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Sets of end-points and ramification points
in dendroids

by
I3

J. Nikiel and E. D. Tymchatyn (Saskatoon, Saskatchewan)

Abstract. Let X be a dendroid. We consider the set of all points of X which have a given order
of ramification. We show that the set of all end-points of X and the set of ordinary points of X are
co-analytic and the set of ramification points of X is analytic. We give two constructions of smooth
dendroids with closed set of end-points and non-Borel set of ramification points. We also construct
a (necessarily non-smooth) dendroid whose set of end-points is not Borel.

All spaces considered in this paper are compact and metric. A continuum is
a compact, connected, metric space. An arc is a homeomorphic copy of the closed unit
interval of real numbers. A dendroid X is a non-degenerate continuum such that each
pair x, y of distinct points of X is contained in a unique continuum [x, y] which is
minimal with respect to containing {x, y} and [x, y] is an arc.

Let X be a dendroid. For xeX let ry(x) = r(x) denote the order of x in X in the
classical sense, i.e. r(x) is the cardinality of the set of arc components of X —{x}. For
each cardinal number o let

R(X)={xeX: r(x)=0a} and S,X)={xeX: r(x)=a}.
By Lemma 1 below, it suffices to consider the sets R,(X) and S(X) for
aef{l, 2, ..., N, ¢c}. Note §;(X) = X. We recall that R(X) is usually called the set of
end-points of X, R,(X) is the set of ordinary points of X and S3(X) is the set of

ramification points of X. If §3(X) = {p} then X is said to be a fan with top p. The Cantor
fan is a space homeomorphic to the cone over the Cantor set.

LemMA 1 [N1, Th. 2, p. 105]. Let X be a dendroid and xeX. If ry(x) > ¥, then
X contains a Cantor fan with top x. .

Let X be a planable dendroid (ie. X is homeomorphic to a subset of the plane).
Lelek [Le] proved that R, (X) is a Gy, and asked whether R,(X) is of the second Borel
class. He showed that R,(X) is not in general of the first Borel class. The first-named
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author in [N2] proved that S5(X) is contained in the union of countably many subarcs
of X and for each arc J < X the set S3(X)nJ is G, [N1, Th. 1]. Methods similar to
those in the proof of [N1, Th. 1] show that for each arc J < X, S,(X)nJ is Gy,.

THEOREM 1. Let X be a planable dendroid. Then

(1) Ry(X) is Gioss

(2) Ry(X) and S,(X) are F .45,

(3) Ry(X) is both Fgsy and Gues and S4(X) is Gs,,
4) Ry(X) and S,(X) are G, and

(5) S5(X) is at most countable,

In [Le], [N3, p. 104] and [H, Problem 206] questions were raised about the
possibility of extending Theorem 1 to cover arbitrary dendroids. The main purpose of
this paper is to provide answers to these questions.

THEOREM 2. Let X be a dendroid. Then

(1) 8,(X) is analytic for «=2,3, ..., ¥,, c,
(2) R.(X) is analytic and
(3) R,(X) is co-analytic for o < N,.

Thus, the set of all ramification points of X is analytic and the set of end-points of X as
well as the set of ordinary points of X is co-analytic.

Proof Let I, denote the straight-line segment with end-points (0, 0) and (1/n,
1/n+1)) in the plane R? for n=1,2,... For each positive integer n, let
L,=1u...0l,. Let Ty, =1I,Ul,u... and let T, be the Cantor fan. Set P = (0, 0) for
<N, and let p, be the top of T,.

Let C(T,, X) denote the space of all continuous maps of T, into X with the topology
of uniform convergence. Then C(T,, X) is a separable space with a complete metric. Let

C,={feC(T, X): fis an embedding}.

It is well known (see for example [K, IV.44.VY, Th, 1]) that C, is a G, subset of C(T,, X).
Obviously, the function ¢,: C,—X defined by @,(f) = f(p,) for fe&C, is continuous.
Hence, ¢,(C,) is an analytic set. It is easy to see that $4(X) = ¢,(C,) (for « = ¢ apply
Lemma 1). Finally, note that R,(X) = §,(X), R, (X) = 8, (X\Sp41(X) for n=1, 2, ...
and Ry, (X) = Sio(X)\S,(X).

A dendroid X is said to be smooth (at p) if there is a point pe X such that for each

convergent sequence x;—x in X we have [p, x,]—[p, x]. The reader may consult [CE]
for the basic properties of smooth dendroids,

THEOREM 3. If X is a smooth dendroid, then R,(X) is a Gyset.

Proof. The method of proof is similar to one given by Lelek in [Le]. Let pe X so
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that X is smooth at p and let d be a metric on X which is radially convex with respect to
p, ie. d is an isometry on each arc [p, x] for xe X (see [CE, Cor. 11]). Forn =1, 2, ...
let :

F,={xeX: there is yeX with xe[p, y] and d(x, y)> 1/n}.

Since X is smooth with respect to p it follows that each F, is closed. Note tha
R,(X) = X\(F WF,u..). This completes the proof. )

Note that the Cantor fan T, is a smooth dendroid. Lelek [Le] constructed a fan
T < T, such that R((T)u{p,} is connected. Hence, R, (T) is one-dimensional and. by
Theorem 3, R, (T)is a G, in T since T is smooth at p,. Recently it has been proved (see
[Ch] and [BO]) that T is the unique up to homeomorphism smooth fan with a dense

‘set of end-points.

In Example 5 we shall construct a dendroid Z with R, (Z) co-analytic and non-Borel.
However, there are conditions other than smoothness which imply that the set of
end-points of a dendroid is a Gyset, and so a Borel set.

THEOREM 4 [Le, (7.4), p. 310]. If X is a dendroid such that R,(X)ncl(S;(X)) is
a Ggset, then R (X) is a Ggset as well.

CorOLLARY [Le, p. 311]. If X is a fan, then R (X) is a Gg-set.

There exist several examples of dendroids with large sets of ramification points (e.g.
[C1], [C2], [Be] and [MN]). In particular, in [MN] a dendroid X is constructed such
that X is a universal smooth dendroid, R,(X) is closed and X = R;(X)UR (X).

Now, we give examples to show that the results of Theorem 2 are the best possible.
Our examples (1)—(4) are smooth dendroids with complicated sets of ramification points
(compare with Theorem 3). Examples (1)—(3) are based on one construction. The
construction in Example 4 is different.

For completeness we state here a modification of a well-known theorem (see [MS]):

LEMMA 2. There exists a continuous function f: C— C of the Cantor set onto itself and
a Gy subset G of C such that f(G) is not Borel and card(f~'(x)nG) = c for each
x = f(G).

Proof. Let N¥ denote the set of irrational numbers which we take to be embedded

densely in C. By [KM, p. 434] there is a closed set K in C x N¥ such that =, (K) is not
Borel where m,: Cx NV is the first coordinate projection. Let

G={x,y, 2eC* (x, YeK}

and let f: C®~ C be the first coordinate projection. Then f(G) = ,(K). Now X is
a Gyset in C x C since € x NV is topologically complete and, hence, G is a Gset in C3.
Of course C® is homeomorphic to C.

ExampLE 1. There exists a dendroid X such that the sets S3(X), R,(X) and R,(X) are
not Borel. By Theorem 2, S,(X) and R,(X) are analytic and R,(X) is co-analytic.
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Let C, f and G be as in Lemma 2. Let F,, F,, ... be closed subsets of C such that
FycF,=...and C\G = F;UF,u... Let H denote the decomposition of C x [ 1, 1]
into points and the following sets:

@ (f"YnF,)x{t} for ce f(F,), telitz,741] and n=1,2, ...,

() f~He)x{t} for ceC and te]~-1, 0],

(c) Cx{—1}.

Let h: Cx[—1, 1] X = Cx[~1, 1]/H denote the quotient map and quotient
space respectively. Observe that H is an upper semi-continuous decomposition of
Cx[-1, 1] and X is a dendroid which is smooth at the point h(C x { —1}). Define k;
X—[—1, 1] by k(x) =t for x = h(e, t) for (¢, )eCx[—1, 1]. Then k is a continuous
function. ‘

Observe that

h(G % {0}) = Ry(X) = 83(X) < {h(C x {—1})} Uh(G x {0})u | A(F, x {7+1)).
n=1
Since k is continuous, (G x {0}) = §,(X) k™ (0) = R,(X)nk~1(0) is a closed subset of
83(X) and Ry(X). It is easy to see that h(G x {0}) is homeomorphic to f(G). Thus,
(G x {0}) is not Borel. Moreover, R,(X)nk™(0) = k™1 (O\A(G x {0}) is not Borel so
R,(X) is also not Borel. Observe, also, that the set R,(X) = k~(1) is closed.

Exampre 2. For each cardinal number ae{3,4,..., Ny} there exists a smooth
dendroid X, such that the set R,(X,) is not Borel.

We keep all of the notation of Example 1. Moreover, we let T; and p, for
Be{l1,2,...,X,} be as in the proof of Theorem 2. Lety =a—2 if ae {3, 4, ...} and Jet
y=Ny if @ =N,. Let

X, =X x{p, Uk~ (0)x T).
Then X, is a smooth dendroid and

(KT ONBG x {0]) x {p,} = R, (X (k™1 (0) x {p,})
Is a closed subset of R,(X,) which is not Borel. Hence, R,(X,) is not Borel.

ExampLE 3. There exists a smooth dendroid Ysuch that none of the sets R,(Y) and
Ry(Y) and §,(Y) for Be{3, 4, ..., R, ¢} is Borel. The space Y is a wedge of the spaces
X and X, of Examples 1 and 2.

In the dendroid X of Example 1 let ¢ denote the unique point in A(Cx {~1}).
Moreover, for each dendroid X, in Example 2, let 4, = (4, p,)€ X, denote the point of
smoothness of X,.

There exist embeddings e: X —R* and e,: X, - R* for ac {3,4,...,8,} such that

(a) e(q) = ex,(qn,) = €(qs) = e,(gs) = ...,
(b) e(X)ne,(X,) = {e(g)} and e,(X,)Ne,(X,) = {e(g)} for o # 5,
(c) diame,(X,) < 1/n for n=3, 4, ...
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Let Y= e(X)Uew,(Xn)es(X3)ue (X )u...c R% Then Y is a dendroid which is
smooth at the point e(g). Note that e(Rz(X)) is a closed subset of R,(Y). Since e is an
embedding and R,(X) is not Borel, it follows that R,(Y) is not Borel. A similar
argument shows that Ry(Y) and S4(Y) are not Borel for each B > 2. Observe that

Ry(Y)= e(R1(X))U"No(Rl(XRo))Uea(Rx(Xs))U'--
and cl(R,(Y)) = R,(Y)u{e(g)}. Hence, the sets R,(Y) and S,(Y) are both Gsand F,.

In [N1] it was proved that if X is a planable dendroid and J is an arc in X then
83(X)nJ is Gy, (see also Theorem 1(3-5)). In non-planar dendroids the situation is
more. complicated as the next example shows.

Recall that a function f: X -+ [0, 1] is said to be upper semi-continuous if VR (N))
is closed in X, for each te[0, 1]. We are indebted to the referce for a simplification of
our proof of the following:

Lemma 3. There exists an upper semi-continuous function f: C—[0, 1] from the
Cantor set into [0, 1] such that

(a) f(C) is not a Borel set,

() {xeC: f™(f(x) is countable} is a countable subset of C, and

(c) f(C) is a nowhere dense set in [0, 1].

Proof. Let 4 be a countable dense subset of C. Then C\A is homeomorphic to the
set of irrational numbers in the real line. Hence, as in Lemma 2 there exists a continuous
function k: C\A—[0, 1] such that

(a') k(C\A) is not a Borel set,

(b) k~'(k(x)} is uncountable for each xeC\4, and

(c') k(C\A) is a nowhere dense set in [0, 1].

Let %, %,, ... be coverings of C such that, for each positive integer n, %,={U;, ...,
Ur,.} consists of pairwise disjoint closed-open sets of diameters <1/n and %, ., refines
%, For each positive integer n define f,: C—[0, 1] by

J:(%) = sup(k(U\A))

Obviously, all the functions f, are continuous. Let f: C—[0, 1] be defined by
fx) =inf{f,(x): n=1,2, ...} for cach xe C. By [D, Corollary 10.4, p. 85), f is upper
semi-continuous. It is easy to see that f(x) = k(x) provided xeC\A. It follows that
S has the properties (a), (b) and (c). The proof is complete.

provided xeUf, 1 <i<m,.

Exameir 4. There exists a smooth dendroid X such that
(a) §3(X) is contained in a subarc J of X,

(b) Ry (X) is closed,

(©) 53(X) = R,(X),

(d) R,(X) is an analytic, non-Borel set,

(&) Ry(X)nJ is a co-analytic, non-Borel set.

Let T< [0, 1] be the Cantor ternary set and let f: T—[0,1] be an upper
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semi-continuous function such that f(T) is not a Borel set and
D={xeT: f~Y(f(x) is countable}

is a countable set. Let D = {x,, X,, ...}. Foreachi=1,2,...let ;= T [0, 37']. Let

C=Tx{0}u | {x}xT.
i=1

Define f: C—[0, 1] by f(x, t) = f(x). Then C is a Cantor set and f is an upper
semi-continuous function such that f(C) = f(T). We may reimbed C into [0, 1] and we
denote (by abusing notation) by C this copy of the Cantor set in [0, 1].

Since f is upper semi-continuous there exist continuous functions g,: C— [0, 1] for
n=1,2,... such that g,(x) = g+ (x) and limg,(x) = f(x) for n=1,2,... and xeC
(see for example [En, p. 88]). ‘

Define for each positive integer n a function f,: C [0, 2] as follows: Let f, (x) =2
for xeC and fi(x) =g,(x)+1/k for xeC and k=2, 3, ... Then f,(x) > fi+1(x) and
lim f,(x} = f(x) for each k=1, 2,... and xeC.

For each positive integer k and xe C let J§ denote the straight-line segment in R?
with end-points (1/k, x/k, f(x)) and (1/(k+1), x/k-+1), fir 1(x)).

For each xeC let J*=JiuJ3uU... Then

o) = J*u{(0, 0, f(x)}

is an arc in R®. Moreover, J* is contained in the plane {(t, t,, t3): t, = x-t,}. It follows
that J*nJ’ = @ for x # y. ‘
For each positive integer k let Fy = | JiecJU...UJE. By construction and the
continuity of the functions {f,} it follows that the sets F, are compact for k=1, 2, ...
Let J be the straight-line segment in R® with end-points (0, 0, 0) and (0, 0, 2). Let
X =JulJi F,. An easy argument shows that X is a dendroid which is smooth with
respect to the point (0, 0, 0). Moreover,

R.(X)=85(X)={(0,0, f(x): xeC} = J.

An alternative construction of X may be obtained as follows: Let Z = ({2} uC)
%[0,2] and let G be the decomposition of Z into points and the sets ({2}
UM, 2D) x {¢}, te[0,2]. It is easy to see that the quotient space Z/G is
homeomorphic to the dendroid X above.

ExampLe 5. We construct a dendroid Z such that R, (Z) is co-analytic and not Borel.

Let C be a Cantor set. Let f: C— C be'a continuous, onto function such that there is
a Ggsubset G of C such that f(G) is not Borel. Let F, = F, < ... be compact sets in
C such that C\G=F,UF,u...

Let ~ be the equivalence relation on C x [ —1, ] such that (x, ) ~ (y, s) if and only
if either

) t=s=—1 or

@ x, 5=(y,s) or

(3) x=yeF, and |s| = |t] < i/n.
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Then cleatrly ~ is upper semi-continuous. Let ¥ = C x [—1,4]/~ be the quotient space
and h: Cx[—1,3]-Y the quotient map. Then Y is a dendroid.

Define an equivalence relation ~, on Yby settinga ~, b if g, be Yand either a = b
or there exist x, ye C and te[~1, 0] such that f(x) = 1'(y), a = h(x, t)and b = h(y, 1.
Then ~, is upper semi-continuous. Let Z = Y/~ , be the quotient space and let k:
Y—Z be the quotient map. Then Z is a dendroid.

Define an embedding m: C -+ C x[~1, {] by m(c) = (¢, 0). Let A = kohom(C). Then
A is a closed subset of Z. Define n:.A—C by n(kohom(c) = f(c). Then n is
a well-defined function. In fact n is a homeomorphism of A onto C. If ceC then
kohom(c)e R, (Z) if and only if f(c)¢ f(G). Hence, ANR,(Z) = A\n™'(f(G)). Since n is
a homeomorphism of 4 onto C and f(G) is analytic and not Borel it follows that
R,(Z)n 4 is co-analytic and not Borel. Since 4 is closed in Z it follows by Theorem
2 that R,(Z) is co-analytic and not Borel.

Ifin Example 5 for each x & G there exists ye G with y 5 x and with f(y) = f(x) then
A< Ry(Z)US4(Z). So in this case neither R,(Z) nor §,(Z) is a Borel set.

The following observation solves a problem posed in [N3, Problem 9.5].

THEOREM 5. If X is a dendroid and xe X, then there exists a function f: X [0, 1]
such that f(x) =0 and fliey: [x, y1=[0, f()] is a homeomorphism for each yeX.

Proofl Let C(X) denote the hyperspace of all subcontinua of X and let u:
C(X)—[0, 1] be a Whitney map (see. e.g. [Na]), ie. p is continuous, u(X) =1,
u{y}) =0for ye X, and p(¥) < w(Z)il ¥, Ze C(X), Y« Zand Y # Z. Let g: X » C(X)
be defined by g(y) = [x, y]. Then glixyy: [x, ¥1—=¢([x, y]) is a homeomorphism, for
each yeX. Now, it suffices to let f = pog.

We remark that if the map f given in Theorem 5 is continuous, then the dendroid
X is smooth with respect to the point x. Conversely, if X is smooth with respect to x,
then f can be chosen to be continuous.
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Strong cellularity and global asymptotic stability
by

Barnabas M. Garay (Budapest)

Abstract. For (semi)dynamical systems on infinite-dimensional Banach spaces, a topological
characterization of nonempty compact invariant globally asymptotically stable sets is given. The
proofs are based on a paper by McCoy [11] and on other results of infinite-dimensional topology.

L Introduction and the finite-dimensional case. Let (X, |-|) be a Banach space. The
origin of X is denoted by Oy. The closed ball and sphere of radius r centered at 0y are
denoted by B(r) and aB(r), respectively. In general, & denotes the boundary of sets in X.
The distance between a point xeX and a nonempty set Y = X is defined as
dx, ¥) = inf{|x~y| | ye ¥}

A closed subset C of X is called a cell in X if there exists a homeomorphism from the
pair (B(1), B(1)) onto the pair (C, 3C). A subsct 4 of X is called cellular if there is
a cellular sequence for 4, Le. a sequence {C,} of cells in X such that () {C,| neN} = 4
and G,y < int(C,) for each neN. A subset A of X is called strongly cellular if there is
a strongly cellular sequence for 4, ie. a cellular sequence {C,} with the additional
property that for each open set U in X containing 4, there is an integer n such that
C,cU.

A subset 4 of X is called point-like if X\A is homeomorphic to X\{0y}. A compact
connected subset 4 of X is cellular il and only if it is point-like. Strongly cellular subsets
are compact and connected, Compact subsets of infinite-dimensional Banach spaces are
point-like and cellular. In the finite-dimensional case, cellularity is equivalent to strong
cellularity, For these and other propertics of cellularity resp. strong cellularity, see
(1], [10].

The continuous mapping n: RxX—X (m: R*x X = X) is called a dynamical
(semidynamical) system if 70, x) = x for all xe X and n(t+1, x) = n(t, m(z, x)) for alt r,
teR, xeX (for all 1, teR" , x& X). In most applications, dynamical systems are induced
(both on finite- and infinite-dimensional Banach spaces) by ordinary differential
equations. Similarly, in most applications, semidynamical systems are induced (on
infinite-dimensional Banach spaces) by retarded or partial dilferential equations.

This paper was written while the author was an Alexander-von-Humboldt Research Fellow at
the Mathematical Institute, University of Augsburg, Germany.


Artur




