a countable space and A a compact subspace of X. Then

Cp,A(X) 4 Cp.a(ZX,A)-

Proof. For every fe C, 4(X) there is a unique f such that fop = f, where p is the
quotient mapping between X and Zy 4. Then ¢: C, 4(X)— C, .(Zy, ) defined by
@(f)=F is a linear homeomorphism. (cf. [3]). It is easily seen that ¢ is a linear
1-homeomorphism. m

The next three lemmas are useful in the sequel. The proofs are left to the reader.
311, Lemma. If X and Y are homeomorphic spaces, then C,(X)¥& C,(Y). m
3.12. LemMMA. If X and Y are spaces and A is a subspace of X, then
CraX) X C, (V)L CpalX0Y). u
3.13. LeMMA. If X = @ 1 X, and Y= @2, Y, such that C,(X)* C,(T) for every
ieN, then CX)% C,(Y). m
3.14. LeMMA. Let X be a metric space and let A be a nonempty compact subspace of

X. Let {U,| ne N} be a clopen decreasing base for A in X such that U; = X. Let Y be
a metric space and let B be a nonempty compact subspace of Y. Let {V,| ne N} be a clopen
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decreasing base for B in Y such that V; = X. Suppose that C,(U\U,+ )& C,(V\Vsy)
for every neN. Then
Cp,A(X)’& cp.B(Y)-

Proof. For every neN, let ¢,: C,(U\Uyn+1)— C,(V,\Vs+1) be a linear k-homeo-
morphism. Define ¢: C,, 4(X)—C,,5(Y) by

eNV\Vasr1 = @, (f1U\Un+1) @(NIB=0.

To prove that ¢ is well defined it suffices to prove that ¢ (f) is continuous at points of B.
Therefore let & > 0. Since f (4) = 0, there is an open neighborhood Wof 4 with f (W) <
< (—¢/k, &/k). There is noeN such that 4 = Uy, = W, so

I Uno) = (—e/k, &fk).

Then it easily follows by k-linearity of ¢, for every n that @ (f)(Vs) = (—¢, &), so that
@(f) is continuous at points of B. That ¢ is continuous is easily seen.
Define 1,[/: Cp,B(Y)”')Cp.A(X) by

YNUNUnes = @0 (F 1 V\Vas1)

As above we can show that i is a well-defined linear continuous mapping. In addition,
it is easily seen that iy = ¢~ ! and that ¢ is a linear k-homeomorphism. m

and

and Y (f)]4=0.

We are now in a position to prove an isomorphic classification of function spaces of
countable spaces which have scattered height less than or equal to w. First we consider
the case of countable spaces which have scattered height less than w. Therefore we first
have to deal with some special cases in the following two lemmas.

3.15. LemMa. Let peN. There is k,e N such that if X and Y are infinite countable
compact spaces with x(X), #(Y) < p, then C,(X) ¥ C, ().

Proof Let X be an infinite countable compact metric space with »(X) < p. By
Theorem 1.5, there are 1 < m < p and ne N such that X =~ [1, o™ n]. Let a = o™ and
A =X™_ Notice that A is finite. Then

C,(X)% Cpa([1, @"]) x C,(4)
A C,.A®[1, o"])
A C,.([1, o™
& C, ({1, &™)
So that C,(X)~ C,([1, @"]).
To finish the lemma it suffices to prove the following
CLAIM. There is le N such that for every 1 <r<p we have

C,([1, oD+ C,([1, »]).

Let 1<r<p. By Lemma 18, there is a linear homeomorphism ¢: C,([1, @"])
—C,([1, w]). Then by the remark following Proposition 11, it follows that
0: Co([1, @"])— Co([L, @]) is also a linear homeomorphism. Since these two function

(Lemmas 3.9, 3.10 and 3.11)
(Lemma 3.12)
(Lemma 3.11)
(Lemmas 3.9, 3.10 and 3.11).
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spaces are Banach spaces, there is I(r)e N such that for every fe Cy([1, w"]) we have

1
mllfﬂ <lle N < IO

Then ! = max {{(r)| r < p} suffices. m
Let T= N2?u {o0}, with the following base for its topology: every point in N is
isolated and a basic neighborhood for « is ({n, n+1,...} x Nyu {0} (neN).
3.16. LEMMA. Let peN. There is 1, > k, such that if X and Y are countable metric
spaces with %x(X), »(Y)<p, X0, 1)=Y(0,1)=1and X(1,0)=Y(1,0) = 1, then
C,(X0) 2 C,(Y).

Proof. Let X be a countable metric space with x(X) < pand X0, )= X(1,0) =L
Let A = X, Then by assumption 4 is compact. It is easily seen that Zy 4 &~ T; so that
by Lemmas 3.9, 3.10 and 3.11, C,(X)2 C,, (T) x C,(4).

If A4 is finite, then T® A~ T, so C, (X)& C,,o(T). I A is infinite, we have by
Lemma 3.15, C,(4)* C,([1, »]). Note that by the above argument C,(T) 2 C,o(T),
so that C, (X)4;k’ C,(T®[1, @]). Since (TO[1, @)™ is finite, the same argument gives
C(T®T1, w]) % Cy,o(T). We conclude that C,(X)*YC,(T).

3.17. LemMa. Let peN. Then there are vy, ..., r,€N such that for 1 <n<p the
Sollowing holds:

If X and Y are infinite countable metric spaces with x(X) < p and x(Y) < P satisfying

1), X0,n=Y0,n=0 X0 n-1)=Y0,n-1)5#0, and
X(,n=-)=Y({1,n—-1)#0, or
), X(1,m=Y(,n=0, XO0.,m=Y0,n+#0, and

X(,n—1)=Y(1,n-1)#0,

then C,(X) = C,(Y).

Proof Letr; =l,and for 1l <n<p,r, =4r_. We prove by induction on » that
Fys -+.» T, are sufficient. For that, suppose we have proved the lemma for every n <m
with m > L.

We prove (1),: X(0,m)=Y 0, m =0,

X0, m—1)=Y0,m—1)#0 and X(I,m-1)=Y(l, m—1)#0.

(Notice that then also X (1, m) =Y (1, m)=0)

Case 1: X(0,m—1)=Y(O,m—1)= 1.

Notice that in this case we also have X (1,m—1)=Y{1,m—1)=1.

For m =1 we have by Lemma 3.15, C,(X) 2 C,(Y). Since k, < I, =7y, this case is
done. For m> 1, let 4 =X©Om= D and B=Y©®m~ 1 By Lemma 39,

) C,(X) % Cpu(X) x Cp(4) and  C,(Y)Z Cpu(Y) x C,(B).
Let Z,=X@®A and Z,=Y®B. Notice that since m> 1, ZPm=H = xOmm1),
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Z&O,m—l) = Y(O,m-l)’ Z(ll,m—l) =X(1’m—1) and Z&l,m—l) - Y(l,m—l). Let C = Z&O,m—l)
and D= Z{™ Y, Then by (1) and by Lemma 3.12,

C,(X)* Cpc(Z,) and C,(Y)& C,p(Z)).

By Corollary 3.4 (a), there are clopen decreasing bases {U,| neN} and {V,| ne N}
for C resp. D such that U, =Z,, V, =Z,,

(Un\Un+1)(1am—2) =2 (V;,\Vn*‘l)(l: m_2)=2

Notice that then also (U\U,+1)(0, m—2) = (V\V,+1)(0, m—2) = 2. It is easily seen
that

and

(UAU+) 0, m—-1)=0 and  (V\V+1) (0, m—1)=0.

Then (1), gives C,(U\Uy+ 1)"17’CP(V,,\I/;,+ 1) for every ne N. So that by Lemma 3.14,
Cp.c(Z1)™~"C,,p(Z,). In conclusion we have C,(X) =z C,(Y). This completes the proof
in case 1.

Case 2: X(0,m—1)=Y (0, m—1) =2

First assume that X (1, m—1)=Y (1, m—1)=1. Then by Corollary 3.8 (a),
X=A®B and Y=C@®D with A0, m—1)=C(0,m—1)=1 and B(l,m—-1)
= D(l, m—1) = 0. By the remark following Corollary 3.8 we now have by case 1,
CP(A)“':L""I‘CP(C) and for m> 1, by (Qu-1,C,(B)"~'C,(D). If m=1 then B and
D are infinite discrete and so C,(B) & C,(D). With Lemma 3.13 it now follows that
C,(0) = C, (7).

Secondly, if X(1,m—1)=Y(1,m—1) =2, we have by Corollary 3.6 (a), X =
®%14; and Y=@,;B, with A4,0,m—1)=B;0,m—1)=A4,(1,m-1)
= By(1, m—1) = 1. By case 1, we then have C, (A,‘)A‘Q?' 'C,(By), so that by Lemma 3.13,
C,(X) & C,(Y). This completes the proof of case 2.

The proof for the situation that X and Ysatisfy the conditions of (2),, is almost the
same as the one given above. Instead of Lemma 3.15 we use Lemma 3.16 and instead of
the (a)-parts of Corollaries 3.4, 3.6 and 3.8 we use their (b)-parts. m

3.18. THEOREM. Let X and Y be infinite countable metric spaces with % (X), #(Y) < w
such that for every neN, X(0,n)=Y(@0,n and X(l,n)=Y(,n. Then
C,{X)~ C, ().

Proof Let p = max (x(X), %(Y)). Notice that there is ne N such that X (0, n) = 0,
50 let ny and n, be as in Corollary 3.2. Notice than n, > 0 and that the respective values
for X and Y are the same. If n; =0 then X and Y are infinite discrete and therefore
C,(X)~ C,(Y). If n; >0 then X and Y satisfy (1),, or (2),, of Lemma 3.17 and so
C,(X)~C,(Y). m ) -

We have completed the case of countable metric spaces with scattered height less
than o, so from now on we have to consider spaces with scattered height equal to w.
Therefore let X be a countable metric space with %(X) = w. There are two cases to
consider:

(a) there is neN such that X (0, n) =0,

(b) for every neN, X(0,n) =2,

We will first deal with the first case.
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3.19. LEMMA. Let X and Y be countable metric spaces such that (X)) = w, x(Y) < o,
X(0,n)=Y(0,n) and X(1,n)=Y(1,n) for every neN {0} and such that case (a)
holds for X. Then X = ®{%1X,; and Y= @i, ¥; such that % (X)), x(¥) < w and for
every i, neN, X;(0, n)=Y;(0, n) and X;(1, n) = ¥(1, n).

Proof Since X satisfies (a), there is ke N such that

" X0,k=Y0,k=0, X(0,k-1)=Y(0,k—-1)%#0, and
X1, k=1)=Y(, k—=1)#0, or
@ X(LH=Y(W,K=0, XK= k=0,

X, k=1)= Y (1, k—1) #0.

We prove the lemma by induction on k. Suppose we have proved the lemma for every
k < m with m > 1. First let X and Y satisfy (1),.

Case 1: X(0,m—1)=Y (0, m—1)=1.

Since % (X) = w, X is not compact. This implies m > 1. By Corollary 3.4 (a), there
are clopen decreasing bases {U,|neN} and {U"| neN} for X©™ % and Ym0
respectively, such that U, = X and ¥, =Y,

UN\Upsd(l, m=2)=2 and  (F\V41)(l,m—2)=2.

CLAM. There is le N such that »(U) < .

Since #(X) =, % = {X\X™|neN} is an open cover of X without finite
subcover. Since X is zero-dimensional, there is a disjoint clopen refinement {4;| ie N}
of %. Since X©™~1) is compact, there is n such that X" V< 4, ®... ® 4,. There is
leN such that U, c 4, @ ...® A,, and this [ satisfies the claim.

Without loss of generality we may assume that (V) < . Now let X; = U, and
Y, = V. Notice that

X, (0,n)=Y,0,n)
X\UY(, m—2) =(N\W(1, m-2) =2,

and Xl(lan)=Y1(1$n)
(X\UY (0, m—1) = (N\K)(O0, m—1)=0.

for every neN,

S0 by (1)m—y we have X\U, = @, X, and Y\V; = @, ¥, with X;(0, n) = Y(0, n)
and X,(1, n) = Y;(, n) for every i > 2 and ne N, and the lemma is proved in this case.

Case 2: X(0,m—1)=Y (0, m—1)=2.

First, assume that X (1, m—1) =Y (1, m—1)=1 Then by Corollary 3.8 (a),
X=A®B and Y=C®D with 4(0,m—1)=C{O0, m~1)=1 and B(l,m—1)
=D(1, m—1) = 0. By the remark following Corollary 3.8 we now have in cases of
scattered height w, by case 1 or by (2m-1, the desired decomposition of
X and Y.

Second, if X(1,m—1)=Y(l,m—1)=2, we have by Corollary 3.6 (a),
X=@r,4 and Y=@R B, with 4,0, m—-1)=B,0,m-1)= Ai(%, m—1) =
B,(1, m—1) = 1. By case 1 (applied in cases where 4; or B; has scattered height w), we
have the desired decomposition of X and Y. This completes (1),

Whenever X and Y satisfy (2),, the proof is similar to the proof of (1),.
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Instead of Corollaries 3.4 (a), 3.6 (2) and 3.8 (a) we now use their (b)-parts and instead of
Q-1 we use (1),. m

3.20. TueorEM. Let X and Y be countable metric spaces such that »(X) = o,
%(Y) < w and for every neNu{0}, X(0,n) =Y(0,n) and X(1,n) = Y(,n). If X is
a space satisfying (a), then X and Y are l-equivalent.

Proof This follows directly from Theorem 3.18 and Lemmas 3.13 and 3.19. m

3.21. THEOREM. Let X and Y be countable metric spaces such that % (X) = »(Y) = w
and both satisfying (b). Then X and Y are l-equivalent.

Proof. We begin with the following.

CLAM. We_ can write X = @1 X, and Y= @ 1 Y; so that there are sequences
()ien and (m)ien such that m+1 <my, m+1<wmyy, X, (1, n)#0, X;(1, n4) =0,
Y.(1,m)#0 and Y, (1, m4y) =0.

It is easily seen that {X\X“®|neN} is an open cover of X without finite
subcover. Since X is countable, there is a clopen disjoint refinement {4;| ie N} of this
cover. This means that for every ieN, there is k;eN such that A4,(1, k) # 0 and
A;(1, k+1) = 0. The set {k;| ie N} is not bounded (!), so we may assume k; < k...
(take unions of the A;s). In the same way Y= @B, and there are [, <l,...
such that B;(1,1)# 0 and B;(1, l;-+1) = 0. (Notice that Y satisfies (c) as well and
therefore % (Y) = ©.) Now let (n).cny and (m);cn be subsequences of (k));.y and (I)ien,
respectively, such that n,+1 < m;, m;+1 < n;4.;. By letting X; be a finite union of 4;s in
the right order and the same for the ¥s, we are done.

Lt Z=X,0Y,0X,®Y,®...

Because n;+1<m, (X;®Y)(0,n) =Y(0,n) and (X;@®Y)(1,n) =Y,(1,n for
every ne N u {0}. Both X; ® Y, and Y; satisfy (a), so by Theorem 3.18 or Theorem 3.20,
C,(X;® Y) ~ C,(Y), so that Cp(Z) ~ C,(Y). By interchanging the role of X and Ywe
also have C,(Z) ~ C,(X). We conclude that C,(X) ~ C,(Y). m

3.22. THEOREM. Let X and Y be infinite countable metric spaces such that %(X),
#(Y) < @. Then X and Y are l-equivalent iff for every neN, X (0,n) =Y (0, n) and
X(1,m=Y(,n).

Proof. This follows immediately from Theorems 3.18, 3.20, 3.21 and Corollary
210. =

4. Remarks. The question naturally arises whether Theorem 3.22 can be generalized
to all countable metric spaces. One is tempted to conjecture the following:

Let X and Y be countable metric spaces. Then X and Yare [-equivalent iff for every

prime component o and ordinal f we have X (x, f) = Y(«, f).
We will show that this conjecture is false. To this end, let X be a space and put
X* = (uen (XD,

4.1. LemMA. Let X and Y be separable metric zero-dimensional l-equivalent spaces.
Then (X, X*) and (Y, Y*) are l-equivalent pairs.

Proof It is easily seen that X* is closed in X. Now let ¢: C,(X)—C,(Y) be
a linear homeomorphism. Notice that also ¢: Co(X)— C, (Y) is a linear homeomorphism.
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By Lemma 2.4 it suffices to prove that (X, X*) is (p, 0)-relative to (¥, Y*). Let U and
V be open subsets of X and W an open subset of Y such that

(suppU)yn W= 0

and suppose WnY*#0Q and VnX* =0,

Let ye Wn Y* and let {W, | ne N} be a clopen decreasing base at y in W, It is easily
seen that V< U{‘; 1 4;, where {4;| ie N} is a clopen discrete family such that for every
ieN, there is meN with (Af)© Y =@, By Lemma 2.3 there is neN such that
(1) supp W, | ) 4;=9.

i>n

and supp W ULV,

Let A=4;uU...UA,. Then there is meN such that (A")®Y =@, This means
A = Ji% 1 B, where for every ie N, B, is clopen, B is compact, and for i # j we have
B,nB;=@. Again by Lemma 2.3 there is k > n such that

)] supp W, | B; = @.
i>k

Let B=B;u...uB,. Then B™ s compact. Since suppW, <= Uu B,
(suppU)n W, =@ and Wi s @, we see by Proposition 2.9 that B® s @, so that
B™ % @. This implies that suppB™ is compact. Since for every n >k, ye(W®)©:1),
we can find a topological copy L, of [l,0"] in W,,\W (cf. Lemma
27). Let M =(uppB™ AnW)u{y}, L,=UwstL,v{y} and L=L,uM. Let
K = (supp L ~ B)uB™. Since K and L are compact, there are retractions r: W, — L and
s: B> K (cf. [8]). For every feCy(W,) let f*eC,(Y) be the extension of f which
is 0 outside W,. Similarly we define for every geC,(B), g*e Cy(X).
Define 0: Co,p (L) — Co, pem (K) by

0(f) =97 ((fon)")IK

and y: Cy(K)— Cqy(L) by
¥(9)=e(gosy¥)|L

(we let Co, 5 (L) be the linear subspace of C, (L) consisting of functions vanishing on M).
It is easily seen that both @ and v are well-defined continuous linear mappings (use
Proposition 1.4).

CLAM 3. For every fe Cop(L), ¥(0() =1

Suppose to the contrary that ¥ (0(f)#/S This means p((0(f)os*)|L
#(fon*|L. Then we have (0(f)os)*|suppL# ¢~ {(for)*)lsuppL. Now
(B(fos)* =0 outside B, (for)* =0 outside W, and suppU = Y\W, so that
@~ ((for)*) =0 on U. Since by Claims 1 and 2, suppLe UUB, we have

(B(f)osy*|(supp LA B) # o~ ((for)*)|(supp L B),
so that

0N os* K # o~ ((for))|K = 0(f).

Contradiction.
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From the last claim we conclude that 0 is a linear embedding. Since L, =~ [1, o),
Co.u(L) ~ Co,,(L,) (since L,nM = {yh) and Cq,y(L,) ~ Cy(Ly), we have Co (L)
~ Co([1, @”]). However,

CO,H("‘) (K) ~ Co',, (ZK,B("‘)) ~ CO (ZK_ ])(m)),

where Zy, g is the space obtained from K by identifying B™ to one point a (here we
need that Lemma 3.10 is also valid for the compact-open topology). By Theorem 1.5, we
have Zg pom & [1, @™, s0 that we finally have a linear embedding of C, ({1, »®]) into
Co([1, @™]). This is a contradiction with Lemma 1.7. =

Let T be the space described in Section 3. Let Z be the space obtained from T by
replacing every isolated point by [1, w], and let X ~ [1, ] @ Z. Let Y be the space
obtained from T by replacing (n, m) by [1, "]. Then it is easily seen that for every
prime component o and ordinal 8, X (z, f) = Y (a, ). However, X* = & and Y* #@.
So by Lemma 4.1 and Corollary 2.11, X is not l-equivalent with Y. This shows that the
above conjecture is false.
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