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Strong cellularity and global asymptotic stability
by

Barnabas M. Garay (Budapest)

Abstract. For (semi)dynamical systems on infinite-dimensional Banach spaces, a topological
characterization of nonempty compact invariant globally asymptotically stable sets is given. The
proofs are based on a paper by McCoy [11] and on other results of infinite-dimensional topology.

L Introduction and the finite-dimensional case. Let (X, |-|) be a Banach space. The
origin of X is denoted by Oy. The closed ball and sphere of radius r centered at 0y are
denoted by B(r) and aB(r), respectively. In general, & denotes the boundary of sets in X.
The distance between a point xeX and a nonempty set Y = X is defined as
dx, ¥) = inf{|x~y| | ye ¥}

A closed subset C of X is called a cell in X if there exists a homeomorphism from the
pair (B(1), B(1)) onto the pair (C, 3C). A subsct 4 of X is called cellular if there is
a cellular sequence for 4, Le. a sequence {C,} of cells in X such that () {C,| neN} = 4
and G,y < int(C,) for each neN. A subset A of X is called strongly cellular if there is
a strongly cellular sequence for 4, ie. a cellular sequence {C,} with the additional
property that for each open set U in X containing 4, there is an integer n such that
C,cU.

A subset 4 of X is called point-like if X\A is homeomorphic to X\{0y}. A compact
connected subset 4 of X is cellular il and only if it is point-like. Strongly cellular subsets
are compact and connected, Compact subsets of infinite-dimensional Banach spaces are
point-like and cellular. In the finite-dimensional case, cellularity is equivalent to strong
cellularity, For these and other propertics of cellularity resp. strong cellularity, see
(1], [10].

The continuous mapping n: RxX—X (m: R*x X = X) is called a dynamical
(semidynamical) system if 70, x) = x for all xe X and n(t+1, x) = n(t, m(z, x)) for alt r,
teR, xeX (for all 1, teR" , x& X). In most applications, dynamical systems are induced
(both on finite- and infinite-dimensional Banach spaces) by ordinary differential
equations. Similarly, in most applications, semidynamical systems are induced (on
infinite-dimensional Banach spaces) by retarded or partial dilferential equations.

This paper was written while the author was an Alexander-von-Humboldt Research Fellow at
the Mathematical Institute, University of Augsburg, Germany.
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The following definitions make sense for dynamical as well as for semidynamical
systems. A subset Yof X is said to be invariant if {x(t, y)| ye Y} = Y for all te R*. Let
M be a nonempty compact invariant set. Its region of attraction is defined by
AM) = {xe X| d(n(t, x), M)—0 as t—o0}. The set M is said to be asymptotically
stable if A(M)> {yeX| d(y, M) <n} for some # >0 and if, given ¢ > O arbitrarily,
there exists a 6> 0 such that d(x(t, x), M) < & whenever d(x, M) <§, t>0. If, in
addition, A(M) = X, then M is called globally asymptotically stable. The study of
(semi)dynamical systems with globally asymptotically stable compact invariant sets is
one of the major topics -of infinite-dimensional topological dynamics [6].

The following result is essentially known [2].

TueoreM 1.1. Let X be a finite-dimensional Banach space and let n: Rx X — X be
a dynamical system on X. Moreover, let M be a nonempty compact invariant asymptotical-
ly stable subset of X. Then the following statements are equivalent:

(i) M is strongly cellular,
() A(M) is homeomorphic to X.
(ii) There exists a neighborhood U of M in A(M) which is homeomorphic to X.

Proof In case M = {0y}, the implication (i)=(ii) was proved in [2, Thm. V.3.4].
The general case follows from the very same argument. In fact, assume that M is
strongly cellular. Then there is a cell C such that M < int(C) = C < A(M). By a simple
compactness argument, C < {n{—p, y)| yeC} for some fixed pe N\{0}. For neN,
define C-, = {n(—pn, y)| yeC}. Hence int(C) = int(C-,) and, by induction, int(C_,)
< int(C_g+y) for each neN. Observe that AM) = {int(C-,)| neN}. Since the
union of an increasing sequence of open n-cells is an open n-cell [5], AM) is
homeomorphic to X. The implication (ii)=>(iii) is trivial. Suppose now that (iii) is
satisfied. Then there is a cell C such that M c int(C) = C = U. By a simple compactness
argument, {n(q, y)| yeC} < int(C) for some fixed geN\{0}. For neN, define
C, = {n(gn, y)| ye C}. It is easy to see that {C,} is a strongly cellular sequence for M.
(We remark here that the implication (ii)= “M is point-like” was proved earlier
[2, Thm. V.3.6]. (Since M is obviously connected, this is equivalent to strong
cellularity.))

By a simple compactness argument, each cellular sequence is, in finite-dimensional
spaces, strongly cellular. Consequently, in stating Theorem 1.1, it is possible (and would
have probably been more natural) to replace @) by

(@Y M is cellular.

However (and this is why we prefer (i)), Theorem 2.1, the infinite-dimensional version
of Theorem 1.1, does not remain valid if (i) is replaced by (iy. For completeness, we give
a simple counterexample: Let X be an arbitrary infinite-dimensional Banach space and
let M ={x;, x,} be an arbitrary two-point subset of X. It is not hard to define
a dynamical system on X for which x, (i=1, 2) is an equilibrium and M is
asymptotically stable, A simple connectedness argument implies that A(M) is not
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connected. Hence no neighborhood of M in A(M) is homeomorphic to X. But 3 is
cellutar [11].

Remarkably, Theorem 2.1 works for semidynamical systems and not only for
dynamical ones as Theorem 1.1. (See also Remark 2.5.) We state and prove Theorem 2.1
for semidynamical systems. This is of some importance since functional differential
equations, large classes of partial differential equations etc. give rise [6] only to
semidynamical systems and not to dynamical ones.

It is well-known that ull the previous dynamical concepts can be defined for discrete
dynamical/semidynamical systems as well, (In all the previous definitions, R and R*
should be replaced by Z and N, respectively.) It is casy to see that Theorem 1.1 remains
valid for diserete dynamical systems. No alterations in the proof are needed. We do not
know whether Theorem 1.1 remains true for semidynamical Systems. (See also Remark
2.5.) On the other hand, Theorem 1.1 is false for discrete semidynamical systems. This is
shown by the following two simple examples:

ExampLE 1.2. For xeR, define

roer o SR i x] < 1,
S = {1 i x> 1.

Observe that /@ R-»R is continuous and consider the induced discretc semidynamical
system. It is easy to check that | /(x)~ 1] < |x ~ 1] for all XeR, f(1)=1, f(0)=0 and
J"(x)— 1 as n—» o whenever x s 0. Thus, x, = | is an asymptotically stable equilibrium
point with A({x,}) = R\{O}. In particular, M = {x,} satisfies (i) and (i) but not (i)

ExampeLe 1.3, Write
Q={(, NeR?| 1/4<x*+y* <1}, S={(x, YeR? x2+y* =1},

Let g: R* — Q be an arbitrary continuous function with g(S) = . Consider the induced
discrete semidynamical system. It is well-known (sec eg. [6, Thm. 2.4.2]) that

M= ﬂ {g"(Q)l neN} is a nonempty compact invariant globally asymptotically stable

subset of R%, In particular, M satisfies (ii). But (i) is violated: since S « M = 0, M is not
cellutar.

IL The infinite-dimensional case. The main result of this paper is the following
infinite-dimensional generalization of "Theorem 1.1,

Turorem 2.1, Let X be an infinite-dimensional Banach spuce and let m R" x X - X be
a semidynamical system on X, Moreover, lot M be a nonempty compact invariant
asymptotically stable subset of X. Then the following statements are equivalent:

@ M is strongly cellular,

(i) A(M) is homeomorphic to X.

(iii) There exists a neighborhood U of M in A(M) which is homeomorphic to X.

The proof is based on three lemmas. The first is an elementary result on Lyapunov
functions [2]. Lemma 2.3 collects several results from shape theory [4]. (We will make
use only of the implication (¢)==(d) (in the case of X being infinite-dimensional) but

6 ~ Fundamenta Math, 1382
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we have not been able to find any direct references. (For the definition of contractibility,
see the proof of Theorem 2.1.)) The core of the whole proof is Lemma 2.4, a fundamental
result of infinite-dimensional topology [1].

Lemma 2.2. Let X be a Banach space, n: R* x X =X a semidynamical system on
X and M a nonempty compact invariant asymptotically stable subset of X. Then A(M) is
open and there is a continuous function V: A(M)— R* with the properties that V(x) =0
whenever xe M, and V(x) = d(x, M), V(n(t, x)) < V(x) whenever xe A(MN\M, t> 0.

Proof. For xe A(M), define
V(x) = sup{(1 +arctant)-d(x(t, x), M)] >0}

and repeat the proof of [2, Prop. V.4.15] and [2, Thm. V.4.18].

LemMa 2.3. Let X be a Banach space and let W be a nonempty compact subset of X.
Then the following statements are equivalent:

(a) W has trivial shape in the sense of Borsuk.

(b) W is a fundamental absolute retract.

(c) W is contractible in its every neighborhood in X.
Further, property (a) is implied by

(d) W is strongly cellular.
If X is infinite-dimensional, then (a) is equivalent to (d).

Proof. The equivalence of (a), (b) and (c) is a combination of [3, Thm. 7.1] ((a)<(b))
and [9, Thm. (b) and (i)] ((b)<=>(c)). The rest is [11, Thm. 3.2]. The implication (a)=>(d)
was proved in [11] under the condition that X is homeomorphic to X x I, where I, is
the usual infinite-dimensional separable Hilbert sequence space. Then it was conjectured
that this latter property holds true for all infinite-dimensional Banach spaces. The
verification of this conjecture was done several years later [13].

LeEMMA 2.4. Let X bé an infinite-dimensional Banach space and let Q be a contractible
open subset of X. Then Q is homeomorphic to X.

Proof This is a special case of [1, Thim. IX.7.3], which was proved in [1] under the
“extra” assumption that X is homeomorphic to X", The conjecture that this “extra”
assumption holds true for all infinite-dimensional Banach spaces was verified several
years later: infinite-dimensional Banach spaces of the same density character are
homeomorphic [13].

Proof of Theorem 2.1. (i)=>(ii). Fix pe M arbitrarily. In virtue of Lemma 2.4, we
have to prove that A(M) is an open subset of X and there exists a continuous mapping
H: [0, 1] x A(M)— A(M) with H(0, x) = x and H(l, x) = p for all xe A(M). For some
fixed me N, the strong cellularity of M implies that C, = {ye X| d(y, M) < 5} < A(M)
whenever n  m. Since cells are contractible, there is a continuous mapping h:
[0, 1]x C,,—~ C,, such that k(0, x) = x and h(l, x) = p for all xeC,. By Lemma 2.2,
A(M) is open and if ¢ > 0 is sufficiently small, then ¥ ~1([0, ¢]) = C,, and further, given
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xeV~([c, w)) arbitrarily, there exists a unique <,(x)eR* such that (T (x), X)
eV~1({c}). It is easy to see that the mapping 7,: ¥~!([¢, 00))~R* is continuous. The
desired homotopy H: [0, 1]x A(M)— A(M) can be defined by

7 (2t,(x)t, x) it xeV=[c, o)), 0
0

) 0<r<1/2,
if xeV™}0, c]), 0<t < 1/2,

)

)

Ht, =<~
’ h(2t—1, nfz,(x), x)) if xeV™"'([c, ), 12<t<1,
h(2t—1, x) if xeVH[0, c)), 12<t< 1.

(i) = (iii). This is trivial.

(i) = (i). Fix pe M arbitrarily. In virtue of Lemma 2.3, we have to prove that given
an open neighborhood D of M in X, there is a continuous mapping K: [0, 1IxM-D
with K(0, x) =x and K(1, x)=p for all xeM. There is no loss of generality in
assuming that D < U. Since U is homeomorphic to X, it is contractible. Consequently,
there is a continuous mapping k: [0, 1] x U— U such that k(0, x) = x and k1, x)=p
for all xeU. Applying Lemma 2.2 again, there is a constant ¢ >0 such that
V7H[0,c])=D and that the function 7: V!([c, w))—~R* defined by
w(t,(x), x) e V" '({c}) is continuous. The desired homotopy K: [0, 1]x M —D can be -
defined by

K )_{kas %) if k(t, ))e VN[0, ),
P ok, ), k(t, X)) i kG, x)e VT ([e, o0).

Remark 2.5, It is worth mentioning that Theorem 2.1 remains true if X = R? (or if
X =R, the latter being trivial). No alterations in the proof are needed. In fact, the
implication (c)=>(d) holds true if X = R?. This is an easy consequence of the topological
characterization of plane fundamental absolute retracts: they are [4] exactly those
nonempty continua which do not decompose the plane. Similarly, Lemma 2.4 is valid if
X = R this is the well-known topological characterization of simply-connected open
plane subsets (see e.g. [12, Section V1.2]). Unfortunately, in general finite-dimensional
spaces, the proof of Theorem 2.1 breaks down. As is indicated in [11], the implication
(c)=>(d) does not hold true if X = R", n > 3. Probably the simplest counterexample is
a wild arc Win R", n = 3, whose complement is not simply-connected. (Observe that
W is compact contractible but not point-like.) Similarly, Lemma 2.4 is false for X = R",
n 2 3. The first counterexample was constructed by J. H. C. Whitehead in 1935. For
details, see [10, esp. p. 540]. So we do not know whether Theorem 2.1 is true or false
when X =R", n2> 3.

PROPOSITION 2.6. Let X be an infinite-dimensional Banach space and let w: Zx X —X
be a discrete dynamical system on X. Moreover, let M be a nonempty compact invariant
asymptotically stable subset of X. Assume that there is a cell C in X such that
M < int(C) « C < A(M).

(A) M is connected.

(B) If {n(q, y)| yeC} = C for some geN\{0}, then A(M) is homeomorphic to X.

(©) If sup{d(n(n, y), M)eR"| yeC} >0 as n—co, then M is strongly cellular.
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Proof. (A) The connectedness of M follows from an easy application of [6, Lemma
24.17.

(B) For neN, define _, = {n(—gn, y)| yeC}. It is easy to see that C = C_,,
int(C) = int(C,) and, by induction, int(C.,) < int(€_+,) for each neN. Observe
that-A(M)= U {mt(C-,,)l neN}. By [11, Lemma 4.1], A(M) is contractible. Hence, in
virtue of Lemma 2.4, A(M) is homeomorphic to X.

(C) Observe that {x(r, y)| yeC} < int(C) for some reN\{0}. For neN, define

= {n(rn, y)| yeC}. It is easy to see that {C,} is a strongly cellular sequence
for M.

We do not know whether Theorem 2.1 is-true or false for discrete dynamical systems.
This problem and the one discussed in Remark 2.5 are certainly worth further
investigations. In spite of Theorem 2.1 and several results in [7], [8], the link between
shape theory and stability/attraction properties of (discrete) (semi)dynamical systems is
not fully clarified either. Asymptotic fixed point theory [6] is also related. To the best of
our knowledge, for dynamical systems in infinite-dimensional Banach spaces, it is not
known whether the existence of a nonempty compact invariant globally asymptotically
stable set implies the existence of an equilibrium point.

The following result, combined with Theorem 2.1, gives a full topological charac-
terization of nonempty compact invariant globally asymptotically stable sets for
(semi)dynamical systems on infinite-dimensional Banach spaces:

THEOREM 2.7. Let X be a (finite- or infinite-dimensional) Banach space and let M be
a nonempty strongly cellular compact subset of X. Then there exists a dynamical system
7 RxX —X on X such that M consists of equilibria and M is globally asymptoticaily
stable.

Proof. Let {C,} be a strongly cellular sequence for M. In virtue of [11, Thm. 217,
there is no loss of generality in assuming that there is a homeomorphism h of X \{0x}
onto X\M such that for all neN, h maps the pair (X\B(2™"), dB(2™™) onto the pair
(X\C,, 8C,). Write a,=27", neN, and & = dB(1).

We claim that given neN arbitrarily, there exists a continuous function b,:
& (0, a,] such that [h(As)—h(us)| < a, whenever A, pefa,.s, a,], |A—pul < by(s),
ses.

We point out first that, for each z& %, there exists an open neighborhood U, of zin
& and a positive number c, such that {|h(1s)—h(us)| < a, whenever A, WE [ay—3, a,],
-4l <c;, seU,. If not, there exist sequences {s,,} = %, {A}r {thn} < [tn-3, 4,] such
that s,—z and [4,—u,|—0 as m— oo but 184 S) =B, | > a, for all me N. By
passing -to--a-subsequence, we may-assume that 1, - A, My —> 1 @S m—c0 for. some
A= p€lay+3, a,]. It follows that 0 = ||h(iz) —h(uz)| > a,, a contradiction.

By the standard paracompactness argument, there exists a continuous function b,:
& —(0, a,] such that b,(s) < sup{c,| se U,} for all se &. It is easy to check that b, has
the desired property.

.Replacing b,(s) by min{b,(s)} k=0, 1,...,n— 1}, we may assume that b,.,(s)
< b,(s) for all se &, neN. For each se &, dcﬁne 7o =0 and 7}y =5+ 1/b,(s), neN.
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By letting
0 = {l—t if t <
P03 a,(l=(t—)b,(s)2) if ©5<t<154q, neN,

we define a function ¢,: R—R. Observe that g, is a strictly decreasing continuous
function, ¢,(f)— 0 as t— 00, ,(0) = 1 and the mapping & x R—(0, ), (s, £)— @, (), is
continuous. 1t is easy to see that there is a uniquely defined dynamical system
: Rx(X\{0x}) - X\{Ox} such that ¢(t, s) = p,(t)s for all teR, se&. By letting

w(t, x) = {Z(Q(I, h“l(x)))

if xeX\M, teR,
if xeM, teR,

we define a function n: Rx X — X,

Observe that (0, x) = x, =n(t, nfr, x)) = n(t +1, x) for all xeX, t,7eR. The
contmmty of = on Rx(X\M) is obvious. By the construction, given neN arbitrarily,
se, 1, teR, o t)&[dyr2s nrils |F~t| < 1/a, imply that @,f)e[tyr3, a,] and
[0, (E)—,(t)] < b,(s). Assume that xeC, . \Cys,. Then h~ H(x) = ¢(f)s for some se.&
and @,(t) = €[y 2, aur1]. Consequently, if feR, f—1 < 1/a,, then o(t; 8) = o,()s
where ¢,(f) = A€ [aps3, 4,] and lp(E)— @, (£)] < b,(s). Since

e(i=t, h™(x) = o(f—t, p,(1)s) =

it follows from the claim that

o(i—t, a(t, ) = o(f, 5) = ,(D)s,

In(@E=t, x)=x| = |(e(F—t, A ()~ h(h~* ()| < a,

whenever x& C,;\Cys2, L, teR, |—t] < 1/a,. Consequently, since {a,} is decreasing,
we have

[7(z, y)—ml| < |z, )=yl +ly—ml < a,+ly—m|

whenever meM, yeCyyy, k&N, teR and [1| < 1/a,. For.each (t, e Rx M, the
continuity of = at (¢, m) follows immediately. Hence 7 is a dynamical system on X.
By construction, for all xe X, ne N, we have n(t, x)e C, for t sufficiently large. Since
{C,} is a neighborhood basis for M and M is compact, it follows that d{x(t, x), M)—0
as t~o0. On the other hand, for each neN, xeC, implies that n(t, x) e C, whenever
> 0. Thus, M is asymptotically stable and A(M)=
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