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approximée arbitrairement par des fonctions k telles que, pour tout K dans U, la borne
inférieure de k(K) ne soit pas un point isolé de k(K). La construction d’une telle fonction
k peut se faire en deux temps, comme celle de i On approxime d’abord id, par une
fonction k, telle que, pour tout K, la borne inférieure g, (K) de k,(K) soit > 0. Notant
L={0}u{l/n| n=1}, on pose alors

k(K) = ky (K)U[l(g,(K)—a(K), g, (K))(L)],

ot a: U—1]0, 1] est une fonction continue suffisamment petite.

Compte tenu du corollaire 5.2, le lemme suivant achéve de vérifier les conditions du
théoréme 1.1.

5.6. LEMME. J# est réunion dénombrable de Z-ensembles.

Démonstration. Soit Z, I'ensemble des éléments de 2' ne contenant qu’un seul
point. Pour n > 1, soit Z, le sous-ensemble de 2’ formé des K pour lesquels il existe un
x appartenant 4 K tel que K\{x} soit non vide et que d(x, K\{x}) = 1/n. Il est facile de
vérifier que Z, est fermé dans 2'. La fonction ¢: 2/ xI—2! définie par

oK, ) ={xel| d(x, K) < t}

est une déformation instantanée de 2/ en 2’\U,‘,‘“=0 Z,. Ceci entraine que les Z, sont des
Z-ensembles dans 2'. Puisque tout compact dénombrable a un point isolé, J# est
contenu daps la réunion des Z,. Les lemmes 2.6 et 5.1 montrent alors que # est la
réunion des Z-ensembles # NZ, (n > 0).
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Collectionwise Hausdorffness at limit cardinals
by

Nobuyuki Kemoto (Oita)

Abstract. F. D. Tall conjectured:

If % is a singular strong limit cardinal and X is a <x-CWH (CollectionWise Hausdorff’) normal
or countably paracompact space of character < x, then X is x-CWH.

In this paper, we shall show that the conjecture is true if the singular cardinals hypothesis is
assumed. Furthermore, we shall study weak x»-CWH-ness, when % is a certain limit cardinal.

1. Introduction. F. D. Tall conjectured in [T3]:

TALL’S CONJECTURE. If % is a singular strong limit cardinal and X is a < x-CWH
(CollectionWise Hausdorff) normal or countably paracompact space of character < x, then
X is »-CWH.

W. G. Fleissner proved in [F1] that this conjecture is true if the GCH (Generalized
Continuum Hypothesis) is assumed. More generally, as in [T2], this conjecture is true if
there is a 4 < % such that 2% = 1% for every u < A < ». Whenever cf %'= o holds, this
conjecture is true without other set-theoretical additional axioms or normality or
countable paracompactness by the argument of the proof of [F2, Theorem 1 (b)]. Thus
we focus on the case cofx > w,.

In Section 2, we shall characterize “< x-CWH —»-CWH” using the sparse-like
argument in [F4], and also show that the conjecture is true if the SCH (Singular
Cardinals Hypothesis) is assumed. In Section 3, we shall study weak »-CWH-ness (in
the sense of [T1]) for various spaces where % is a certain limit cardinal.

A cdlosed discrete subspace Y of a space X is said to be separated il there is
a neighborhood U, of y for cach yeY such that {U, yeY} is disjoint. Y is
< u-separated if every subset of Y of size < x is separated. A space X is »-CWH
(< %-CWH) if every closed discrete subspace of size % (< %, respectively) is separated.
“Closed UnBounded” is abbreviated as cub. In this paper, no separation axioms are
assumed.

1980 Mathematics Subject Classification (1985 Revision): 54D15, 03E50.
Key words and phrases: collectionwise Hausdorfl, strong limit cardinal, singular cardinals
hypothesis.
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2. The CWH—case. In this section, we shall prove that Tall’s conjecfure is true
assuming SCH. ‘Some of our arguments will be somewhat similar to the arguments in
[F4] or [Wa]. Throughout this paper #, denotes a neighborhood base at )

DeFINITION 2.1. Let X be a space and let Y be a subspace of size % with ofs > o,.
A countable sequences of partitions {¥,.: o <cfx} (n < w) of Y is said to be nice
partitions if for each n < o, there is a b,e[ [,y %, such that

(1) |Yoal < x for cach n < w and a < cfx,

@ {o<ofw: (U (5,0): y&Up<a Yur}) © Upeea Yo 1,5} contains a cub set in cfs.

Here a “partition” means a disjoint cover.

LemmaA 2.2. If Yis a < x-separated discrete subspace aof size x with | < of% which has
nice partitions, then Y is separated.

Proof. Take such partitions {¥,s: « < cfx} and b, ¢ [ [,er #, (1 < w) as in Definition
2.1. By (2) of Definition 2.1, take a cub set C, contained in {a < chx: cl((J{b,(y):
y€Up<aYip}) © Up<aYus 14} for each n < . Put € = {0} U{V),<0C,. Enumerate C in
increasing order, say C = {a(y): y <cfx}. For cach n <w and y < ofx, put ¥(n, y)
= {J{%p: a(y) < B < aly+1)}. Since Cis cub incfx, {Y(n, y): y < cfx}is a partition of
Y for each n < w. By induction fix a b,’,eﬂyey %, for each n < @ such that

(8) bl+1(y) = bu(y) = b,(y) for each n< w and ye¥,

(b) {b,(»): yeY(n,y)} is disjoint for each n < w and y < cfx.

© (U {ba(2): 26 Up<atn Yap}) nby41(3) = 0 for each ye Y(n+1,y) and y < cfx.
The statement (b) is ensured by < x-separatedness, (c) by a(y)eC < C, and (2) of
Definition 2.1. By (a) and (c), the following holds:

@ U {Bhe1(2): z€Jp<arn Yust OBya1 (1) = 0 for each ye Y(n+1, y) and y < cfx.

For each yeY and n < w, put y(n, y) =y such that yeY(n,y). Then by (2) of
Definition 2.1, it is easy to show that y(n, y) = y(n-1, ) for each yeYand n < . Thus
there is an n(y) < w for each ye Y such that ¥(n(y), ¥) = y(n, y) for each n = n(y). It
suffices to show that {bj,+2(y): y ¥} is disjoint. To show this, fix V¥ in Y with y # v,
Put #n = min{n(y), n(y)}. Then

@ n<n+1<n+2 < ny)+2, ny)+2.

We shall show

by 12 () by 2(¥) = 0.

Case L p(n, y) =y(n, y') = y. In this case, since yand y' are in Y(n, y), the claim
follows from (b), (e) and (a).

Case 2. y(n, y) < y(n, y) (the remaining case is similar).

Subease L. y(n,y) <p(n+1,y)=y In this case, since ype Upcam Yy and
yeY(n+1,y), the claim follows from (d), (¢) and (a).

Subcase 2. p(n+1, y) < y(n, y). In this case, since y(n-+1, y) < y(n, y), we have
n = n(y).

First assume y(n+1, y) = y(n, ¥) = 7. Then by y(n, y) = yp(n--1, y) =1y, yand y' are
in Y(n+1,y). Thus the claim follows from (b), (¢) and (a),
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Next assume p(n+1, y) <¥(n, y)=y. Then y is in Us<atn %415 and y is in
Y(n+2, ) by y(n+2, y) = y. Thus the claim follows from (d), () and (a). This completes
the proof.

DerITION 2.3. Let % be a limit cardinal. A sequence {x,: & < cfx} of cardinals in » is
said to be normal if

(1) %, < %y+, for every o < cfx,

(2) %, = supg<,2, for every limit o < cfz,

(3) % = SUPg<oryHy-

Remark. Note that there always exists a normal scquénce in % if % is a limit
cardinal, and also that there exists a normal sequence {x,: & < cfx} with 2° < s, for
every « < cfx whenever » is a strong limit cardinal.

The proof of the following lemma is routine.

Lemva 24. Let % be a limit cardinal with o, <cfx and let {x, « < cfx} and
{ste: o < cfx} be normal sequences in %. Then {a < cfx: 2, = %y} is cub in cfe.

LEMMA 2.5. Let Y be a closed discrete subspace of size » with o 3 S cfx < %. Moreover,
let {¥: o < cfxe} be a partition of ¥; {u,: o < cfx} a normal sequence in % and be[L,r 4B,
such that {o < cfx: [cl(|) {b(): ye Us<a¥%3}) N Y| < %, } contains a cub set in cfs. Then
there is a partition {¥;: o < cfx} of Y such that

(1) |Y;| < % for every a < clx,

@ {a<che: d({J{bO): ye Us<a NN Y g ¥} contains a cub set in cofx.

Proof For cach « < efx, put S, = cl({) {b(y): y&e|Jp<a ¥;}) Y. Take a cub set C in
cfx such that [S,/< %, for each weC. Enumerate C in increasing order, say
C = {a(y): y < ofx}. For each limit ordinal y < cfx, put T7 = Syt~ (y<y Suyy- Sinice
IT7) < ayy a0 o) = SUPy <y Xayy bY the cub-ness of C, T can be partitioned into
{T: ' <y} with |T)| < s for each y <y, where y is a limit ordinal < cfx. Since
{Sam: ¥ < cfxe} is increasing with respect to < and its union is ¥, it is easy to show:
() {Say+1)—Sapy: ¥ <cf} U{T": y <cofx and y is limit} is a partition of ¥.

For each y < cfx, put

Yin = Sa+ = Sa) VU {T: v <y < cfx and ' is limit}.

For each o in cfx—C, put ¥; =0. Then it is easy to show that {¥J: « <cfx} is
a partition of Y by (x) and that |¥;] < x for each o < cfx by the singularity of . To show
(2), it suffices to show that Sy < { Js<ar ¥ for each limit y < cfs, since {a(y): y < cfx
and y is limit} is a cub set contained in C. To show this, let y be an element of S, for
a limit ordinal y < cfx. Then there are two cases.

Case 1. y&Say v 1)~ Suy for some ' < 9. In this case, y is an element of Y, and
a(y) < a(y). '

Case 2. Otherwise. In this case, there is a limit ordinal 9’ < y such that ye T Thus
there is a 9" <y’ such that yeT). Then ye Yooy and a(y”) < a(y) < a(y). This
completes the proof. :

DEFINITION 2.6. Let x4 be an infinite cardinal and Ya subspace of a space X. Y is said
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to have property P(u) if for every m: Y—p, there is a be[],er#, such that {m(y):
b(y)nb(y) # 0, y € Y} is bounded in u for cach ye ¥. The whole space X is also said to
have property P(u) if every closed discrete subspace ¥ has property P(u) in the above
sense. Thus we shall use property P(y) in two different ways, but these differences will be
clarified by the context.

Remark. Note that normal or countably paracompact spaces have property P(w)
and N;-paraLindeldf spaces (in the sense of [F4]) have property P(w,). The notion of
the #(w)-property is known as a gencralization of countable paracompactness to higher
cardinals, see [Ru]. A space has the #(u)-property il for every increasing open cover
{U; a<p} (e, Ujc U, if f<a cach U, is open and Us<p Uy = X), there is an
increasing open cover {V,: a < p} such that clV, « U, for each o < pu Note that
“countable paracompactness « % (w)-property” holds, see [En]. And note that the
argument of the proof of this ecquivalence shows “Nj-paralindeldfness «
PB(w,)-property”. Here we remark the relation between #(u)-property and property
P(y).

LemMA 2.7. Every space X having the 98(p)-property has property P(u), where p is an
infinite cardinal.

Proof Let Y be a closed discrete subspace of a space X having the %(u)-property.
Fix an arbitrary m: Y—p. For each o < p, put U, = X—{J{m " '(f): « < p}. Then
{U,: w<p} is an increasing open cover of X. Take an increasing open cover
{V,: @ < u} such that cl¥, = U, for each « < u. For each y in Y, let f5(y) be the least
B < psuch that ye V. Note that o < f(y) if yem™ (). For each yem™*(q), lix b(y)e®,
such that b(y) = V) —clV,. Then it is easy to show that {m(y): b(y)nb(y) 0,
yeY} < By) for each ye¥.

LemMA 2.8. Let p be an infinite cardinal, Y a closed discrete subspace of a spuce X, and
mq an arbitrary map Y— p. Assume Y has property P(u). Then for each n < w, there are
a bnenyey.@y and a m,: Y—u such that

{m(): b,3)b, () #0, Y'Y} = myiy(y)
Proof Assume that m, and b,-; have been defined. By property P(u), there is

a b,e][,er 8, such that 4, = {m,(): b,(y)b,(y') # 0, y'e Y} is bounded in p for each
ye Y. Fixing m,.1(y) in u which contains A, for cach ye Y, we are done.

Jor each yeY.

LEMMA 2.9. Let x be a strong limit cardinal with w, < cfx, let y, y be infinite cardinals
less than x, and let {x,: o < clx} be a normal sequence of cardinals in % such that
2 L Uy for each o < cfx. Assume Y is a closed discrete subspace aof size % such that
Y has property P(u) and has a partition {Y,: o < clu} with | Y| < % for cach o < cfx and
each ye Y has a neighborhood base 98, with |8,| < . Then there is a he 1 Tyer %, such that
{o < cfwe: Jel(J{b(y): ye Un<a DN Y| < 2%} contains a cub set in cfx.

Proof. For each o < cfx, put Z, = Jpuo¥).

Cramv 1. {a < ofe: [[T,ez (4, x 1)

< 2%} contains @ cub set,

Proof. Since |Y,| < x for each o < ofx, fix f (@) < cfx such that |Y,| < %y Then it is
easy to show that Co = {a < cfx: V< o« (f(f}) < a)} is cub. If a is an clement of Cy,
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then |Z,] = [Up<a ¥yl < lod X 2, = %, by [%] <y <, for cach f<a. Put C=C,
n{a<cfx: [yxu <x} Note that C is cub in ofx. If « is in C, then
[T Tiez.(, x )] < 2% holds. Thus the proof of this claim is complete.

Next let C be the cub set in the above claim. For ae C, enumerate [Tyez.(, x 1) by
[0 %) B ing u8(y) = ¢b° he fi s C éi
{uz: 1 <6 < 2"} By putting ul(y) = {bi(y), hi(y)> for each YeZ,, we mean b? is an
element of ]—[yezm‘% and hS: Z - Enumerate C in increasing order, say
C = {a(y): y < clx}. By induction on y < cfx and § < 2%, we shall construct a map
mys with dom(m,s) = Y and ran(m,) < u such that

(1) myy = myy for each y < cfxe and §' < § < 2%,

(2) myo = {mys: 9 <9, & < 2%} for each p < cfx,

(3) |mysl < |#agyy+ ] for each y < cfx and 6 < 2¥«en,
Here dom (ran) means domain (range, respectively) of a map. To construct such partial
functions, first my, = 0. Note that the myq defined by (2) also satisfies (3) by easy
cardinal arithmetics with the inductive assumption. It remains to define M, assuming
that m,s has been defined for all § < 4§, where y<cfx and 0 < § < 2%m,

Case 1. (cI({] (b8, (»): V€ Zyp}) (Y~ Z o)) —dom({ s <sm,y) # 0. In this case,
pick a point y(y, ) in this set, and define

J(y, d, B)= {hgm(J’): Bml’g(w()’) #0, yeZyy} '

for each Be#,y.s.

Subcase 1. There is a Be 5 such that J(y, 5, B) is bounded in u. In this case,
take a B(y, 6)€B,,5 such that J(y, 5, By, ) is bounded in p Furthermore, pick
a afy, §) < u with supJ(y, &, B(y, 6)) < a(y, §). Put

Mys = | mye U{<y(y, 8), aly, 6))).
4 <

Subcase 2. Otherwise. Put my; = | Js <smys.
Case 2. Otherwise. Put m.; = )5 <smys-

Then in all cases, such a m,; satisfies (3) by easy cardinal arithmetics, and also (1.

Let m: Y- u be a global function extending all mys's. By putting m, = m, one can
take by Lemma 2.8, b,, b, e[ Tyer #,, and my, my: Y—ou such that {m,(y):
b,(Y)nb,(¥)# 0, ye Y} < myy(y) for each ye Y and n =0, 1. Take a be I Toer A, with
b(y) = by(y)nb,(y) for each ye Y. Then the following hold.

(@) {my(y"): b()NB() #0, yeY} < my(y) for cach ye¥

(®) {my(¥): b)Ab(Y) # 0, y'eY} = my(y) for each yevr.

We shall show this b is the desired one. It suffices to show the next claim.

Cram 2. [el(J {b(y): y& Zup )N Y| < 2% for each y < cfx.

Proof. Assume indirectly that [cl({J{b(y): y&Z.p})n Y| > 2% for some y < cfx.
Then there is 2 non-zero & < 2 with b|Z,,) = b%,) and m,|Z,, = b, Here b|Z
denotes the restriction of b to Z. Since |\ Js <My < sl < sy +8] < 2%, we have

© (U {b0): & Zugy}) N (Y= Zyp) —dom (<5 myp) # 0.
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Thus case 1 l;appens and using (b), we obtain
I(1..6, by, 9) = {Keen©): by, D) Nbln(V) # 0, Y& Zuty}
= {m,(): b(y(y, A)Nb() # 0, yeZyy}
< {m(): by, 9)nb) #0, ye Y}
=m,(y(y, 8) < .

Therefore subcase 1 of case 1 happens. Then by the definition of m,,
@ mo(y(7, 8) = m,s(y(y, 8) > sup J(y, 9, By, 9)).

By b(y(y, 8)), B(y, 6)€ By, ind by (), there is a y e Zy, such that b(y(y, )N By, 8)
nb(y) # 0. By b(y(y, )nb(y) # 0 and by (a),

O] mo(y(y: 6))&my(y).
Also by B(V, 5)mbu(yj B(y: ) ( ) # 0 and yezufv):
(f) my (y) = ha()’)(}’)e‘](’y, 5: B(Vs 5))

Then by (d), (¢) and (f), mo(y(y, 8)em,(y)eJ(y, 8, B(y, 8)) and supJ(y, &, B(y, 8)
< my(y(y, 8)). But this is a contradiction. This completes the proof.

THEOREM 2.10. Let % be a singular sirong limit cardinal with w, < cfx, let u, x be
infinite cardinals less than x, and let Y be a closed discrete subspace of size x such that
Y has property P(u) and each y € Y has a neighborhood base 8, with |8,| < x. Assume that
there is a normal sequence {»,: o < cfx} of cardinals in » such that {0 < cfx: 2% = x;}}
contains a cub set in cfx. Then Y has nice partitions (thus Y is separated if Y is
< x-Separated by Lemma 2.2).

Proof Fix a 1-1 onto map f: Y-x For each a<cfx, put Y, = f"'(x,
—SUPp<ag). Then {Yo,: a < cfx} is a partition of ¥ with |¥,| < % for each o < cfx.
Assume a partition {¥,,: « < cfx} of ¥ with |¥,,| < x for each « < cfx is defined. By
Lemma 2.4, we may assume 2% < x,,, for each o < cfx. Applying Lemma 2.9 to
{Yt @ < cfx}, take a b,e[Ler®, such that {a<chu: [ol(J {b,0): ye Us<a Yus})
NY| <2} contains a cub set. Since {a < cfx: 2% =)} contains a cub set,
{a < du: Jel(U) (8,00 yeUp<a Y} n Y] < %, also contains a cub set. Then by
Lemma 2.5, there is a partition {¥,41,.: o < cfx} of ¥such that |¥,, . < % for each
a<ofx and {a<cfu: c({J{b,(): yeUpeaYus)n Y& Up<a Y414} contains a cub
set. Then by repeated applications of this process, one can get nice partitions.

Remark. If there is a normal sequence {x,: o < cfx} as in Lemma 2.10, then
2*=x" by [Je, Lemma 82]. Next we shall show such a normal sequence exists
assuming SCH (Singular Cardinals Hypothesis).

LEmMA 2.11 [SCH]. Let % be a singular strong limit cardinal with w, < cfx, and let
{#,: @< cfx} be a normal sequence of cardinals in % such that 2* < Koy fOr each
@ <cfw. Then {o <cfx: 2% =)} contains a cub set.
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Proof Put C = {o < ofx: cfx < %,, « is limit}. Note that C is a cub set in cfs. If
a€C, then x, is a singular cardinal because of cfzx, < cfo < cfx < *,. Since 2% = n
and {2**: B < o} is a strictly increasing sequence of cardinals in Ay, 2% = 5% =
by [Je, Lemma 8.1]. The proof is complete.

Remark. Lemma 2.11 also holds for an arbitrary normal sequence in » by Lemma
24.

By Theorem 2.10 and Lemma 2.11, we can conclude;

CoROLLARY 2.12 [SCHY). Let x be a singular strong limit cardinal with w, < cfx, and
let X be a < »-CWH space of character < x. If X is normal or has % (w)-property for
some p < x, then X is »-CWH.

3. The weak CWH case. A closed discrete subspace of a space is said to be weakly
< n-separated if for every A = Yof size < x, there is a separated A' = 4 with 4| = |4l
A space X is weakly x-CWH (weakly < »-CWH) if for every closed discrete subspace
Y of size % (< x, respectively), there is a separated Y’ < Y of size |¥|. It is known that if
x is a strong limit cardinal with w, < cofx and X is a weakly < »-CWH normal or
countably paracompact space of character < x, then X is weakly »-CWH, see [T1,
Theorems 11 and 13]. First we shall generalize this result to spaces having property P ()
for some p < % using the results in Section 2.

THEOREM 3.1. Let % be a strong limit cardinal with w, < cfx, let u, y be infinite
cardinals less than x, and let Y be a closed discrete weakly < u-separated subspace of size
% having property P(u) such that each ye Y has a neighborhood base B, with |B)| <
Then there is a separated Y' < Y of size .

Proof. Let {x,: « < cfx} be a normal sequence of cardinals in % with x, = 0. Fix
a 1-1 onto map f: Y~ 3. Put'¥, = f~*(x,41—2%,) for each o < cfx. Then {Y,: o < cfx}
is a partition of ¥. Then by Lemma 2.9, there are a b eHyEyﬂ and a cub set C in cfzx
such that C e {« < ofx: [al( {bO): ye Up<a Y, Y| < 2%}, Since |Y) = %41 > 2%,
by weak < x-separatedness, take a separated set ¥, = Y,—cl({J {b(): ye|Jp<a %)) of
size #,4, for each aeC. Then it is easy to show that ¥’ = U,,ECY;’ is the desired one.

Remark. The author showed that Theorem 3.1 also holds for every strong limit
cardinal with cfx = o using a similar argument. But the proof is much simpler, so we
omit the proof.

Next we shall study the weak CWH-ness for locally u-cc spaces. A space is g-cc if
there are at most y disjoint non-empty open sets. A space is locally u-cc if every point
has a p-cc neighborhood. It is known from [F3, Theorem 3] that if X is a locally u-cc,
< %-CWH space, then X is x-CWH whenever x is a singular cardinal and u < % (note
that mormality or countable paracompactness or strong limitness or the character
restriction are not needed, cf. 2.12).

THEOREM 3.2. Let % be a limit cardinal and p an infinite cardinal with u < x. If Y is
a weakly < x-separated closed discrete subspace of size x such that each ye Y has a p-cc
neighborhood, then there is a separated Y' = Y of size x.

Proof. Take {x,: o < ofx} and {¥,: « < cfx} as in the proof of Theorem 3.1. For
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each o < ofx, take separated Y’ < ¥, of size |Y,|. Fix be[ [,ey 48, such that {h(y): ye Y
is disjoint and each b(y) is p-cc.

Cram. [cl({) {b): yeUp<e B} Y] < [Up<a Y| % 1t for each a < cfs.

Proof Assume the claim fails. Then one can take a separated Z = () {by):
veUs<a PNY of size (Up<a ¥i|xp)* by weak < x-scparatedness. Take
a b'e][,er#, such that {b'(z): zeZ} is disjoint. Then for every zeZ, there is
a y(z)e|Jp<q Yj such that b'(2)nb(y(z)) # 0. Then there arc a Z' < Z of size 12| and
aye qu Y;' such that y(z) = y for every ze Z'. This contradicts the u-ce-ness of b(y).
Thus the proof of the claim is complete.

Since for each a<ofx with u<st, |Up<a V| =|Up<a ¥y =%, and |¥7|
=Y = sr g, ¥~ (U (B0): yeUp<a YNl = #11 by the claim. Thus we can take
a separated Y; < ¥ —cl{{J {b(1): yeUp<a ¥'}) Of size #,4 for such os. Then it is
straightforward to show that Y’ =|J{¥: « <cfw, p <%, is the desired one. This
completes the proof.

To end this paper, we shall study the relation between property P(x) and weak
#-CWH-ness.

Lemma 3.3. Let Y be a subspace of a space and % an infinite cardinal. Then Y has
property P(cfx) if and only if Y has property P(x).

Proof. Assume x is a singular cardinal (otherwise, this is clear). Fix a normal
sequence {x,: o < cfx} of cardinals in x. First assume Y has property P(cfx). We shall
show Y has property P(x). To show this, fix an arbitrary m: Y—x. Define m': Y- cfx
by m'(y) = o if m(y}ex,supy<,%, for each yeY Then by property P(cfx) there is
abe[ [y B, such that Ay = {m'(y): b)) nb(y) # 0, y'e Y} is bounded in cl. Thus we
can pick a(y) < cfx such that A, < a(y) for each ye Y. Then it is straightforward to show
that {m(y'): b()Nb(y) # 0, y'€ ¥} < 1y < % for cach yeY.

Next assume Y has property P(x). Fix an arbitrary m: Y— clx. Define m': Y—x by
' (¥) = #myy for each ye Y. Then by property P(x), there is a beﬂyey%y such that
A4, = {m'(y): b()nb(y) # 0, y'e Y} is bounded in » for each ye Y, thus we can pick
a(y) < ofx such that A, < . Then it is straightforward to show that {m'(y): by)
nb(y)# 0, ye Y} < ofy). The proof is complete,

THEOREM 3.4. Let x be a singular cardinal, and let Y be a weakl y < u-separated closed
discrete subspace of size % having property P(x). Then there is a separated Y' < Y of
Size . '

Proof. Fix a strictly increasing cofinal sequence 1%, o < cfx) of successor cardinals
in % with cfx < %, (for example, this can be done by putting », = 1, for each & < cfx,
where {,: « < cfx} is a normal sequence of cardinals in % with cfx < ,). Fix a 1-1 onto
map f: Y—x. By putting ¥, = f TH0trsupp<aty), { Y o < ofx} is a partition of Y with
|Y,| = %, for each « < cfx. Define m: Y —cfx by m(y) = aif y& Y, lor cach y& Y. Then by
property P(x) (equivalently, property P(cfx)), there is a be] T,y %, such that for cach
ye ¥, {m(y): b(n)nb(y) # 0, y'e Y} < a(y) for some a(y) < efx. For each o, f < cfx,
put ¥/ = {ye¥,: a(y) < p}. Since Y, = Up<orx ¥ and ihe size of Y, is a successor
cardinal > cfx, there is a f(x) < cf such that [Y/®)| = |Y,| for each & < cfx. Then
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C={au<cfn: Vo' <a (B(e) <)} is unbounded in ofx (in fact, C is cub in cfx if
w; <cfx). By weak < x-separatedness, choose a separated ¥, = Y@ of size |YF@)
(=1Y)). Put Y’ = Juec ¥ Take a b’ €[ ey 4, such that b’(y) < b(y) for each ye ¥” and
{b'(y): ye Y.} is disjoint. Since C is unbounded in cfx, the size of ¥" is x. We shall show
{b'(y): yeY'} separates Y'. To show this assume that y'e Y7, yeY; and a, o' e C with
o < a Since y'e ¥y = Y, we have a(y) < B(o!) < o = m(y). Thus b(y) nb(y) = 0 by
m(y)¢a(y). Therefore b'(y)nb'(y) = 0. This completes the proof.

Finally, we shall show that weak < x-separatedness can be removed from Theorem
3.4 if “singular” is replaced by “regular”.

THEOREM 3.5. Let % be a regular cardinal, and let Y be a closed discrete subspace of size
n having property P(x). Then there is a separated Y' < Y of size x.

Proof Identify Y with ». By property P(x), there is a b EHm 2, such that for each
aex, {o'en: b(@)nb(o) 5 0} = f(¢) for some B(x) <x Then it is easy to show
C={oex: Vo' <a (B(«) <a)} is separated and of size .
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