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A lattice of conditions on topological spaces II
by

P. J. Moody, G. M. Reed, A. W. Roscoe and P. J. Collins (Oxford)

Abstract. Earlier work of some of the authors is developed to give mew criteria for
developability and paracompactness. The point countable base conjecture is shown to be true for
certain classes of spaces, in particular for semi-stratifiable spaces and spaces with density < ;.
The structure of any counterexample is also investigated. The notion of an acyclic monotonically
normal operator on a space X is introduced and is shown to be equivalent to the condition “chain
(F)” which is shown to imply that X is a Ko-space.

0. Introduction. The aim of this paper is to develop earlier work of some of the
authors and M. E. Rudin [6], [7]. We shall be investigating variants on (F) and (G) of
the earlier papers which we now specify. They apply to topological spaces X for each
element x of which a family W(x) of subsets containing x is given. Let #" = {(W({x):
xeX}. We say that # satisfies (F) when it satisfies

(F) if xeU and U is open, then there exists an open V = V(x, U) containing x such
that xe W < U for some We W(y) whenever yeV.

Any topological space clearly has such a family of open sets satisfying (F). All the
conditions we discuss are determined by placing restrictions on #".

We say that # satisfies (G) if # satisfies (F) and W (x) is countable for every xe X.
9 is said to satisfy open (F), or chain (F), if # satisfies (F) and each element of each
W (x) is open, or each W (x) is a chain with respect to inclusion. We similarly modify (G)
and, in particular, say that %" satisfies decreasing (G) if # satisfies (G) and for each x,
there is an enumeration of W(x) as {W(n, x): ne N} such that W(n+1,x) = W(n, x)
for each n (where N is the set of natural numbers). Furthermore, we say #  satisfies
uniform open (G) if #" satisfies open (G) and for each x€ X, every infinite subset of W(x)
forms a local base at x (*).

1980 Mathematics Subject Classification: Primary 54D15, 54D18, 54E30, 54E65; Secondary
54C99, 54E20.

Key words and phrases: developable, paracompact, point countable base, monotonically
normal.

(*) A local base at x is a collection % of open neighbourhoods of x such that for each
neighbourhood N of x there exists a Be 4% with B< N.
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The paper is split into three essentially disjoint sections the first of which establishes
that if a space has # satisfying uniform open (G) then it is developable (Theorem 1). In
the second section the point countable base conjecture is investigated. The conjecture,
which was first posed as a question in [6], is that every space with #" satisfying open
(G) has a point. countable base. Pointed open covers are introduced and it is shown
(Lemma 2) that the conjecture is true if and only if every space with #~ satisfyin‘g open
(G) has a dense, point countable, pointed, open cover. This result is used to establish that
for certain classes of spaces the conjecture is true (Theorem 7). The structure of any
counterexample is investigated and in particular it is shown that any counterexample
contains a non-empty subspace, every non-empty open subset of which is a coun-
terexample (Theorem 9).

In the final section we introduce the notion of an acyclic monotonically normal
operator and establish that a space has such an operator if qnd only if the space has
# satisfying chain (F) (Theorem 11). From this it is deduced that generalised order
(GO) spaces and elastic spaces have # satisfying chain (F) (Theorem 12). We also show
that a space with #  satisfying chain (F) is a K;-space (Theorem 13) and state the
“unified paracompactness theorem” indicated in [6] (Theorem 14). ,

All our spaces will satisfy the T, separation axiom. A° will denote the interior and
A the closure of the set A. Finally, as mentioned above, N will denote the set of natural
numbers.

1. When #" satisfies uniform open (G). We first note that if % satisfies open
decreasing (G) then % satisfies uniform open (G). In [6] it was established that a space
having # satisfying open decreasing (G) is metrisable. The proof of this result consisted
in showing such spaces were collectionwise normal and developable, and then applying
Theorem 10 of R. H. Bing [2]. Here we prove the following result.

THEOREM. A space is metacompact and developable if and only if it has W satisfying
uniform open (G).

The concept of # satisfying uniform open (G) is similar to that of a uniform base:
a base # is a uniform base if for every point x and every open neighbourhood U of x,
there are at most finitely many Ve for which xe Vand V\U # @. It is a result of
P. S. Alexandrov [1] that a space is metacompact and developable if and only if it has
a uniform base.

The proof of the following lemma is similar to Theorem 4 of [6].

LemMA 1. If the space X has W satisfying uniform open (G) then X is metacompact.

Proof Suppose that « is a cardinal and that {U,: a < x} = % is an open cover of
X. For each & < x let X, = U\ J{U,: B < «} and define 0, = |J {V(x, U): xeX,}.
Clearly 0, is open and X, = 0, € U,. Hence @ = {0,: « < «} is an open refinement of
% which covers X, so it will be sufficient to show that @ is point finite. If @ did not have
this property there would exist an x and an increasing sequence {&t,}s% ¢ of ordinals such
that x€0,, for each n. Since xeX, for only one & < ¥, we may assume x¢X,, for
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any i. For each n, there is a point yn€X,, for which xe V(y,, U,,). Hence, for each n,
there exists a W, e W(x) such that y,e W, = U,,.For n>m, y, ¢ W, since y,¢ U, . Thus
{W,: neN} is an infinite subset of W(x) and therefore is a local base at x. Since x ¢ X,,,
Yo # x and so W\{y,} is an open neighbourhood of x. Hence there is an n such that

W, < Wo\{y,}. This leads to a contradiction because V.€ W, for every n and y,¢ W, for
every n>0. m

The following proof of Theorem 1 was suggested to the authors by the referee and
simplifies the original proof. It involves the construction of a sieve, similar to the one
used to prove that every f-space (in the sense of Hodel) with a point countable base has
a base of countable order [4]. Our notation will be that used by G. Gruenhage in [10].

THEOREM 1. A space X is metacompact and developable if and only if it has
W satisfying uniform open (G).

Proof. First suppose that X is metacompact and developable. Let {# )0 be
a development. X is metacompact, so we may assume that for each n, #,., is a point
finite refinement of s#,. For each xeX define

W(x)= {He|J{#,: neN}: xeH}.

It is easily verified that #” = {W(x): xe X} satisfies open (G). To see that it satisfies
uniform open (G), consider any x and suppose that ¢ is an infinite subset of W(x). Let
U be any open set containing x. There is an NeN for which St(x, #y) = U (where
St(x, #y) = () {He #y: xeH}). Because {Hel|){#: 0<n< N}: xeH} is finite
and % is infinite there must be an He® such that H €3, for some n > N, and so
xeH < St(x, #y) = U. Hence ¥ is a local base at x. This establishes that ¥~ satisfies
uniform open (G).

Conversely, suppose that X has %" satisfying uniform open (G). For each x € X, pick
an enumeration of W(x) as {W(n, x): ne N} so that if W(x) is infinite there is no
repetition and if W(x) is finite (which implies x is isolated) then Wi(n, x) = {x}
= W(m, x) whenever W(n, x) = W(m, x) and n # m. Observe that if I is an infinite
subset of N then {W(n, x): nel} is a local base at x.

We shall define a sieve (G, T). Suppose that 7 is the topology on X and let T, = X.
For each xe Ty, let G(x) = W(0, x). Inductively define 7, < X"*! and G: T,—J such
that for each n>1

T, = {(xgs s X,): t=(Xg, .-, Xp—1)€ T,—; and x,€G(t)},
and
G{(xp ..+, X%,)) = G{(xq, ---, Xn-1)) V(% X\{x;: j<n, x; # x,})
NN {WG, x): i,j<n and x,e W(, x)}.

Let T={)2,T, and if 5, t & T define s < t whenever s is an initial segment of t. (G, T)
clearly satisfies the definition of a sieve given in [10]. It will be sufficient to prove that if
b is a branch of T and x & ("), G(t), then {G(t): teb} is a local base at x, since then, by
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[5], X has a base of countable order and thus is developable by [16] because it is
metacompact.

So suppose that b = {t,: ne N} is a branch of T with ¢, T, and x €)%= ¢ G(z,). Then
there is a sequence (x,) such that ¢, = (x;, ..., x,). We shall first show that x is a cluster
point of the sequence (x,). We can assume that either (1) or (2) below holds:

(1) there is an infinite subset I of N such that x, = x,, whenever n, mel,
(2) there is an infinite subset J of N such that x, # x,, whenever n, meJ and n # m.

If case (1) occurs then if p = x, whenever nel then x = p since, whenever nel,
xeGt)ys Wn, x,)s Wn, p)
and {W(n, p): nel} is a local base at p. If case (2) occurs then for each neJ,
xeG(t,) € V(x,, X\{x;: j <n, x;# x,}).
Hence there is a W, e W(x) for which
1) x, €W, X\{x;: j<n, x; #x,}.

Observe that {W,: neJ} must be an infinite subset of W(x) and thus a local base at x.
Hence, again by (1), (x,) clusters at x.

We shall now prove that {G(z,): neN} is a local base at x. Suppose that U is an
open neighbourhood of x. Since V(x, U) is an open set containing x there is a je N for
which x;€ V(x, U). Pick an ie N such that xe W (i, x) < U. W(i, x;) is again an open
neighbourhood of x and so there is an n > max{j, j} such that x,e W(i, x;). Hence
xeG(t,) S W(i, x) U and so {G(t,): neN} is a local base for x as required. w

2. The point countable base conjecture. Any space with a point countable base has
# satisfying open (G). In this section we investigate under what conditions the converse
holds. We first introduce the concept of a pointed open cover. A pointed open cover for
a space X with topology 7 is a subset 2 of X x & such that {U: 3xeX (x, U)e2) is
a cover for X. 2 is said to be point countable if {(x, U)e#: ye U} is countable for all y,

and dense if ye{x: (x, U)e® A ye U]} for all y. The following lemma is central to the
discussion.

LEmMMA 2. If the space X has # satisfying open (G) then X has a point countable base
if and only if X has a dense, point countable, pointed open cover.

Proof. First suppose that X has a point countable base %. For each non-empty
element U of # pick an x,e U and define & = {(x,, U): Ue#\{@}}. It can be easily
verified that 2 is a dense, point countable, pointed open cover. Conversely define

B={UnW: 3Ix (x, U)e? A WeW(x)}.

Clearly 4 is a point countable collection of open sets. To see that 4 is a base, consider
any xeX and any open set O containing x. Since 2 is dense there must exist
a(y, U)e# such that xe U and yeV(x, 0). Pick a We W (y) for which xe W< O; then
xeUNnW< 0 and UnWe. Thus 4 is a base as required. m
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Thus the point countable base conjecture may be restated as
Every space with W’ satisfying open (G) has a dense, point countable, pointed apen cover.

Hence we now investigate under what conditions a space has a dense, point
countable, pointed open cover. Many of the results which follow only require #” to
satisfy (G), thus raising the following associated question.

Does every space with # satisfying (G) have a dense, point countable, pointed open
cover?

A small modification to the proof of Lemma 1 yields the next lemma which is
required for Theorem 2.

LemMa 3. If the space X has W satisfying (G) then X is metaLindeldf. m

THEOREM 2. If X is a semi-stratifiable space with W' satisfying (G) then X has a dense,
point countable, pointed open cover.

Proof. We shall use the characterisation of semi-stratifiable given by G. D. Creede
in [8], which states that a space X with topology  is semi-stratifiable if and only if
there exists a function g from NxX to 7 such that

(1) {x} =N {g(n, x): neN}, and
() if ye X and {x,}i%o is a sequence of points in X such that yeg(n, x,) for all n,
then {x,};1, converges to y.

Let g be such a function. By the previous lemma X is metaLindeldf, so let %, be
a point countable open refinement of {g(n, x): x€ X} which covers X. For each Ueq,,
choose an xy such that U < g(n, xp). Define 2 = {(x,, U): Ue%, A neN}. Clearly
2 is a point countable, pointed open cover. Consider any yeX, for each n pick a U, €%,
which contains y. Letting x, = xy, we see that yeg(n, x,). Thus by (2), {x,}=o
converges to y. Hence 2 is dense since (x,, U)e# for all n. =

Notice that the 2 produced in the proof of Theorem 2 need not have x ¢ U when
(x, U)e 2. Of course this is not necessary for Lemma 2 to be applicable. However, by
modifying the proof of metaLindelsf, see Lemma 4 below, it is possible to obtain this
property if desired.

Observe that if the space X has a point countable base & then, setting W(x)
={Bed#: xeB} and # = {W(x): xeX}, X has ¥ satisfying a stronger condition
than open (G), since if xe U and U is open, then we may take V(x, U) to be an element of
2 satisfying xe V(x, U) € U. Then for any ye V(x, U), V(x, U)e W(y) and hence there is
a We W(y) satisfying xe W < V(x, U). By strengthening (G) in this way we can show the
existence, for an arbitrary space X, of a dense, point countable, pointed open cover.

Formally, if X is a space and W(x) is countable for every xeX then
W = {W(x): xeX} satisfies (G’) when it satisfies

(G) ifxeU and U is open, then there exists an open V = V(x, U) = U containing
x such that xeW < V for some We W (y) whenever ye V.
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THEOREM 3. If the space X has W satisfying (G') then X has a dense, point countable,
pointed open cover.

Proof. Let 7 be the topology on X. We shall construct, for each xew, a subset 2,
of X x 7, a subset X, of X, and for each xe X a closed subset D} of X. Suppose that 7,
X, and Dj have been constructed for all f# <« and all xeX. Define

V.= % (and so ¥, =0),

p<a

Di ={y: 3(y, U)e¥, xeU} for each x, and
X, ={x: xeDj}.
Let &, be a maximal subcollection of {(x, V' (x, X\D})): x¢X,} such that
(ps V1), (x2, VI)EZ, = X, ¢V, v X, ¢V,

&, exists by Zorn’s Lemma. Observe that for each ye X\ X, there exists an (x, V)&,
such that yeV. Let 2 = |} {#,: acw,}. We shall show that 2 is the required dense,
point countable, pointed open cover.

First observe that 2, is a pointed open cover. Suppose that y& ¥, n ¥, where (x,, )
€Z, for i=1,2. We may assume that x,¢V,. By the definition of # and since
W satisfies (G') there exists, for i = 1, 2, W,e W (y) such that x,& W, < V. Since x 1€V,
W, # W,. Thus, since W(y) is countable, {(x, V)&, yeV} is countable. Now suppose
that ye V; n ¥, where (x;, V})e, (x;, ;)& and a < f. As above, for i = 1, 2, there
exist We W(y) such that x;e W, = V.. Suppose that W, = W; then x,e ¥, and x, e V,.
But x, eV, implies that x, € D?, giving x, ¢ V(x,, X\D}?) = V,, which is a contradic-
tion. Thus W, # W, and hence {aew,: I(x, V)e#, yeV} is countable. Thus # is
point countable. Furthermore, X =|J{X,: aew,} since if y¢X, then
there exists an (x, V)e#, such that yeV. But X =(J{X,: xcw,} implies that
xe{y: Ay, V)eP xeV} for all x. Hence 2 is dense. m

In [7] it was shown that any separable space with # satisfying open (G) has
a countable base. The following theorem establishes that any space with density < w,
and with % satisfying open (G) has a point countable base.

THEOREM 4. If the first countable space X has density < o, then X has a dense, point
countable, pointed open cover.

Proof Suppose that {x,: @ < ®,} is a dense subset of X. Let C, = {—x/,_: B <o} for
each o < w, and let

P = {(x,, X\C): o < w,}.

Observe that C, = @ and s0 & is a pointed open cover. We shall show that 2 is dense
and point countable. Consider any xe X, let {R(n, x): neN} be a local base at X. For
each n there is an «, <, such that x,,eR(n, x). Clearly xe C, where o = sup{a,:
neN} < ;. Thus 2 is point countable since x ¢ X\C; for any f > o. Furthermore, 2 is
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clearly dense, since if « is the least ordinal such that xe C,then xe{x;: xeX \Cy, B < a}.
Thus £ is dense. m

The above theorem gives us some insight into the structure of any possible
counterexample to the conjecture. The following two theorems give us further insight.
The first shows that any space with #" satisfying open (G) has a dense subset which has
a point countable base. '

LemMa 4. Suppose the space X, with topology 77, has W~ satisfying (G). Further
suppose that Y < X and that for each ye Y there is an open set (in X) U, which contains y.
Then there exists a subset P of YxJ which satisfies

1) {0, Uye#: xeU} is countable for all xeX,
() YeJ{U: 3yeY (y, V)e?}, and
()3) 0, V)e2? = yeU c U,

Proof. Suppose that x is a cardinal and Y = {y,: « < x}. We shall construct for
each o < x an open set O, of X. Suppose that O, has been constructed for each f < a. If
¥.€J{0;: B <o} then define 0, = @, otherwise define

0,={J){Vix, U,): xeU, \ ) 04}
B<a

Define 2 = {(y,, 0,): 0, # @}. Clearly 2 satisfies conditions (2) and (3). Suppose that
x€0,,0, where a < f§. Then there exists an x,€ U, \ J,<.0, and an %€ Uy \Uy<s0,
such that xe V(x,, U,,) and xe V (xg, Uy,). Pick Wy, W, e W(x) satisfying x,e W, = U,
and x,eW, < U,,. If W, = W, then x;e U),z\U.,QOy < 0,, which is a contradiction.
Thus {o: x€0,} is countable since W(x) is. m

THEOREM 5. If the space X has #" satisfying (G) then it has a point countable, pointed
open cover & such that xe U whenever (x, U)e? and {xeX: 3U (x, U)eP} is dense
in X.

Proof For each a < w, we shall construct a subset 2, of X x 7 (where 7 is the
topology on X) and a subset X of X. Suppose that 2, and X » have been defined for all
B <o Set

X, ={x: 32U (x, Ue, p<uf,

and so in particular X, =¢. By the previous lemma, putting Y=X\Z and
U,=V(y, ¥) for each ye¥; there exists a subset £ of (X\X,)x 7 which satisfies

(1) {(y, U)e#: xeU} is countable for all xeX,

@) X\X, < J{U: IyeX\X, (y, U)e 2}, and

3) 0, Ve, = yeU U, = V(, X\X,).
Define # = (] {#,: « < w,}. We shall show that £ is a point countable, pointed open
cover. First observe that 2, is a pointed open cover. Now, suppose that ye X and there
exist (x;, U,)e, and (x,, U,)e% such that yeU, nU, and o <. Pick W,, W,
€ W(y) satisfying x, e W, = X\)_(; and x,eW, = X\Z,. Since x, € X, W; # W,, and
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therefore {o: 3(x, U)e &, yeU} is countable. This combined with (1) above implies
that & is point countable. Notice that by (3), x € U whenever (x, U) e #. Finally observe
that ify¢3(_,, then there is an (x, U)e £, such that ye U. Therefore X = U {3(: aEw,}
and so X = {x: AU (x, U)e?}. m

Taking ¥ = {xe X: 3U (x, U)e#} in the above theorem we obtain, by Lemma 2,
the following corollary.

COROLLARY. If the space X has #" satisfying open (G) then it has a dense subset
Y which has a point countable base. m

Our next theorem establishes that a countérexample cannot be constructed by
taking a locally countable union of spaces each of which has a point countable base.

THEOREM 6. Suppose that the space X has W~ satisfying (G) and is the locally countable
union of subspaces Y, (i€ I), each of which has a dense, point countable, pointed open cover.
Then X also has a dense, point countable, point open cover.

Proof. For each xe X, there is an open neighbourhood N, of x which meets only
countably many of the Y. Let 2 be a dense, point countable, pointed open cover of ¥,.
Fix an iel, for each (y, U)e &, pick a U’, open in X, such that U’ n ¥, = U and define

Sy, U
Observe that S;(y, U) is open in X and that S,(y, U)n Y, =
Z={y, Sy, U)): (v, U)e 2}

and set 2 =& | {#: ieI}. We shall show that 2 is the required dense, point countable,
pointed open cover. Clearly, since X = U {Y;: iel}, 2 is a pointed open cover. In order
to show that £ is point countable we first show that {(y, O)e#: xe0} is countable for
each xe X and iel. Observe that if {(y, 0)e#': xe 0} is uncountable then there must
exist an uncountable subset 4 of 2 such that x & S;(y, U) for every (y, U) e A. For each
(y, U)e 4 pick a z,,5yeU such that xeV(zy,u), U' AN, ). There is a W, e W(x)
which satisfies

={J{V(x, U nN): xeU}.

U. Define

2y €Wy S U NN, € U

Since W (x) is countable we may assume that W, u,, = W4, Whenever (y 5 Ujle A for
Jj =1, 2 Thus fixing a (y,, U,)e A we see that zy, 4, e U’ " Y, = U for every (y, U)e 4,
which contradicts £ being point countable. Hence {v, 0)e#: x€0} is countable as
required.

So suppose £ is not point countable. Then from the above there is an xe X and an
uncountable subset I of I such that for each i€ I, there is an element (¥;» U) in 2 such
that xeS;(y;, U;). Hence there is a z,e U, such that xe V(z;, Uin N.,). Since W(x) is
countable therc is an uncountable subset I, of I, such that for all i,jel,,
z;eUjn N, . But then N, nY,#@ for all i,jel, and’ this contradicts the
definition of N e Therefore # is point countable as required. Finally, we must show that
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2 is dense; this follows easily from the fact that each 7, is dense (in Y) and each x in
X lies in Y, for some i. m

We now bring together the results of this section stating them in terms of point
countable bases.

THEOREM 7. Suppose the space X has % samfymg open (G). Then if X also satisfies
one of the following then X has a point countable base:

(1) X is semi-stratifiable,

(2) X has W satisfying (G)(*),

(3) X has density < w,,
(4) X is the locally countable union of subspaces each of which has a point countable
hase. m ‘

The referec observed that (1) in the above may be strengthened to P-spaces.
A modification of the proof of Theorem 1 yields that any f-space with %" satisfying
open (G) has a base of countable order (cf. 2.10 of [4]). Observe that a space with
W satisfying open (G) is hereditarily metaLindeléf and thus it can be seen that any
B-space with #" satisfying open (G) has a point countable base.

In addition to the above theorem P. J. Nyikos and A. W. Roscoe have established
the following result.

THEOREM 8. If X is a first countable, non-archimedean space which has W satisfying
(G), then X has a point countable base. m

Our final theorem of this section demonstrates how unpleasant any counterexample
must be and yields a partial result for scattered spaces.

THEOREM 9. If the space X is a counterexample to the conjecture then there is
a non-empty subspace X' of X, every non-empty open subset of which is a counterexample.

Proof Let % ={U < X: U is open in X and has a point countable base} and
define ¥ = U %. By Lemma 3, Y is metaLindelSf and therefore Y can be expressed as
the union of a point countable collection of open sets each of which has a point
countable base and so Y has a point countable base. Hence by Theorem 7, X’ = X\Y
does not have a point countable base. Suppose that U is a subset of X which is open in
X’ and has a point countable base. Since X’ is closed in X, X'\ U is closed in X and so
YU U = X\(X'\U) is open in X. But by Theorem 7, Y u U has a point countable base
and so Yu Ue%, which implies that U< Y and hence U =@, m

Recall that a space X is scattered if every non-empty subspace has an isolated point
(in the subspace topology). Hence, in particular, every non-empty subspace of X has an

“open subset which has a point countable base. Therefore by Theorem 9 we have the

following result.

THEOREM 10. If X is a scattered space with %" satisfying open (G) then X has a point
countable base. w

(%) Of course #” may be equal to #.
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3. When ¥ satisfies chain (F). In [6] it was established that a space with
W satisfying chain (F) is monotonically normal. The converse is known to be true for
stratifiable spaces (see [6], p. 493), it being an open question as to whether the converse
is true in general. In the first part of this section we shall investigate this question.

We begin by introducing the concept of an acyclic monotonically normal operator.
An acyclic monotonically normal operator is an operator which assigns to each x and
open set U containing x an open set V(x, U) containing x which satisfies

(1) V(x, U) € V(x, U) whenever U < U’,

@ Vi, X\N{yHnV(y, X\{xHh =0 if x+#y, and

() V28 V(x;, X\{xi41}) =@ whenever n>2, x,...,x,~; are distinct and
X, = Xg.

Observe that (3) implies (2) and that (1) and (2) are precisely the conditions for
a space to be monotonically normal. Our next theorem establishes that the existence of
an acyclic monotonically normal operator is equivalent to the existence of # satisfying
chain (F). Hence the question of whether any monotonically normal space has
W satisfying chain (F) may be rewritten as

Does every monotonically normal space have an acyclic monotonically normal
operator?

We note that there is a monotonically normal operator on the four point discrete
space, which is not acyclic. Of course any discrete space has an acyclic monotonically
normal operator.

TreoreM 11. A space X has an acyclic monotonically normal operator if and only if
X has W satisfying chain (F).

Proof It can be easily verified that the operator defined in [6] when X has
W satisfying chain (F) is an acyclic monotonically normal operator.

Conversely, fix a point ae X. We shall define a “nearness” relation on X as follows:
For x #y,

x~y < aeV(x, X\{y}) (“x is nearer to a than y is"”).

Observe that x ~, y implies that y ~, x, that x ~, x for every xe X and that a ~, X for
every x # a. Define the relation <, by

X<,y - Anz1, x4, ..., X, s.uch that x = x,, y = x, '
and x; ~,x;4; for i=0,...,n—1

<, s the transitive closure of ~, and, by (3), <, is an irreflexive partial order. By Zorn’s
Lemma there is an irreflexive linear order <1, on X satisfying

X<,y = x=<a,y.

Defining W(a) = {5,(x): xe X}, where S.(x) = {y: y<a,x} U {x}, we see that W(a) is
a collection of sets, each containing a, which is linearly ordered with respect to inclusion.
1t only remains to show that #" = {W(x): xe X} satisfies (F). Suppose x is an element

icm
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of the open set U; then xeV(x, U)c U (where ¥ (-, ) is the acyclic monotonically
normal operator). Consider any ye V(x, U). The proof will be complete if we can show
that xe S,(x) € U. By definition, xeS,(x)and if z¢ U then V(x, U) < V(x, X \{z}), thus
yeV(x, X\{z}). Hence X<,z and since <, is a linear order, z¢ 8,(x), thus S,(x) S U. u
We claim that the monotonically normal operator defined by R. W. Heath, D. J.
Lutzer and P. L. Zenor on a linearly ordered space [11] is an acyclic monotonically
normal operator. In addition it can be shown that H. Tamano and J. E. Vaughan's
elastic spaces [14], and hence Vaughan’s linearly stratifiable spaces [15], have an acyclic
monotonically normal operator (C. R. Borges has shown that such spaces are
monotonically normal [3]). We can therefore deduce the following result.

THEOREM 12. If X is either a generalised order space or an elastic space then X has
W satisfying chain (F). m

A space X is said to be a Ky-space if for every subspace ¥ of X there is a function
x from Jy (the subspace topology on Y) to J5 (the topology on X) satisfying:

(1) Yax(U)=U for each UeZy,

{2 k(U)ynx(V)=x(UAN V) for each U, Vedy, and

(3) k(@) = 2.
The concept of a Ky-space is due to K. Kuratowski [12, §21, XI, p. 226] where he shows
that every metrisable space is a K,-space. In addition to metrisable spaces, it is known
that generalised order spaces and retractifiable spaces are K -spaces. It is a question of

E. K. van Douwen [9] as to whether every monotonically normal space is a K ,-space.
We have the following result.

Treorem 13. If the space X has W satisfying chain (F) then X is a K-space.
Proof For each open subset U of X and each subset 4 of U define

H(4,U)={yeX: IWeW(y) (WS U) A (Wn A +OB)).

Observe that 4 < H(4, U)® since |J{V(x, U): xed} < H(4, UF. Let ¥ be any
subspace of X. Define x from 7, to Zy by x(U) = H(U, X\(?\—ﬁ)ﬁ K is well defined
since U c X' \(?W) for each UeZy. We claim that x satisfies (1)—(3) of the above
definition. The only difficulty is in establishing x(U) n x(V) = k(U n V). So consider any
yex(U) nx(V). Since yex(U), there exists a W, e W(y) such that W, € X \(—I_/'—\—Ij) and
Wi n U # @. Similarly, there is a W, e W(y) such that W, = W\(?_\—V) and W,n V # Q.
W(y) is linearly ordered with respect to inclusion, so we may assume, without loss of
generality, that W, < W,. Notice that

WinUsW,nUc(X\(T\V)nY =V
So in particular W; (U N V) # @. Observe that
(X\X\D) ~ (X\(T\V)) € X\(T\[U A V),
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thus W, < X\(Y\(UnV)) and so yeH(U NV, X\(Y\(Un V))). But x(U)nk(V) is
open and so k(U)ynk(V)sx(UnV). =

The above result yields the following interesting question.

Does every monotonically normal K-space have an acyclic monotonically normal
operator?

We finish by stating the “unified paracompactness theorem” which was indicated in
[6]. In [6] it was established that

(1) If the space X has # satisfying chain (F) and each W(x) is well ordered by 2,
then X is paracompact.

(2) If the space X has # satisfying chain (F) and each W(x) consists of
neighbourhoods of x, then X is paracompact.

Clearly both these results may be deduced from the following theorem.

TrEOREM 14. If the space X has W satisfying chain (F) and for each x, W(x)
= W, (x) u W, (x) where W, (x) consists of neighbourhoods of x and W,(x) is well ordered
by 2, then X is paracompact. m

The Sorgenfrey line [13] is an example of a space which satisfies the hypotheses of
Theorem 14, but neither (1) nor (2) above.

References

[11 P.S. Alexandrov, On the metrisation of topological spaces, Bull. Acad. Polon. Sci. 8 (1960),
135-140 (in Russian).

[2] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186.

[3] C. R. Borges, 4 study of monotonically normal spaces, Proc. Amer. Math. Soc. 38 (1973),
211-214,

[4] J. Chaber, On point-countable collections and monotonic properties, Fund. Math. 94 (1977),
209-219.

[5]1 J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces,
Cech complete spaces and p-spaces, Fund. Math. 84 (1974), 107-119.

[6] P. J. Collins, G. M. Reed, A. W. Roscoe and M. E. Rudin, A lattice of conditions on
topological spaces, Proc. Amer. Math. Soc. 94 (1985), 487-496.

[7] P.J. Collins and A. W. Roscoe, Criteria for metrisability, Proc, Amer. Math. Soc. 90 (1984),
631-640,

[8] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47--54,

[91 E. K. van Douwen, Simultaneous extension of continuous functions, Thesis, Vrije Univer-
siteit, Amsterdam 1975,

[10] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology,
K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 423-501.

[11] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer.
Math. Soc. 178 (1973), 481-493

[12] K. Kuratowski, Topology, Vol. I, Academic Press, New York 1966.

A lattice of conditions on topological spaces 11 81

[13] R.H.Sorgen(rey, On the topological product of paracompact spaces, Bull. Amer, Math. Soc.
53 (1947), 631-632.

[14] H. Tamano and 1. E. Vaughan, Paracompactness and elastic spaces, Proc. Amer. Math.
Soc. 28 (1971), 299-303.

[15]1 1. E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. 43 (1972), 253-266.

[16] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces,
Canad. J. Math. 17 (1965), 820-830.

P. J. Moody A. W. Roscoe
TRINITY COLLEGE UNIVERSITY COLLEGE
Oxford OX1 3BH Oxford OX1 4AR
England England

and

DEPARTMENT OF MATHEMATICS
OHIQ UNIVERSITY

Athens, Ohio 45701-2979

US.A.

G. M. Reed and P. J. Collins
ST. EDMUND HALL

Oxford OX1 4BH
England

Received 24 November 1989;
in revised form 10 May 1990


Artur




