58 R. Cauty

approximée arbitrairement par des fonctions k telles que, pour tout K dans U, la borne inférieure de k(K) ne soit pas un point isolé de k(K). La construction d'une telle fonction k peut se faire en deux temps, comme celle de k. On approxime d'abord id $_U$ par une fonction k_1 telle que, pour tout K, la borne inférieure $q_1(K)$ de $k_1(K)$ soit > 0. Notant $L = \{0\} \cup \{1/n | n \geqslant 1\}$, on pose alors

$$k(K) = k_1(K) \cup \lceil l(q_1(K) - \alpha(K), q_1(K))(L) \rceil,$$

où α : $U \rightarrow 0$, 1 est une fonction continue suffisamment petite.

Compte tenu du corollaire 5.2, le lemme suivant achève de vérifier les conditions du théorème 1.1.

5.6. LEMME. H est réunion dénombrable de Z-ensembles.

Démonstration. Soit Z_0 l'ensemble des éléments de 2^I ne contenant qu'un seul point. Pour $n \ge 1$, soit Z_n le sous-ensemble de 2^I formé des K pour lesquels il existe un x appartenant à K tel que $K \setminus \{x\}$ soit non vide et que $d(x, K \setminus \{x\}) \ge 1/n$. Il est facile de vérifier que Z_n est fermé dans 2^I . La fonction $\varphi: 2^I \times I \to 2^I$ définie par

$$\varphi(K, t) = \{x \in I | d(x, K) \le t\}$$

est une déformation instantanée de 2^I en $2^I \setminus \bigcup_{n=0}^\infty Z_n$. Ceci entraîne que les Z_n sont des Z-ensembles dans 2^I . Puisque tout compact dénombrable a un point isolé, $\mathscr H$ est contenu dans la réunion des Z_n . Les lemmes 2.6 et 5.1 montrent alors que $\mathscr H$ est la réunion des Z-ensembles $\mathscr H \cap Z_n$ $(n \ge 0)$.

Bibliographie

- [1] H. Becker, Some examples of Borel-inseparable pairs of coanalytic sets, Mathematika 33 (1986), 72-79.
- [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
- [3] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 80-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
- [4] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit 1965.
- [5] C. Kuratowski, Topologie I, 4ème édition, PWN, Warszawa 1958.
- [6] Topologie II, 3ème édition, PWN, Warszawa 1961.
- [7] J. Malý, Where the continuous fonctions without unilateral derivatives are typical, Trans. Amer. Math. Soc. 283 (1984), 169-175.
- [8] R. D. Mauldin, The set of continuous nowhere differentiable functions, Pacific J. Math. 83 (1979), 199-205.
- [9] S. Mazurkiewicz, Über die Menge der differenzierbaren Funktionen, Fund. Math. 27 (1936), 244-249.
- [10] S. Saks, On the functions of Besicovitch in the space of continuous functions, ibid. 19 (1932), 211–219.
- [11] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l²-manifolds, ibid. 101 (1978), 93-110.

22 rue Jouvenet, 75016 Paris, France

Received 8 January 1990; in revised form 17 April 1990

Collectionwise Hausdorffness at limit cardinals

by

Nobuyuki Kemoto (Oita)

Abstract. F. D. Tall conjectured:

If \varkappa is a singular strong limit cardinal and X is a $<\varkappa$ -CWH (CollectionWise Hausdorff) normal or countably paracompact space of character $<\varkappa$, then X is \varkappa -CWH.

In this paper, we shall show that the conjecture is true if the singular cardinals hypothesis is assumed. Furthermore, we shall study weak &-CWH-ness, when \varkappa is a certain limit cardinal.

1. Introduction. F. D. Tall conjectured in [T3]:

Tall's Conjecture. If \varkappa is a singular strong limit cardinal and X is a $< \varkappa$ -CWH (CollectionWise Hausdorff) normal or countably paracompact space of character $< \varkappa$, then X is \varkappa -CWH.

W. G. Fleissner proved in [F1] that this conjecture is true if the GCH (Generalized Continuum Hypothesis) is assumed. More generally, as in [T2], this conjecture is true if there is a $\mu < \kappa$ such that $2^{\lambda} = \lambda^{+}$ for every $\mu \le \lambda < \kappa$. Whenever of $\kappa = \omega$ holds, this conjecture is true without other set-theoretical additional axioms or normality or countable paracompactness by the argument of the proof of [F2, Theorem 1 (b)]. Thus we focus on the case of $\kappa \ge \omega_1$.

In Section 2, we shall characterize " $< \varkappa$ -CWH $\to \varkappa$ -CWH" using the sparse-like argument in [F4], and also show that the conjecture is true if the SCH (Singular Cardinals Hypothesis) is assumed. In Section 3, we shall study weak \varkappa -CWH-ness (in the sense of [T1]) for various spaces where \varkappa is a certain limit cardinal.

A closed discrete subspace Y of a space X is said to be separated if there is a neighborhood U_y of y for each $y \in Y$ such that $\{U_y: y \in Y\}$ is disjoint. Y is $< \varkappa$ -separated if every subset of Y of size $< \varkappa$ is separated. A space X is \varkappa -CWH ($< \varkappa$ -CWH) if every closed discrete subspace of size \varkappa ($< \varkappa$, respectively) is separated. "Closed UnBounded" is abbreviated as cub. In this paper, no separation axioms are assumed.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 54D15, 03E50.

Key words and phrases: collectionwise Hausdorff, strong limit cardinal, singular cardinals hypothesis.

2. The CWH-case. In this section, we shall prove that Tall's conjecture is true assuming SCH. Some of our arguments will be somewhat similar to the arguments in [F4] or [Wa]. Throughout this paper \mathcal{B}_y denotes a neighborhood base at y.

Definition 2.1. Let X be a space and let Y be a subspace of size \varkappa with $\operatorname{cf} \varkappa \geqslant \omega_1$. A countable sequences of partitions $\{Y_{n\alpha}: \alpha < \operatorname{cf} \varkappa\}$ $(n < \omega)$ of Y is said to be *nice partitions* if for each $n < \omega$, there is a $b_n \in \prod_{y \in Y} \mathscr{B}_y$ such that

- (1) $|Y_{n\alpha}| < \varkappa$ for each $n < \omega$ and $\alpha < cf \varkappa$,
- (2) $\{\alpha < cf\varkappa: cl(\bigcup \{b_n(y): y \in \bigcup_{\beta < \alpha} Y_{n\beta}\}) \subset \bigcup_{\beta < \alpha} Y_{n+1,\beta}\}$ contains a cub set in $cf\varkappa$. Here a "partition" means a disjoint cover.

Lemma 2.2. If Y is $a < \varkappa$ -separated discrete subspace of size \varkappa with $\omega_1 \leqslant \operatorname{cf} \varkappa$ which has nice partitions, then Y is separated.

Proof. Take such partitions $\{Y_{n\alpha}: \alpha < \operatorname{cf}\varkappa\}$ and $b_n \in \prod_{y \in Y} \mathcal{B}_y$ $(n < \omega)$ as in Definition 2.1. By (2) of Definition 2.1, take a cub set C_n contained in $\{\alpha < \operatorname{cf}\varkappa: \operatorname{cl}(\bigcup \{b_n(y): y \in \bigcup_{\beta < \alpha} Y_{n\beta}\}) \subset \bigcup_{\beta < \alpha} Y_{n+1,\beta}\}$ for each $n < \omega$. Put $C = \{0\} \cup \bigcap_{n < \omega} C_n$. Enumerate C in increasing order, say $C = \{\alpha(\gamma): \gamma < \operatorname{cf}\varkappa\}$. For each $n < \omega$ and $\gamma < \operatorname{cf}\varkappa$, put $Y(n, \gamma) = \bigcup \{Y_{n\beta}: \alpha(\gamma) \le \beta < \alpha(\gamma+1)\}$. Since C is cub in $\operatorname{cf}\varkappa$, $\{Y(n, \gamma): \gamma < \operatorname{cf}\varkappa\}$ is a partition of Y for each $n < \omega$. By induction fix a $b'_n \in \prod_{y \in Y} \mathcal{B}_y$ for each $n < \omega$ such that

- (a) $b'_{n+1}(y) \subset b'_n(y) \subset b_n(y)$ for each $n < \omega$ and $y \in Y$,
- (b) $\{b'_n(y): y \in Y(n, y)\}\$ is disjoint for each $n < \omega$ and $y < cf \varkappa$.
- (c) $(\bigcup \{b_n(z): z \in \bigcup_{\beta < \alpha(\gamma)} Y_{n\beta}\}) \cap b'_{n+1}(y) = 0$ for each $y \in Y(n+1, \gamma)$ and $\gamma < cf_{\varkappa}$. The statement (b) is ensured by $< \varkappa$ -separatedness, (c) by $\alpha(\gamma) \in C \subset C_n$ and (2) of Definition 2.1. By (a) and (c), the following holds:

(d) $\bigcup \{b'_{n+1}(z): z \in \bigcup_{\beta < \alpha(\gamma)} Y_{n\beta}\} \cap b'_{n+1}(y) = 0$ for each $y \in Y(n+1, \gamma)$ and $\gamma < cf \varkappa$. For each $y \in Y$ and $n < \omega$, put $\gamma(n, y) = \gamma$ such that $y \in Y(n, \gamma)$. Then by (2) of Definition 2.1, it is easy to show that $\gamma(n, y) \ge \gamma(n+1, y)$ for each $y \in Y$ and $n < \omega$. Thus there is an $n(y) < \omega$ for each $y \in Y$ such that $\gamma(n(y), y) = \gamma(n, y)$ for each $n \ge n(y)$. It suffices to show that $\{b'_{n(y)+2}(y): y \in Y\}$ is disjoint. To show this, fix y, y' in Y with $y \ne y'$. Put $n = \min\{n(y), n(y')\}$. Then

(e) $n \le n+1 \le n+2 \le n(y)+2$, n(y')+2.

We shall show

$$b'_{n(y)+2}(y) \cap b'_{n(y')+2}(y') = 0.$$

Case 1. $\gamma(n, y) = \gamma(n, y') = \gamma$. In this case, since y and y' are in $Y(n, \gamma)$, the claim follows from (b), (e) and (a).

Case 2. y(n, y) < y(n, y') (the remaining case is similar).

Subcase 1. $\gamma(n, y) < \gamma(n+1, y') = \gamma$. In this case, since $y \in \bigcup_{\beta < \alpha(\gamma)} Y_{n\beta}$ and $y' \in Y(n+1, \gamma)$, the claim follows from (d), (e) and (a).

Subcase 2. $\gamma(n+1, y') \le \gamma(n, y)$. In this case, since $\gamma(n+1, y') < \gamma(n, y')$, we have n = n(y).

First assume $\gamma(n+1, y') = \gamma(n, y) = \gamma$. Then by $\gamma(n, y) = \gamma(n+1, y) = \gamma$, y and y' are in $Y(n+1, \gamma)$. Thus the claim follows from (b), (c) and (a).

Next assume $\gamma(n+1, y') < \gamma(n, y) = \gamma$. Then y' is in $\bigcup_{\beta < \alpha(\gamma)} Y_{n+1,\beta}$ and y is in $Y(n+2, \gamma)$ by $\gamma(n+2, y) = \gamma$. Thus the claim follows from (d), (e) and (a). This completes the proof.

Definition 2.3. Let \varkappa be a limit cardinal. A sequence $\{\varkappa_{\alpha} : \alpha < cf\varkappa\}$ of cardinals in \varkappa is said to be *normal* if

- (1) $\kappa_{\alpha} < \kappa_{\alpha+1}$ for every $\alpha < cf\kappa$.
- (2) $\varkappa_{\alpha} = \sup_{\beta < \alpha} \varkappa_{\beta}$ for every limit $\alpha < cf \varkappa$,
- (3) $\varkappa = \sup_{\alpha < cf \times \varkappa_{\alpha}}$

Remark. Note that there always exists a normal sequence in \varkappa if \varkappa is a limit cardinal, and also that there exists a normal sequence $\{\varkappa_{\alpha}: \alpha < cf\varkappa\}$ with $2^{\varkappa_{\alpha}} \leqslant \varkappa_{\alpha+1}$ for every $\alpha < cf\varkappa$ whenever \varkappa is a strong limit cardinal.

The proof of the following lemma is routine.

LEMMA 2.4. Let κ be a limit cardinal with $\omega_1 \leq cf\kappa$ and let $\{\kappa_\alpha: \alpha < cf\kappa\}$ and $\{\kappa'_\alpha: \alpha < cf\kappa\}$ be normal sequences in κ . Then $\{\alpha < cf\kappa: \kappa_\alpha = \kappa'_\alpha\}$ is cub in $cf\kappa$.

Lemma 2.5. Let Y be a closed discrete subspace of size κ with $\omega_1 \leqslant \operatorname{cf} \kappa < \kappa$. Moreover, let $\{Y_\alpha\colon \alpha < \operatorname{cf} \kappa\}$ be a partition of Y, $\{\kappa_\alpha\colon \alpha < \operatorname{cf} \kappa\}$ a normal sequence in κ and $b\in \prod_{y\in Y}\mathscr{B}_y$ such that $\{\alpha < \operatorname{cf} \kappa\colon |\operatorname{cl}(\bigcup \{b(y)\colon y\in \bigcup_{\beta<\alpha}Y_\beta\})\cap Y|\leqslant \kappa_\alpha\}$ contains a cub set in cf κ . Then there is a partition $\{Y_\alpha'\colon \alpha < \operatorname{cf} \kappa\}$ of Y such that

- (1) $|Y'_{\alpha}| < \varkappa$ for every $\alpha < cf \varkappa$,
- (2) $\{\alpha < cf_{\varkappa}: cl(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}\}) \cap Y \subset \bigcup_{\beta < \alpha} Y_{\beta}'\}$ contains a cub set in cf_\(\varphi\).

Proof. For each $\alpha < \mathrm{cf}\varkappa$, put $S_\alpha = \mathrm{cl}(\bigcup \left\{b(y): y \in \bigcup_{\beta < \alpha} Y_\beta\right\}) \cap Y$. Take a cub set C in $\mathrm{cf}\varkappa$ such that $|S_\alpha| \leqslant \varkappa_\alpha$ for each $\alpha \in C$. Enumerate C in increasing order, say $C = \{\alpha(\gamma): \gamma < \mathrm{cf}\varkappa\}$. For each limit ordinal $\gamma < \mathrm{cf}\varkappa$, put $T^\gamma = S_{\alpha(\gamma)} - \bigcup_{\gamma' < \gamma} S_{\alpha(\gamma')}$. Since $|T^\gamma| \leqslant \varkappa_{\alpha(\gamma)}$ and $\varkappa_{\alpha(\gamma)} = \sup_{\gamma' < \gamma} \varkappa_{\alpha(\gamma')}$ by the cub-ness of C, T^γ can be partitioned into $\{T_\gamma^{\gamma}: \gamma' < \gamma\}$ with $|T_\gamma^{\gamma}| \leqslant \varkappa_{\alpha(\gamma')}$ for each $\gamma' < \gamma$, where γ is a limit ordinal $< \mathrm{cf}\varkappa$. Since $\{S_{\alpha(\gamma)}: \gamma < \mathrm{cf}\varkappa\}$ is increasing with respect to \subset and its union is Y, it is easy to show:

(*) $\{S_{\alpha(\gamma+1)} - S_{\alpha(\gamma)}: \gamma < cf\varkappa\} \cup \{T^{\gamma}: \gamma < cf\varkappa \text{ and } \gamma \text{ is limit}\}$ is a partition of Y. For each $\gamma < cf\varkappa$, put

$$Y'_{\alpha(\gamma)} = (S_{\alpha(\gamma+1)} - S_{\alpha(\gamma)}) \cup \bigcup \{T''_{\gamma} : \gamma < \gamma' < cf \varkappa \text{ and } \gamma' \text{ is limit} \}.$$

For each α in $cf\varkappa-C$, put $Y'_\alpha=0$. Then it is easy to show that $\{Y'_\alpha\colon \alpha< cf\varkappa\}$ is a partition of Y by (*) and that $|Y'_\alpha|<\varkappa$ for each $\alpha< cf\varkappa$ by the singularity of \varkappa . To show (2), it suffices to show that $S_{\alpha(\gamma)}\subset\bigcup_{\alpha<\alpha(\gamma)}Y'_\alpha$ for each limit $\gamma< cf\varkappa$, since $\{\alpha(\gamma)\colon \gamma< cf\varkappa$ and γ is limit} is a cub set contained in C. To show this, let γ be an element of $S_{\alpha(\gamma)}$ for a limit ordinal $\gamma< cf\varkappa$. Then there are two cases.

Case 1. $y \in S_{\alpha(\gamma'+1)} - S_{\alpha(\gamma')}$ for some $\gamma' < \gamma$. In this case, y is an element of $Y_{\alpha(\gamma')}$ and $\alpha(\gamma') < \alpha(\gamma)$.

Case 2. Otherwise. In this case, there is a limit ordinal $\gamma' \leq \gamma$ such that $\gamma \in T^{\gamma'}$. Thus there is a $\gamma'' < \gamma'$ such that $\gamma \in T^{\gamma'}$. Then $\gamma \in Y_{\alpha(\gamma'')}$ and $\alpha(\gamma'') < \alpha(\gamma') \leq \alpha(\gamma)$. This completes the proof.

Definition 2.6. Let μ be an infinite cardinal and Ya subspace of a space X. Y is said

to have property $P(\mu)$ if for every $m: Y \to \mu$, there is a $b \in \prod_{y \in Y} \mathcal{B}_y$ such that $\{m(y'): b(y) \cap b(y') \neq 0, y' \in Y\}$ is bounded in μ for each $y \in Y$. The whole space X is also said to have property $P(\mu)$ if every closed discrete subspace Y has property $P(\mu)$ in the above sense. Thus we shall use property $P(\mu)$ in two different ways, but these differences will be clarified by the context.

Remark. Note that normal or countably paracompact spaces have property $P(\omega)$ and \aleph_1 -paraLindelöf spaces (in the sense of [F4]) have property $P(\omega_1)$. The notion of the $\mathcal{B}(\mu)$ -property is known as a generalization of countable paracompactness to higher cardinals, see [Ru]. A space has the $\mathcal{B}(\mu)$ -property if for every increasing open cover $\{U_\alpha\colon \alpha<\mu\}$ (i.e., $U_\beta\subset U_\alpha$ if $\beta<\alpha$, each U_α is open and $\bigcup_{\alpha<\mu}U_\alpha=X$), there is an increasing open cover $\{V_\alpha\colon \alpha<\mu\}$ such that $\operatorname{cl} V_\alpha\subset U_\alpha$ for each $\alpha<\mu$. Note that "countable paracompactness $\leftrightarrow \mathcal{B}(\omega)$ -property" holds, see [En]. And note that the argument of the proof of this equivalence shows " \aleph_1 -paraLindelöfness $\leftrightarrow \mathcal{B}(\omega_1)$ -property". Here we remark the relation between $\mathcal{B}(\mu)$ -property and property $P(\mu)$.

LEMMA 2.7. Every space X having the $\mathcal{B}(\mu)$ -property has property $P(\mu)$, where μ is an infinite cardinal.

Proof. Let Y be a closed discrete subspace of a space X having the $\mathscr{B}(\mu)$ -property. Fix an arbitrary $m\colon Y\to \mu$. For each $\alpha<\mu$, put $U_\alpha=X-\bigcup\{m^{-1}(\beta)\colon \alpha\leqslant\beta\}$. Then $\{U_\alpha\colon \alpha<\mu\}$ is an increasing open cover of X. Take an increasing open cover $\{V_\alpha\colon \alpha<\mu\}$ such that $\operatorname{cl} V_\alpha\subset U_\alpha$ for each $\alpha<\mu$. For each y in Y, let $\beta(y)$ be the least $\beta<\mu$ such that $y\in V_\beta$. Note that $\alpha<\beta(y)$ if $y\in m^{-1}(\alpha)$. For each $y\in m^{-1}(\alpha)$, fix $b(y)\in \mathscr{B}_y$ such that $b(y)\subset V_{\beta(y)}-\operatorname{cl} V_\alpha$. Then it is easy to show that $\{m(y')\colon b(y)\cap b(y')\neq 0,\ y'\in Y\}\subset\beta(y)$ for each $y\in Y$.

LEMMA 2.8. Let μ be an infinite cardinal, Y a closed discrete subspace of a space X, and m_0 an arbitrary map $Y \to \mu$. Assume Y has property $P(\mu)$. Then for each $n < \omega$, there are a $b_n \in \prod_{y \in Y} \mathcal{B}_y$ and a m_n : $Y \to \mu$ such that

$$\{m_n(y'): b_n(y) \cap b_n(y') \neq 0, y' \in Y\} \subset m_{n+1}(y)$$
 for each $y \in Y$.

Proof. Assume that m_n and b_{n-1} have been defined. By property $P(\mu)$, there is a $b_n \in \prod_{y \in Y} \mathcal{B}_y$ such that $A_y = \{m_n(y'): b_n(y) \cap b_n(y') \neq 0, \ y' \in Y\}$ is bounded in μ for each $y \in Y$. Fixing $m_{n+1}(y)$ in μ which contains A_y for each $y \in Y$, we are done.

Lemma 2.9. Let \varkappa be a strong limit cardinal with $\omega_1 \leqslant cf\varkappa$, let μ , χ be infinite cardinals less than \varkappa , and let $\{\varkappa_\alpha\colon \alpha < cf\varkappa\}$ be a normal sequence of cardinals in \varkappa such that $2^{\varkappa_\alpha} \leqslant \varkappa_{\alpha+1}$ for each $\alpha < cf\varkappa$. Assume Y is a closed discrete subspace of size \varkappa such that Y has property $P(\mu)$ and has a partition $\{Y_\alpha\colon \alpha < cf\varkappa\}$ with $|Y_\alpha| < \varkappa$ for each $\alpha < cf\varkappa$ and each $y \in Y$ has a neighborhood base \mathscr{B}_y with $|\mathscr{B}_y| \leqslant \chi$. Then there is a $b \in \prod_{y \in Y} \mathscr{B}_y$ such that $\{\alpha < cf\varkappa\}$ contains a cub set in cfx.

Proof. For each $\alpha < cf \varkappa$, put $Z_{\alpha} = \bigcup_{\beta < \alpha} Y_{\beta}$.

Claim 1. $\{\alpha < cf\alpha: \left| \prod_{y \in Z_{\alpha}} (\mathcal{B}_{y} \times \mu) \right| \leq 2^{\kappa_{\alpha}} \}$ contains a cub set.

Proof. Since $|Y_{\alpha}| < \varkappa$ for each $\alpha < cf\varkappa$, fix $f(\alpha) < cf\varkappa$ such that $|Y_{\alpha}| \le \varkappa_{f(\alpha)}$. Then it is easy to show that $C_0 = \{\alpha < cf\varkappa \colon \forall \beta < \alpha \ (f(\beta) < \alpha)\}$ is cub. If α is an element of C_0 ,

then $|Z_{\alpha}| = \left| \bigcup_{\beta < \alpha} Y_{\beta} \right| \leq |\alpha| \times \varkappa_{\alpha} = \varkappa_{\alpha}$ by $|Y_{\beta}| \leq \varkappa_{f(\beta)} < \varkappa_{\alpha}$ for each $\beta < \alpha$. Put $C = C_0$ $\cap \{\alpha < \text{cf}\varkappa: |\chi \times \mu| \leq \varkappa_{\alpha}\}$. Note that C is cub in cf \varkappa . If α is in C, then $\left| \prod_{y \in Z_{\alpha}} (\mathcal{B}_{y} \times \mu) \right| \leq 2^{\varkappa_{\alpha}}$ holds. Thus the proof of this claim is complete.

Next let C be the cub set in the above claim. For $\alpha \in C$, enumerate $\prod_{y \in Z_{\alpha}} (\mathscr{B}_{y} \times \mu)$ by $\{u_{\alpha}^{\delta}: 1 \leq \delta < 2^{\varkappa_{\alpha}}\}$. By putting $u_{\alpha}^{\delta}(y) = \langle b_{\alpha}^{\delta}(y), h_{\alpha}^{\delta}(y) \rangle$ for each $y \in Z_{\alpha}$, we mean b_{α}^{δ} is an element of $\prod_{y \in Z_{\alpha}} \mathscr{B}_{y}$ and $h_{\alpha}^{\delta}: Z_{\alpha} \to \mu$. Enumerate C in increasing order, say $C = \{\alpha(\gamma): \gamma < cf_{\alpha}\}$. By induction on $\gamma < cf_{\alpha}$ and $\delta < 2^{\varkappa_{\alpha(\gamma)}}$, we shall construct a map $m_{\gamma\delta}$ with $dom(m_{\gamma\delta}) \subset Y$ and $ran(m_{\gamma\delta}) \subset \mu$ such that

- (1) $m_{\gamma\delta'} \subset m_{\gamma\delta}$ for each $\gamma < cf \kappa$ and $\delta' < \delta < 2^{\kappa_{\alpha(\gamma)}}$
- (2) $m_{\gamma 0} = \bigcup \{ m_{\gamma' \delta'} : \gamma' < \gamma, \ \delta' < 2^{\kappa_{\alpha(\gamma')}} \}$ for each $\gamma < cf_{\kappa}$,
- (3) $|m_{\gamma\delta}| \le |\varkappa_{\alpha(\gamma)} + \delta|$ for each $\gamma < cf\varkappa$ and $\delta < 2^{\varkappa_{\alpha(\gamma)}}$.

Here dom (ran) means domain (range, respectively) of a map. To construct such partial functions, first $m_{00}=0$. Note that the $m_{\gamma 0}$ defined by (2) also satisfies (3) by easy cardinal arithmetics with the inductive assumption. It remains to define $m_{\gamma \delta}$ assuming that $m_{\gamma \delta'}$ has been defined for all $\delta' < \delta$, where $\gamma < \text{cf} \varkappa$ and $0 < \delta < 2^{\varkappa \omega(n)}$.

Case 1. $(\operatorname{cl}(\bigcup \{b^{\delta}_{\alpha(\gamma)}(y): y \in Z_{\alpha(\gamma)}\}) \cap (Y - Z_{\alpha(\gamma)})) - \operatorname{dom}(\bigcup_{\delta' < \delta} m_{\gamma\delta'}) \neq 0$. In this case, pick a point $y(\gamma, \delta)$ in this set, and define

$$J(\gamma, \delta, B) = \{ h_{\alpha(\gamma)}^{\delta}(y) \colon B \cap b_{\alpha(\gamma)}^{\delta}(y) \neq 0, \ y \in Z_{\alpha(\gamma)} \}$$

for each $B \in \mathcal{B}_{y(\gamma,\delta)}$.

Subcase 1. There is a $B \in \mathcal{B}_{y(\gamma,\delta)}$ such that $J(\gamma, \delta, B)$ is bounded in μ . In this case, take a $B(\gamma, \delta) \in \mathcal{B}_{y(\gamma,\delta)}$ such that $J(\gamma, \delta, B(\gamma, \delta))$ is bounded in μ . Furthermore, pick a $\alpha(\gamma, \delta) < \mu$ with $\sup J(\gamma, \delta, B(\gamma, \delta)) < \alpha(\gamma, \delta)$. Put

$$m_{\gamma\delta} = \bigcup_{\delta' < \delta} m_{\gamma\delta'} \cup \{ \langle y(\gamma, \, \delta), \, \alpha(\gamma, \, \delta) \rangle \}.$$

Subcase 2. Otherwise. Put $m_{v\delta} = \bigcup_{\delta' < \delta} m_{v\delta'}$.

Case 2. Otherwise. Put $m_{\gamma\delta} = \bigcup_{\delta' < \delta} m_{\gamma\delta'}$.

Then in all cases, such a $m_{\gamma\delta}$ satisfies (3) by easy cardinal arithmetics, and also (1). Let $m\colon Y\to \mu$ be a global function extending all $m_{\gamma\delta}$'s. By putting $m_0=m$, one can take by Lemma 2.8, b_0 , $b_1\in\prod_{y\in Y}\mathscr{B}_y$, and m_1 , $m_2\colon Y\to \mu$ such that $\{m_n(y')\colon b_n(y)\cap b_n(y')\neq 0,\ y'\in Y\}\subset m_{n+1}(y)$ for each $y\in Y$ and n=0, 1. Take a $b\in\prod_{y\in Y}\mathscr{B}_y$ with $b(y)\subset b_0(y)\cap b_1(y)$ for each $y\in Y$. Then the following hold.

- (a) $\{m_0(y'): b(y) \cap b(y') \neq 0, y' \in Y\} \subset m_1(y)$ for each $y \in Y$.
- (b) $\{m_1(y'): b(y) \cap b(y') \neq 0, y' \in Y\} \subset m_2(y)$ for each $y \in Y$.

We shall show this b is the desired one. It suffices to show the next claim.

CLAIM 2. $|\operatorname{cl}(|| \{b(y): y \in Z_{\alpha(y)}\}) \cap Y| < 2^{\kappa_{\alpha(y)}}$ for each $y < \operatorname{cf} \kappa$.

Proof. Assume indirectly that $|\operatorname{cl}(\bigcup \{b(y): y \in Z_{\alpha(\gamma)}\}) \cap Y| \ge 2^{\kappa_{\alpha(\gamma)}}$ for some $\gamma < \operatorname{cf} \varkappa$. Then there is a non-zero $\delta < 2^{\kappa_{\alpha(\gamma)}}$ with $b|Z_{\alpha(\gamma)} = b^{\delta}_{\alpha(\gamma)}$ and $m_1|Z_{\alpha(\gamma)} = b^{\delta}_{\alpha(\gamma)}$. Here b|Z denotes the restriction of b to Z. Since $|\bigcup_{\delta' < \delta} m_{\gamma\delta'}| \le |m_{\gamma\delta}| \le |\kappa_{\alpha(\gamma)} + \delta| < 2^{\kappa_{\alpha(\gamma)}}$, we have

(c)
$$\left(\operatorname{cl}\left(\bigcup \left\{b(y): y \in Z_{\alpha(y)}\right\}\right) \cap (Y - Z_{\alpha(y)})\right) - \operatorname{dom}\left(\bigcup_{\delta' < \delta} m_{\gamma \delta'}\right) \neq 0.$$

Thus case 1 happens and using (b), we obtain

$$J(\gamma, \delta, b(y(\gamma, \delta)) = \{h^{\delta}_{\alpha(\gamma)}(y): b(y(\gamma, \delta)) \cap b^{\delta}_{\alpha(\gamma)}(y) \neq 0, y \in Z_{\alpha(\gamma)}\}$$

$$= \{m_1(y): b(y(\gamma, \delta)) \cap b(y) \neq 0, y \in Z_{\alpha(\gamma)}\}$$

$$\subset \{m_1(y): b(y(\gamma, \delta)) \cap b(y) \neq 0, y \in Y\}$$

$$\subset m_2(y(\gamma, \delta)) < \mu.$$

Therefore subcase 1 of case 1 happens. Then by the definition of m_{vd}

(d)
$$m_0(y(\gamma, \delta)) = m_{\gamma\delta}(y(\gamma, \delta)) > \sup J(\gamma, \delta, B(\gamma, \delta)).$$

By $b(y(\gamma, \delta))$, $B(\gamma, \delta) \in \mathcal{B}_{y(\gamma, \delta)}$ and by (c), there is a $y \in Z_{\alpha(\gamma)}$ such that $b(y(\gamma, \delta)) \cap B(\gamma, \delta) \cap b(y) \neq 0$. By $b(y(\gamma, \delta)) \cap b(y) \neq 0$ and by (a),

(e)
$$m_0(y(\gamma, \delta)) \in m_1(y)$$
.

Also by $B(\gamma, \delta) \cap b_{\alpha(\gamma)}^{\delta}(y) = B(\gamma, \delta) \cap b(y) \neq 0$ and $y \in Z_{\alpha(\gamma)}$,

(f)
$$m_1(y) = h^{\delta}_{\alpha(y)}(y) \in J(\gamma, \, \delta, \, B(\gamma, \, \delta)).$$

Then by (d), (e) and (f), $m_0(y(\gamma, \delta)) \in m_1(y) \in J(\gamma, \delta, B(\gamma, \delta))$ and $\sup J(\gamma, \delta, B(\gamma, \delta)) < m_0(\gamma(\gamma, \delta))$. But this is a contradiction. This completes the proof.

Theorem 2.10. Let \varkappa be a singular strong limit cardinal with $\omega_1 \leqslant cf\varkappa$, let μ , χ be infinite cardinals less than \varkappa , and let Y be a closed discrete subspace of size \varkappa such that Y has property $P(\mu)$ and each $y \in Y$ has a neighborhood base \mathscr{B}_y with $|\mathscr{B}_y| \leqslant \chi$. Assume that there is a normal sequence $\{\varkappa_\alpha\colon \alpha < cf\varkappa\}$ of cardinals in \varkappa such that $\{\alpha < cf\varkappa\colon 2^{\varkappa_\alpha} = \varkappa_\alpha^+\}$ contains a cub set in cf \varkappa . Then Y has nice partitions (thus Y is separated if Y is $< \varkappa$ -separated by Lemma 2.2).

Proof. Fix a 1-1 onto map $f\colon Y\to \varkappa$. For each $\alpha<\operatorname{cf} \varkappa$, put $Y_{0\alpha}=f^{-1}(\varkappa_\alpha-\sup_{\beta<\alpha}\varkappa_\beta)$. Then $\{Y_{0\alpha}\colon \alpha<\operatorname{cf} \varkappa\}$ is a partition of Y with $|Y_{0\alpha}|<\varkappa$ for each $\alpha<\operatorname{cf} \varkappa$. Assume a partition $\{Y_{n\alpha}\colon \alpha<\operatorname{cf} \varkappa\}$ of Y with $|Y_{n\alpha}|<\varkappa$ for each $\alpha<\operatorname{cf} \varkappa$ is defined. By Lemma 2.4, we may assume $2^{\aleph_\alpha}\leqslant \varkappa_{\alpha+1}$ for each $\alpha<\operatorname{cf} \varkappa$. Applying Lemma 2.9 to $\{Y_{n\alpha}\colon \alpha<\operatorname{cf} \varkappa\}$, take a $b_n\in\prod_{y\in Y}\mathscr{B}_y$ such that $\{\alpha<\operatorname{cf} \varkappa\colon |\operatorname{cl}(\bigcup\{b_n(y)\colon y\in\bigcup_{\beta<\alpha}Y_{n\beta}\})\cap Y|<2^{\aleph_\alpha}\}$ contains a cub set. Since $\{\alpha<\operatorname{cf} \varkappa\colon |\operatorname{cl}(\bigcup\{b_n(y)\colon y\in\bigcup_{\beta<\alpha}Y_{n\alpha}\})\cap Y|\leqslant \varkappa_\alpha\}$ also contains a cub set. Then by Lemma 2.5, there is a partition $\{Y_{n+1,\alpha}\colon \alpha<\operatorname{cf} \varkappa\}$ of Y such that $\{Y_{n+1,\alpha}\}<\chi$ for each $\alpha<\operatorname{cf} \varkappa$ and $\{\alpha<\operatorname{cf} \varkappa\colon \operatorname{cl}(\bigcup\{b_n(y)\colon y\in\bigcup_{\beta<\alpha}Y_{n\beta}\})\cap Y\subset\bigcup_{\beta<\alpha}Y_{n+1,\beta}\}$ contains a cub set. Then by repeated applications of this process, one can get nice partitions.

Remark. If there is a normal sequence $\{\kappa_{\alpha}: \alpha < cf_{\mathcal{H}}\}$ as in Lemma 2.10, then $2^{\kappa} = \kappa^+$ by [Je, Lemma 8.2]. Next we shall show such a normal sequence exists assuming SCH (Singular Cardinals Hypothesis).

Lemma 2.11 [SCH]. Let \varkappa be a singular strong limit cardinal with $\omega_1 \leqslant \text{cf} \varkappa$, and let $\{\varkappa_\alpha\colon \alpha < \text{cf} \varkappa\}$ be a normal sequence of cardinals in \varkappa such that $2^{\varkappa_\alpha} \leqslant \varkappa_{\alpha+1}$ for each $\alpha < \text{cf} \varkappa$. Then $\{\alpha < \text{cf} \varkappa: 2^{\varkappa_\alpha} = \varkappa_\alpha^+\}$ contains a cub set.

Proof. Put $C = \{ \alpha < cf\varkappa : cf\varkappa < \varkappa_{\alpha}, \alpha \text{ is limit} \}$. Note that C is a cub set in $cf\varkappa$. If $\alpha \in C$, then \varkappa_{α} is a singular cardinal because of $cf\varkappa_{\alpha} \leqslant cf\alpha < cf\varkappa < \varkappa_{\alpha}$. Since $2^{<\varkappa_{\alpha}} = \varkappa_{\alpha}$ and $\{2^{\varkappa_{\beta}} : \beta < \alpha\}$ is a strictly increasing sequence of cardinals in \varkappa_{α} , $2^{\varkappa_{\alpha}} = (2^{<\varkappa_{\alpha}})^{+} = \varkappa_{\alpha}^{+}$ by [Je, Lemma 8.1]. The proof is complete.

Remark. Lemma 2.11 also holds for an arbitrary normal sequence in \varkappa by Lemma 2.4.

By Theorem 2.10 and Lemma 2.11, we can conclude:

COROLLARY 2.12 [SCH]. Let \varkappa be a singular strong limit cardinal with $\omega_1 \leqslant \text{cf} \varkappa$, and let X be $a < \varkappa$ -CWH space of character $< \varkappa$. If X is normal or has $\mathscr{B}(\mu)$ -property for some $\mu < \varkappa$, then X is \varkappa -CWH.

3. The weak CWH case. A closed discrete subspace of a space is said to be weakly $< \varkappa$ -separated if for every $A \subset Y$ of size $< \varkappa$, there is a separated $A' \subset A$ with |A'| = |A|. A space X is weakly \varkappa -CWH (weakly $< \varkappa$ -CWH) if for every closed discrete subspace Y of size \varkappa ($< \varkappa$, respectively), there is a separated $Y' \subset Y$ of size |Y|. It is known that if \varkappa is a strong limit cardinal with $\omega_1 \leqslant cf\varkappa$ and X is a weakly $< \varkappa$ -CWH normal or countably paracompact space of character $< \varkappa$, then X is weakly \varkappa -CWH, see [T1, Theorems 11 and 13]. First we shall generalize this result to spaces having property $P(\mu)$ for some $\mu < \varkappa$ using the results in Section 2.

Theorem 3.1. Let \varkappa be a strong limit cardinal with $\omega_1 \leqslant cf \varkappa$, let μ , χ be infinite cardinals less than \varkappa , and let Y be a closed discrete weakly $< \varkappa$ -separated subspace of size \varkappa having property $P(\mu)$ such that each $y \in Y$ has a neighborhood base \mathscr{B}_y with $|\mathscr{B}_y| \leqslant \chi$. Then there is a separated $Y' \subset Y$ of size \varkappa .

Proof. Let $\{\kappa_{\alpha}: \alpha < cf\varkappa\}$ be a normal sequence of cardinals in \varkappa with $\varkappa_{0} = 0$. Fix a 1-1 onto map $f\colon Y \to \varkappa$. Put $Y_{\alpha} = f^{-1}(\varkappa_{\alpha+1} - \varkappa_{\alpha})$ for each $\alpha < cf\varkappa$. Then $\{Y_{\alpha}: \alpha < cf\varkappa\}$ is a partition of Y. Then by Lemma 2.9, there are a $b \in \prod_{y \in Y} \mathscr{B}_{y}$ and a cub set C in $cf\varkappa$ such that $C = \{\alpha < cf\varkappa: |cl(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}\}) \cap Y| < 2^{\varkappa_{\alpha}}\}$. Since $|Y_{\alpha}| = \varkappa_{\alpha+1} \geqslant 2^{\varkappa_{\alpha}}$, by weak $< \varkappa$ -separatedness, take a separated set $Y'_{\alpha} = T_{\alpha} - cl(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}\})$ of size $\varkappa_{\alpha+1}$ for each $\alpha \in C$. Then it is easy to show that $Y' = \bigcup_{\alpha \in C} Y'_{\alpha}$ is the desired one.

Remark. The author showed that Theorem 3.1 also holds for every strong limit cardinal with $cf\varkappa=\omega$ using a similar argument. But the proof is much simpler, so we omit the proof.

Next we shall study the weak CWH-ness for locally μ -cc spaces. A space is μ -cc if there are at most μ disjoint non-empty open sets. A space is locally μ -cc if every point has a μ -cc neighborhood. It is known from [F3, Theorem 3] that if X is a locally μ -cc, $< \varkappa$ -CWH space, then X is \varkappa -CWH whenever \varkappa is a singular cardinal and $\mu < \varkappa$ (note that normality or countable paracompactness or strong limitness or the character restriction are not needed, cf. 2.12).

THEOREM 3.2. Let κ be a limit cardinal and μ an infinite cardinal with $\mu < \kappa$. If Y is a weakly $< \kappa$ -separated closed discrete subspace of size κ such that each $y \in Y$ has a μ -cc neighborhood, then there is a separated $Y' \subset Y$ of size κ .

Proof. Take $\{x_{\alpha}: \alpha < cf \varkappa\}$ and $\{Y_{\alpha}: \alpha < cf \varkappa\}$ as in the proof of Theorem 3.1. For

each $\alpha < cf_{\varkappa}$, take separated $Y''_{\alpha} \subset Y_{\alpha}$ of size $|Y_{\alpha}|$. Fix $b \in \prod_{y \in Y} \mathscr{B}_{y}$ such that $\{b(y): y \in Y''_{\alpha}\}$ is disjoint and each b(y) is μ -cc.

CLAIM. $|\operatorname{cl}(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}^{"}\}) \cap Y| \leq |\bigcup_{\beta < \alpha} Y_{\beta}^{"}| \times \mu \text{ for each } \alpha < \operatorname{cf} \varkappa.$

Proof. Assume the claim fails. Then one can take a separated $Z \subset \operatorname{cl}(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}^{r'}\}) \cap Y$ of size $(\bigcup_{\beta < \alpha} Y_{\beta}^{r'}| \times \mu)^+$ by weak $< \varkappa$ -separatedness. Take a $b' \in \prod_{y \in Y} \mathscr{B}_y$ such that $\{b'(z): z \in Z\}$ is disjoint. Then for every $z \in Z$, there is a $y(z) \in \bigcup_{\beta < \alpha} Y_{\beta}^{r'}$ such that $b'(z) \cap b(y(z)) \neq 0$. Then there are a $Z' \subset Z$ of size |Z| and a $y \in \bigcup_{\beta < \alpha} Y_{\beta}^{r'}$ such that y(z) = y for every $z \in Z'$. This contradicts the μ -cc-ness of b(y). Thus the proof of the claim is complete.

Since for each $\alpha < \mathrm{cf}\varkappa$ with $\mu < \varkappa_{\alpha}$, $|\bigcup_{\beta < \alpha} Y_{\beta}''| = |\bigcup_{\beta < \alpha} Y_{\beta}| = \varkappa_{\alpha}$ and $|Y_{\alpha}''| = |Y_{\alpha}| = \varkappa_{\alpha+1}$, $|Y_{\alpha}'' - \mathrm{cl}(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}''\})| = \varkappa_{\alpha+1}$ by the claim. Thus we can take a separated $Y_{\alpha}' \subset Y_{\alpha}'' - \mathrm{cl}(\bigcup \{b(y): y \in \bigcup_{\beta < \alpha} Y_{\beta}''\})$ of size $\varkappa_{\alpha+1}$ for such α 's. Then it is straightforward to show that $Y' = \bigcup \{Y_{\alpha}': \alpha < \mathrm{cf}\varkappa, \mu < \varkappa_{\alpha}\}$ is the desired one. This completes the proof.

To end this paper, we shall study the relation between property $P(\varkappa)$ and weak $\varkappa\text{-CWH-ness}.$

LEMMA 3.3. Let Y be a subspace of a space and \varkappa an infinite cardinal. Then Y has property $P(\mathfrak{cf}\varkappa)$ if and only if Y has property $P(\varkappa)$.

Proof. Assume \varkappa is a singular cardinal (otherwise, this is clear). Fix a normal sequence $\{\varkappa_\alpha\colon \alpha<\operatorname{cf}\varkappa\}$ of cardinals in \varkappa . First assume Y has property $\operatorname{P}(\operatorname{cf}\varkappa)$. We shall show Y has property $\operatorname{P}(\varkappa)$. To show this, fix an arbitrary $m\colon Y\to\varkappa$. Define $m'\colon Y\to\operatorname{cf}\varkappa$ by $m'(y)=\alpha$ if $m(y)\in\varkappa_\alpha\text{-sup}_{\beta<\alpha}\varkappa_\beta$ for each $y\in Y$. Then by property $\operatorname{P}(\operatorname{cf}\varkappa)$ there is a $b\in\prod_{y\in Y}\mathscr{B}_y$ such that $A_y=\{m'(y')\colon b(y)\cap b(y')\neq 0,\,y'\in Y\}$ is bounded in $\operatorname{cf}\varkappa$. Thus we can pick $\alpha(y)<\operatorname{cf}\varkappa$ such that $A_y=\alpha(y)$ for each $y\in Y$. Then it is straightforward to show that $\{m(y')\colon b(y)\cap b(y')\neq 0,\,y'\in Y\}\subset\varkappa_{\alpha(y)}<\varkappa$ for each $y\in Y$.

Next assume Y has property P(x). Fix an arbitrary $m: Y \to cfx$. Define $m': Y \to x$ by $m'(y) = \kappa_{m(y)}$ for each $y \in Y$. Then by property P(x), there is a $b \in \prod_{y \in Y} \mathcal{B}_y$ such that $A_y = \{m'(y'): b(y) \cap b(y') \neq 0, \ y' \in Y\}$ is bounded in x for each $y \in Y$, thus we can pick $\alpha(y) < cfx$ such that $A_y \subset \kappa_{\alpha(y)}$. Then it is straightforward to show that $\{m'(y): b(y) \cap b(y') \neq 0, \ y' \in Y\} \subset \alpha(y)$. The proof is complete.

Theorem 3.4. Let \varkappa be a singular cardinal, and let Y be a weakly $< \varkappa$ -separated closed discrete subspace of size \varkappa having property $P(\varkappa)$. Then there is a separated $Y' \subset Y$ of size \varkappa .

Proof. Fix a strictly increasing cofinal sequence $\{\varkappa_{\alpha}: \alpha < cf\varkappa\}$ of successor cardinals in \varkappa with $cf\varkappa < \varkappa_0$ (for example, this can be done by putting $\varkappa_{\alpha} = \lambda_{\alpha}^+$ for each $\alpha < cf\varkappa$, where $\{\lambda_{\alpha}: \alpha < cf\varkappa\}$ is a normal sequence of cardinals in \varkappa with $cf\varkappa < \lambda_0$). Fix a 1-1 onto map $f: Y \to \varkappa$. By putting $Y_{\alpha} = f^{-1}(\varkappa_{\alpha} \sup_{\beta < \alpha} \varkappa_{\beta})$, $\{Y_{\alpha}: \alpha < cf\varkappa\}$ is a partition of Y with $|Y_{\alpha}| = \varkappa_{\alpha}$ for each $\alpha < cf\varkappa$. Define $m: Y \to cf\varkappa$ by $m(y) = \alpha$ if $y \in Y_{\alpha}$ for each $y \in Y$. Then by property $P(\varkappa)$ (equivalently, property $P(cf\varkappa)$), there is a $b \in \prod_{y \in Y} \mathscr{B}_y$ such that for each $y \in Y$, $\{m(y'): b(y) \cap b(y') \neq 0, y' \in Y\} \subset \alpha(y)$ for some $\alpha(y) < cf\varkappa$. For each $\alpha, \beta < cf\varkappa$, put $Y_{\alpha}^{\beta} = \{y \in Y_{\alpha}: \alpha(y) \leq \beta\}$. Since $Y_{\alpha} = \bigcup_{\beta < cf\varkappa} Y_{\alpha}^{\beta}$ and the size of Y_{α} is a successor cardinal $y \in Y_{\alpha}$, there is a $\beta(\alpha) < cf\varkappa$ such that $|Y_{\alpha}^{\beta(\alpha)}| = |Y_{\alpha}|$ for each $\alpha < cf\varkappa$. Then

 $C = \{\alpha < \text{cf} lpha: \ \forall \ \alpha' < \alpha \ (\beta(\alpha') < \alpha) \}$ is unbounded in cf lpha (in fact, C is cub in cf lpha if $\omega_1 \leq \text{cf} lpha$). By weak $< \alpha$ -separatedness, choose a separated $Y_\alpha' \subset Y_\alpha'^{\beta(\alpha)}$ of size $|Y_\alpha^{\beta(\alpha)}| \in |Y_\alpha|$. Put $Y' = \bigcup_{\alpha \in C} Y_\alpha'$. Take a $b' \in \prod_{y \in Y'} \mathscr{B}_y$ such that $b'(y) \subset b(y)$ for each $y \in Y'$ and $\{b'(y): y \in Y_\alpha'\}$ is disjoint. Since C is unbounded in $\text{cf} \alpha$, the size of Y' is α . We shall show $\{b'(y): y \in Y'\}$ separates Y'. To show this assume that $y' \in Y_\alpha'$, $y \in Y_\alpha'$ and α , $\alpha' \in C$ with $\alpha' < \alpha$. Since $y' \in Y_{\alpha'} \subset Y_\alpha'^{\beta(\alpha')}$, we have $\alpha(y') \leq \beta(\alpha') < \alpha = m(y)$. Thus $b(y') \cap b(y) = 0$ by $m(y) \notin \alpha(y')$. Therefore $b'(y') \cap b'(y) = 0$. This completes the proof.

Finally, we shall show that weak $< \varkappa$ -separatedness can be removed from Theorem 3.4 if "singular" is replaced by "regular".

THEOREM 3.5. Let \varkappa be a regular cardinal, and let Y be a closed discrete subspace of size \varkappa having property $P(\varkappa)$. Then there is a separated $Y' \subset Y$ of size \varkappa .

Proof. Identify Y with \varkappa . By property $P(\varkappa)$, there is a $b \in \prod_{\alpha \in \varkappa} \mathscr{B}_{\alpha}$ such that for each $\alpha \in \varkappa$, $\{\alpha' \in \varkappa : b(\alpha) \cap b(\alpha') \neq 0\} \subset \beta(\alpha)$ for some $\beta(\alpha) < \varkappa$. Then it is easy to show $C = \{\alpha \in \varkappa : \forall \alpha' < \alpha \ (\beta(\alpha') < \alpha)\}$ is separated and of size \varkappa .

References

- [En] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa 1977.
- [F1] W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294-298.
- [F2] Separating closed discrete collections of singular cardinality, in: Set Theoretic Topology (ed. G. M. Reed), Academic Press, 1977, 135-140.
- [F3] On λ collectionwise Hausdorff spaces, Topology Proc. 2 (1977), 445-456.
- [F4] Discrete sets of singular cardinality, Proc. Amer. Math. Soc. 88 (1983), 743-745.
- [Je] T. Jech, Set Theory, Academic Press, 1978.
- [Ru] M. E. Rudin, Yasui's questions, Questions Answers Gen. Topology 1 (1983), 122-127.
- [T1] F. D. Tall, Weakly collectionwise Hausdorff spaces, Topology Proc. 1 (1976), 295-304.
- [T2] Normality versus collectionwise normality, in: Handbook of Set Theoretic Topology (eds. K. Kunen & J. E. Vaughan), North-Holland, 1984, 685-732.
- [T3] Covering and separation in the Easton model, Topology Appl. 28 (1988), 155-163.
- [Wa] S. Watson, Separation in countably paracompact spaces, Trans. Amer. Math. Soc. 290 (1985), 831-842.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION Oita University Dannoharu Oita 870-11, Japan

Received 8 February 1990