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The prime spectrum of an infinite
product of copies of Z

by

Ronnje Levy, Philippe Loustaunau, and Jay Shapiro (Fairfax, Va)

3

Abstract. G. Cherlin, using model-theoretic techniques, has characterized the prime and
maximal ideals in the direct product of copies of the ring of integers, In this paper, we obtain
a characterization of these ideals using less machinery. As a consequence, we are able to obtain
more information about the structure and order type of the prime spectrum of the ring.

§ 0. Introduction. Let I be an infinite index set and let R = H,Z, the direct product
of copies of Z. The goals of this paper are to characterize the prime ideals of R and to
discuss the structure of Spec(R).

It is known that the ultrafilters % on I are associated in a natural way with the
minimal prime ideals of R (denoted by (#)). R/(%) is isomorphic to an ultrapower of Z,
and hence if % is non-principal, then R/(%) is a so-called non-standard Peano ring (that
is, a ring which is elementarily equivalent to Z). G. Cherlin [C] studied the prime
spectrum of such rings. His characterization is done in model-theoretic terms. Qur
construction has certain advantages. We use less machinery so our description is
simpler. In addition, our elementwise description of the prime and maximal ideals
enables us to obtain information about the order structure of the chain of prime ideals.

We use ultrafilters & on certain Boolean algebras of functions to describe the
maximal ideals of R, denoted by (%) (Theorems 3 & 4). If % is a principal ultrafilter on I,
then rather trivially there are no non-maximal prime ideals strictly containing (%). In
any case the set of primes between a fixed maximal ideal and a prime ideal is linearly
ordered. We show that over a fixed (%) any two maximal chains of prime ideals are
order isomorphic. Moreover, we prove that a maximal chain of prime ideals has
cardinality either 2 or at least 2°, Finally, we prove that for w,-incomplete ultrafilters
% the set of prime ideals between (%) and (%) is essentially the Dedekind completion of
the lexicographic product of an #,-set with 2.

We will always work in at least ZFC, that is, Zermelo—Fraenkel set theory with the
axiom of choice. We will, in certain cases, use additional axioms.

Following the classical definition, we say that % is a filter on I if it is a subset of the
power set of I that satisfies the following conditions:


Artur


156 R. Levy et al.

1) @¢u and IeU;
2) if J, and J, are in %, then so is J; nJ);
3)if Je# and J=J' =1, then J'eZ.

A filter % on I is an ultrafilter if % is maximal with respect to being a filter, or
equivalently, if whenever J < I, then either Je# or I\J €. Note that any filter can be
extended to an ultrafilter. An ultrafilter % on I is principal if there exists an element p of
I such that % consists of all subsets of I containing p. Other ultrafilters are said to be
non-principal. It can be shown that there are 2™ non-principal ultrafilters on I. (See
[CN] or [GI])

§ 1. Maximal ideals and minimal primes. Every prime ideal in a ring with identity
contains a minimal prime ideal. Therefore we will first state a well known result
characterizing the minimal prime ideals of R.

" Now for a = (a)s € R, we define the zero set of ato be {(a) = {iel: a, = 0}. Foran
ultrafilter % on I, we denote by (%) the set {ae R: {(a)e%}. It is easy to show that (%) is
a prime ideal. The following proposition is well known and the proof is omitted.

PROPOSITION 1. There is a bijection between the minimal prime ideals of R and the
ultrafilters on I given by U —(%).

If % is a principal ultrafilter on I, then R/(%) is isomorphic to Z. Therefore, in this
case, the only prime ideals of R strictly containing (%) are maximal and correspond to
the maximal ideals of Z.

We now turn our attention to the more interesting maximal ideals of R. Let % be
a non-principal ultrafilter on I, and let p = (p,)i; be an element of R such that for each
iel, p; is a positive prime integer. We define (%, p) to be the set {a = (a)i;eR: {iel: p
divides a;} e %}.

THEOREM 2. For % and p as above, (%, p) is a maximal ideal of R containing (%).

Proof. Clearly (%, p) is an ideal of R containing (%). Now let x = (x;)ic; € R\(%, p).
Then 4 = {iel: p,does not divide x;} is in %. For each je 4, there exists an integer s;
such that x;s;—1 is divisible by p;. Let y = (y)ia be the element of R defined via

s ified,
=00 i igA.

Then xy—1z€(%, p). Therefore R/(%, p) is a field and hence (%, p) is a maximal ideal
of R. m

Note. (%, p)/(@) is the principal ideal in R/(%) generated by the image of p in
R/(%). For that reason, we call (%, p) a principal maximal ideal of R. It is natural to ask if
every maximal ideal of R is principal. We now give an example which shows that there
are non-principal maximal ideals and which motivates their general construction.

ExampLE. Let I = @ and for each sequence p = (p;) € R of non-negative primes, let
0, be the element of R whose nth coordinate is q(n)/s(n), where g(n) is the product of the
first n prime integers and s(n) is the largest expression of the form pf which divides g(n).
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.Let J be. the ideal generated by {6,: p is a sequence of non-negative prime numbers}. It
is not difficult to see that J does not contain 1 r- Bvery proper ideal, in a ring with
identity, is contained in a maximal ideal. If M is any maximal ideal of R containing J,

then M cannot be of the form (%, p) because p is relatively prime to 6,. Thus there must
be non-principal maximal ideals. ’

We now investigate the non-principal maximal ideals of R. Let & be the set of
functions ¢: I—>{F: F a finite set of positive prime integers}. One example of such
a o (with I = w) is given by defining o(n) to be {first n prime integers}. This function was
used implicitly in the preceding example. Now let o and g be elements of . We say that
0 < o (g is a subfunction of ¢) if g(i) < o(j) for each ieI; in this case we define o\g to be
the function given by (o\0) (i) = a(i)\o(i) for each il If 0, and g, are elements of &, we
define g, A g, [respectively ¢, v g,] to be the function defined by (¢; A 0,)()
=0,()ne,() [ley v 02)() = o, () Uo,(i)] for each iel. Finally, the blank function @ is
defined by ®(i) = @ for each i . Let ¢ be a fixed element of &. The set of subfunctions
of o forms a Boolean algebra. Therefore it makes sense to talk about ultrafilters on the
set of subfunctions of ¢. In particular, a subset & of this Boolean algebra is called an
ultrafilter on o if: )

1) P¢F and ceF;
2) if ¢, and g, are in &, then so is o] A gy;
3) if ¢ < o, then either pe & or c\oeZ.

We will use these ultrafilters to describe the maximal ideals of R. But first we give
some definitions. Let ¢ be a fixed element of &. For a= (a)icr€R, we define
a subfunction g, of ¢ via g,(}) = {pec(i): p divides a}. For g%, we define e () to be
Ilcep if @()) is mon-empty and 1 otherwise. Now define a, = (a)er€R, where
a; = [Je(@). Note that ¢, =g and a,, divides a.

THEOREM 3. Let & be an ultrafilter on some o€ #\{®}. Then the set (F) = {aeR:
0,€F} is a maximal ideal of R. :

Proof Let a,beR be such that g,, g,6#. Then 0,4, =0, A g€ F. Also if
reR, then g, > g,- Hence (¥) is an ideal. Finally, if xe R\(#), then ¢ ¢ %, and
hence o\o,e.#. Therefore a,,, is in (#) and is relatively prime to x (at each
coordinate). Hence there exists seR such that xs—1z€(F). So (#) is a maximal
ideal of R. m i

A function ge & will be called principal if (i) is either @ or a singleton for each
iel. If # contains a principal function g, then (%) = (%, p), for % = {U;: &%} where
Us={iel: 6(i) # @} and p = (p,)ier Where p; = Hg(i). Conversely, it is clear that every
maximal ideal of the form (%, p) can be described as an (#) for a suitable choice of #.
Thus the maximal ideals described in Theorem 3 include the principal maximal ideals.
The next result shows that these are all the maximal ideals.

THEOREM 4. There is a surjection, given by &F — (&), between the set of ultrafilters on
elements of & and the maximal ideals of R.
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Proof. First we introduce some notation. For x = (x)r€ R, let \/;c = (y)er€R
where y, is the product of all the distinct positive prime integers dividing x; if x; 5 0, 1. If
x; =0 or 1, then y;= x;.

Now let M be any maximal ideal of R. If xe M, then so is \/Sc_; for otherwise, \/3; is
relatively prime to an element ze M at each coordinate, and hence x is relatively prime
to z, which is a contradiction.

Let xe M be such that \/; = x. Define ge & such that for iel, o(i) = {positive
prime integers that divide x;}. Let & = {¢ <o: a,e M}.

CLamM 1. & is an ultrafilter on o.

Clearly ®¢ # (since 1, ¢ M) and o€ & (since a, = \/;c = x). Also, if ¢, and ¢, are
elements of & (i.e., a,, and a,, are in M), then a,, ., is also in M, since a,, ,,, is the
greatest common divisor of a,, and a,,. Finally, let ¢ < . Then a,a,, = \/; =xeM
and hence ge# or o\pe%.

CLamM 2. ()= M.

Let ae(#). Then g,e # and thus a,,€ M. But q,, divides 4, so ae M proving the
claim. By Theorem 3, (%) is a maximal ideal and hence (#)=M. m

§ 2. The prime ideals of R. From now on, we fix o€ #\{®} and &, an ultrafilter on o.
As pointed out previously, every prime ideal contains a minimal prime ideal. So in
particular () contains a prime ideal of the form (%) for some ultrafilter % on I. Note
that this ultrafilter is again the ultrafilter % generated by {U,: ge &}, where
U, = {i: 0(i) # @}.

We now turn our attention to the prime ideals of R. Let ge&# and let
x = (x)ir€R. We define T (x;) to be the greatest non-negative integer k such that
[TTe®]* divides x; if x; # 0; we define T, (0) to be co. If h: [— R is any function, we say
that h is bounded on % if for some Ue%, the set {h(i): ie U} is a bounded subset of R.
Otherwise h is unbounded on %. Now let g: I —[1, co) be any function. We define (%),
by (#), = {xeR: there exists a ge & such that the function T, (x)/g is unbounded on
a}, where T,(x)/g is defined by (T, (x)/g) () = T,(x)/g ().

THEOREM 5. For any function g: I-[1, o), the set (¥), is a prime ideal of
R satisfying (%) = (¥), = (%).

Proof Let x = (Xier, ¥ = (¥ier €(F),- Then, since & is a filter, there exists ge &
such that T,(x)/g and T,(y)/g are unbounded on %. Now T, (x;+ y) = min{T,(x), T,(»)}.
Fix Ue4, then let W= {ieU: T,(x;+y) = T,(x)} and let V=U\W (so for ie¥,
T,(x;+y;) = T,(y). Either We® or Ve . In the first case, since T,(x)/g is unbounded
on W, so is T,(x-+y)/g, and hence T,(x+ y)/g is unbounded on U, On the other hand, if
Ve, the same argument applies to T,(y). Hence x+ye(#),. Also, if r = (r)eR then
To{rix) 2 T,(x), so that T,(rx)/g is unbounded on %. Hence rx (%), and (), is an
ideal of R.
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‘We now show that .(3'7 )p is prime. Suppose that x and y are elements of R such that
xy€e (&), Thus there exists g € # such that T,(xy)/g is unbounded on all U in %. Define
7< ¢ as follows:

() = {peo(®): max{k: p*x,} > max{k: pHy;}}.

Observe that Ti(x;y) = T,(x;y) and T;(x;y,) < 2T.(x;) for all i, by our definition of z.
Furthermore, either 1€ % or p\te#. In the first case it follows that, since T,(x)/g is
unbounded on %, x is in (#),. While if g\t is in &, then a similar argument shows that
y is in (#),. Therefore (%), is a prime ideal of R. .

Now let x = (x;)&(%); then U, = {iel: x; = 0}e% and hence for any g€ &, for all
ieU,, T(x)=o0. Since UnU,#@ for each Ue, it follows that T,(x)/g is
unbounded on %, ie., xe(F ),- Hence (%) s (&),

Finally, let x = (x;)iy € (%),. Then there exists pe # such that T,(x)/g is unbounded
on %. Hence the set {iel: T,(x) > 1} is in %. Clearly, the set {i: Tle() divides x;} is
also in %, and so x&(#F). m

We next want to investigate the relationship between () r and (), for different
functions f and g. But before we do that we give a result which is Corollary 4.10 in [C].
We include a proof (which is different from Cherlin’s) for completeness.

PROPOSITION 6. Let % be the ultrafilter on I determined by %. Then any two prime
ideals P and Q between (%) and (¥) are comparable.

Proof. Suppose to the contrary that there exist xeP\Q and yeQ\P. Since
X, y& (&), there exists g€ & such that a, divides both x and y. Now define a subfunction
7 of ¢ by (i) = {pea(d: T,(x)=> T,(y)}. Let & = g\z. Then either = or & is in %#.
Assume that te #. Factor x into x'-s, where for each ieI the only primes dividing
x; are in (i), while s, is relatively prime to []z(i). Notice that s ¢ (&), forcing x' into P\Q.
So replace x with x’ and do the same for y. Now it is clear that y divides x, so xeQ,
which is a contradiction. Otherwise § is in & so, with suitable substitutions, x divides .
Hence P and Q are comparable. m,

We introduce some notation. Let g: I—[1, o) and let xe R. Then x9 = (x¥¢®),,,,
where [ ] denotes the greatest integer function.

ProroSITION 7. Let f, g: I—[1, o). If flg is unbounded on 4, then (F); & (F),-

Proof. Consider the element y = af. Then y ¢ (%), yet clearly y is an element of
(%), So, by Proposition 6, (¥); & (F),. w

We note that (%), = (#), if and only if both f/g and g/f are bounded on %. One
direction follows from Proposition 7, the other from the definition of (% ), As
a consequence, (F), = (#),. So it follows that when considering prime ideals (%), we
can restrict our attention to integer-valued functions g. We will assume that the range of
g is either @ or [1, co) depending on which is more convenient.

We now define another prime ideal using functions g: I—[1, co). Let (F)f = {xeR:
there exists g€ # such that g/T, (x) is bounded on %}. We make the convention that if
{i: T,(x) =0} e, then g/T,(x) is unbounded on 4. '
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THEOREM 8. The set (#)° is a prime ideal of R which contains (¥),. Furthermore,
(FY is the smallest prime ideal below () containing the element t = af.

Proof The proof that (#) is an ideal is analogous to the proof that (%), is an
ideal as given in Theorem 5. To show that the ideal is prime let x, y be elements of
R such that xye(&). Then there exists g€ & and Ue% such that g/T,(xy) is bounded
on U. As in Theorem 5, there exists 7 < ¢ such that T,(x;y,) < 2T,(x,) for all i. Clearly
then g/T(x) is bounded on U. If 1€ %, then xe(#). Otherwise g\t is in &, which
implies that y is in (). So (F) is prime.

Finally, let Q be a prime ideal of R between (%) and (&) containing the element ¢,
Pick x (). Then there exists a positive integer n, an element ¢ in & and U &% such
that g(i)/n < T,(x,) for all ie U. Now let 6 = o\¢ and let z = a;. It follows that ¢ divides
(xz)". Thus either xeQ or ze Q. But, since 6 ¢ #, z¢(F). Therefore x € Q, proving that
(FY¥cO m

Note. If g is constant or even bounded on some Ue, then (F) = (#).

If e #, then & defines an ultrafilter #' on ¢ in a natural fashion: = < g is in &' if
and only if 7 is in &. It is not difficult to see that these two ultrafilters determine the
same maximal ideal, namely (%)= (#"). In particular, if x = ! for some function
h: I, then (F) is the smallest prime ideal in (%) which contains x.

ProPOSITION 9. (%), is the largest prime ideal of R below (%) not containing the
element y = af.

Proof. In Theorem 8, we showed that Y§(F),. Now let Q be a prime ideal of
R between (%) and (#) not containing y. Assume that Q is not contained in (#), so
there exists x e Q\(#),. Since x & (F), we can, as in the proof of Theorem 8, assume that
x equals af for some function h: I—w and some ¢ in #. Since x is not in (F )g» (/g (D)
is bounded on some Ue%; ie. h(i)/g(i) < N on U for some positive integer N. Hence
yis in (#)". Since (#)" is the smallest prime ideal containing x, (#)" < Q. Thus yeQ,
which is a contradiction. m

The following corollaries are now immediate using Theorem 8 and Proposition 9.
COROLLARY 10. There are no prime ideals between (#), and (F).

Note that we then have (#F), = (FV if and only if (#F), = (#),. Furthermore,
(#Y = () il and only if (# )= (F),. We will show in the next section that not every
prime ideal is of the form (& ), or (FY. However, all the prime ideals can be described in
terms of these primes.

COROLLARY 11. Every prime ideal below (%) can be written as the intersection of
a family of (F),’s.

COROLLARY 12. Every prime ideal below (%) can be written as the union of a family
of (F)¥s.

Observe that the prime ideals between a given (@) and (%) are completely
determined by functions g from I to [1, o) modulo 4. In particular, if (#) and (#") are
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two maximal ideals containing (%), then the chain of primes contained in (%) is order
isomorphic to the chain of primes contained jn ()

In view of the note after Theorem 8, the question arises as to whether functions g,
from I to w, which are unbounded on every Ue% exist. The next few paragraphs deal
with this question.

For f and g functions from I to w, we say that f ~ g (modulo %) if f/g is bounded
away from 0 and o0 on some Ue%. Note that ~ is an equivalence relation. The
equivalence classes are linearly ordered and in order reversing bijection with the set of
prime ideals of the form (#), [(#F¥] for a fixed #.

An ultrafilter % on I is called w,-complete if every countable partition of I contains
an element of % (see [CN]). An ultrafilter is called w 1incomplete if it is ot w,-complete.

Let % be an w,-complete ultrafilter on I, and let g be any function from I to w.
Then {g~'(n): new} forms a countable partition of I, and hence g is bounded on a filter
element. Therefore, there are no prime ideals of R strictly contained between (%) and
(#) by Corollary 11. Since every principal ultrafilter on I is w;-complete, there are no
prime ideals between (%) and (%) as noted after Proposition 1.

Let % be an w-incomplete ultrafilter on I. Then there exists a countable partition
{4,: new} of I such that A4, ¢4 for every ne w. Define g: I-+[1, o0) via g(A,) = n; then
g is unbounded on every Ue%. Now for re[l, co), let g,: I-[1, o) be defined by
g,(i) = g(i)". Then g, is unbounded on every Ue%, and if r < s, then g,/g, is unbounded
on every Ue%. Thus there are at least ¢ = |R| equivalence classes (modulo %) of
functions g from I to [1, o0) (or to w).

If I has non-measurable cardinal (e.g., if I is countable), then every non-principal
ultrafilter on I is w,-incomplete. A set with a measurable cardinal (if such a set exists)
has a non-principal w,-complete ultrafilter on it. (See [CN])

The following example, which is due to John Kulesza, shows that, assuming the
Continuum Hypothesis (CH), there exists an ultrafilter % on a set I of cardinality ¢ for
which there are more than ¢ many equivalence classes (modulo %) of functions g from
Ito o.

ExampLE. Let " be a non-principal ultrafilter on  and let % be a uniform
ultrafilter on R, that is, an ultrafilter each element of which has cardinality ¢. Define an
ultrafilter % on I =wxR by Ued if and only if

{x: {y: (v, yeUle¥}ew .

Assuming CH we well order R as {y;; 1< w,}. Let {f,: & <w,} be a collection of
¢ many lunctions from I to . For o < w,, let g,: @ x {y,} - be such that for all . <,
{new: g,(n, y,) < fi(n, v,)} is finite. Define g: I bY Gloxpg = s

Cram. For each A < oy, {(x, y): f(% ¥) < g(x, )} e .

Assume, to the contrary, that {(x, y): fi(x, ¥) > g(x, y)} €%. Since # is uniform,
there is a y =y, such that @ > 4 and {x: fi(x, ) > g(%, y)}€ 7" But filuxpa < Ya
= glyxyyy. This proves the claim. ‘
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Now let h(x, y) = g(x, y): (1+x+y). Then for each Ue%, h/g is unbounded on U,
50 h > f, for each 1 < w,. Therefore there are more than continuum many equivalence
classes (modulo U) of functions f from I to . '

§ 3. The order structare of prime ideals. We want to investigate the order type of the
chain of prime ideals between (%) and (#). As we have seen, if % is w,-incomplete, then
there are at least ¢ such prime ideals. Now if |I| = 4, then the ring R has 2% elements and
hence the chain of prime ideals between (%) and (%) contains at most 2** elements.

We can actually get more information on the structure of the order of the prime
ideals of the form (#), in the case where I = w. A linearly ordered set S is called an
ny-set if given any countable subsets F and G of S such that every element of F is less
than every element of G, then there exists an element he S such that /' < h < g for every
feF and every geG.

THEOREM 13. Let I = w and let & be an ultrafilter on some g &. Assume that the
associated ultrafilter 9 on I is non-principal. Then the set of prime ideals of the form (& )
between (%) and (F), where g is unbounded on %, is an n,-set.

Proof Recall that the prime ideals of the form (&), between (%) and (#) are in
order reversing bijection with the equivalence classes of functions f from I to w, where
S~ gif flg is bounded away from 0 and co'on some U e%. The order is given by f < g
if g/f is unbounded on %. It is therefore sufficient to show that the set of equivalence
classes with this order is an #,-set.

Let F = {fy,fi, /o, -} and G = {g,, g,, g5. ...} be countable sets of equivalence
classes of functions f, and g, from I to w such that f, < g,, for all n and m. Clearly, we
can assume that

hsfishs<.. 92591 < go-

We will assume that F and G have infinitely many equivalence classes. The other cases
are similar and easier. Therefore, we can assume that the above inequalities are strict.

CLam. We can assume that f,(i) < fo+1() and g, 10) < g,(i) for all iel

Let f, and g, be defined via £) = max,<, S0 and §,() = infi<,g, (). Then f, ~ f,
and g, ~g,. So we have the claim.

It is not too difficult to see that it is possible to define a countable collection
{Us k=0,1,2,...} of elements of % satisfying the following:

DU, =I=w;

2) Uk 2 Upyy for all k,

3) (YU, =@ (eg., delete.k from U, for each k);

4) gy(@/fi()) > k for all ieU, and for all k.

To accomplish 4) we use the fact that, since g/fe is unbounded on %, the set
{i: g,()f0) >k} is in 2.

Let h be the function from [ to [1, co) defined via (i) = /£, () g () for ie U\Uy41-
Note that conditions 1), 2) and 3) assure -that & is well defined.
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CLAM. h > f, for all k.

Suppose to the contrary that for a fixed k, h(@){f(i) < B on some some Ue% and
some Be w. Let m be a positive integer larger than B2 and k,and let ieU N U,,. Then

k() = /£,() 9.()) for some r > m. Hence

2O _ 7066 _ a0
AOTNTRD TN 702

By condition 4) and the assumptions we have on r and m, we also know that

VO[> /r > /m> B.

The two inequalities combined give a contradiction, so the claim is proved.
The proof that h < g, for all k is done in a similar fashion, m

Remarks. (i) The proof of Theorem 13 can be generalized to the case where % is an
w,-incomplete ultrafilter on an arbitrary index set I. The only potential difficulty is in
condition 3) on the sets (U,). So let (Ii)k=1,3,... be a countable partition of I such that no I,
is in %. Then we can replace U, with UK, I; if need be, which satisfies condition 3).

(i) It follows from Theorem 13 that, if % is wy-incomplete, then the set of prime
ideals of the form (# )y and (), where g is unbounded, is the lexicographic product of
an n;-set with {0, 1}.

(iti) It follows from (ii) and Corollaries 11 & 12 that, if % is w,-incomplete, then the
primes between (&) and (%) can be obtained from the Dedekind completion of an 5 -set
by splitting each element of the 7,-set into two consecutive elements and then adjoining
a first element, a last element and a next to last element (respectively (%), (#) and (#),
where ¢ is any constant). Furthermore, since any Dedekind complete space containing
an #;-set has cardinality at least 2% (see [GI]), there are at least 2%+ primes between (%)
and (#). In particular, if I = w, then, assuming CH, there are exactly 2% prime ideals
between (%) and (%).

COROLLARY 14. Let % be an @,-incomplete ultrafilter on I. Then no prime between
(%) and (F) is both the union of countably many (F)"s and the intersection of countably
many (%),’s.

Proof. In the Dedekind completion of an #,-set, no singleton is the intersection of
countably many non-degenerate intervals. m

COROLLARY 15, Let I = w and assume that 28 < 2%, (This set-theoretic assumption
will hold if, for example, the continuum hypothesis is assumed.) Then there exist prime
ideals between (%) and (%) which are neither a union of countably many (#)®s nor an
intersection of countably many (F)ys.

Proof. There are only continuum many ideals of the form (F) or (# ), because
there are only continuum many choices for the functions g. Hence, there are only ¥ = ¢
intersections or unions of countably many sets of this form. But as noted in Remark (iii)
above, there are 2% prime ideals between (%) and (%). =
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We close with some questions: ' -

1. Does Corollary 15 hold with no set-theoretic assumptions:

2. Does Corollary 15 hold under MA + -1CH? . . .

3. Is there a generalization of Corollary 15 to hxlgh.er carélnals. o

4. Given an index set I and an ultrafilter % on [, is 1t possible to deter'mme he
cardinality of the set of prime ideals between (%) and () (perhaps assuming some

additional set-theoretic hypothesis)?
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On some subclasses of Darboux functions
by
J. M. Jastrzebski (Gdansk), J. M. Jedrzejewski and T. Natkaniec (Bydgoszcz)
Abstract. The maximal additive, multiplicative and lattice-like classes for some classes of real
functions are computed.

1. Introduction. We shall consider mainly real functions of a real variable, however,
some of the considered functions will be defined on different sets, and sometimes the
range sets will be different. Let us settle some of the notations to be used in the article.

@onst  — the class of constant functions,

Bon ~ the class of connected functions,

€ — the class of continuous functions,

o — the class of almost continuous functions,

2 — the class of Darboux functions,

D%, — the class of Darboux functions of the first class of Baire,

F — the class of functionally connected functions ([5]),

Isc(usc) — the class of lower (upper) semicontinuous functions,

M — the class of Darboux functions f with the following property: if X, 18

a right-hand (left-hand) point of discontinuity of f, then f (%) =0 and
there is a sequence (x,) converging to x, such that x, > x, (x, < X,) and
f(xn) = 07

the class of all functions f such that for each x from the domain
fx)eL™(f, x) n L* (f, x) and the sets L™(f, x), L* (f, x) are closed intervals.

The symbols L™(f, x), L™(/; x) denote the cluster sets from the left and right,
respectively, of the function f at the point x.

Notice that if fe.#, then the set E of all points of discontinuity of f is nowhere
dense and f(x) = 0 for each x in E. Consequently, f is a function of the first class of
Baire, hence # < 9 " B, . Since f "B, = Gonn B, = D B, ([1]), we have A < o
Thus for the classes of real functions defined on an interval we have

CsHcASbnSF D D,

Let & be a class of real functions. The maximal additive (multiplicative, lattice-like,
respectively) class for & is defined to be the class of all fe & for which f+ge % (fye ¥,
max(f, g) and min(f, g)e %, respectively) whenever geZ. The respective classes are
denoted by (%), A, (%), H(Z).

2, -
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