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Formalizing a non-linear Henkin quantifier
by

E. G. K. Lépez-Escobar (Annapolis, Maryland)

Abstract, L. Henkin introduced the quantifier (@, , ,.x, ¥; v, w) so that the interpretation of
the formula (@, , 4, %, y; v, W) (%, y; v, w) is that for every x there is a v, and for every y there is
a w—depending only on y—such that #{x, y; v, w) [Henkin, 1961, p. 181]. Shortly after its
introduction, it was shown by A. Ehrenfeucht that a first-order predicate calculus enriched with the
quantifier Q, ,,, is not recursively axiomatizable, We give a sound axiomatization for such
a calculus and consider the class of models for which it is complete. The axiomatization is in
a Natural Deduction style and we prove various normalization results.
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I. INTRODUCTION

In the 1959 Warsaw Symposium on Foundations of Mathematics, Professor Leon
Henkin introduced a collection of “new” quantifiers, including some whose natural
representation involved two-dimensional arrays. The simplest one is:

{(Vx)@3v)

(Vy)(?lw)} ¢(x, y; v, w).

The interpretation of the above formula is that the v depends only on the x and the
w depends only on the y; in terms of the uniform notation introduced by Henkin for
partially ordered quantifiers the above quantifier is Q2,2.4,(%, y; v, w). One of the
questions posed by Henkin was:

« .. if we enrich the first-order predicate calculus by taking Q, 5.4, as an additional
primitive notion, can we axiomatize the resulting system so as to obtain all valid
formulas as formal theorems?” [Henkin, 1961, p. 181].

A. Ehrenfeucht has shown that the set of valid sentences of such a system is not
recursively axiomatizable and thus the logic of'the quantifier Q5 , 4, is classed with such
non-axiomatizable system as (full) second order logic. On the other hand, even such
strong systems as full second order logic have powerful recursively axiomatizable
subsystems. By and large, the subsystems are obtained by enlarging the collection of
possible interpretations by introducing “non-standard models”. We propose to do
a similar thing with the logic of the Q,,,.4, quantifier.

One of the principal tools in the theory of proofs is the “strong normalization”
theorem which loosely speaking states that any derivation is always transformed into
a normal (irreducible) one by “removing” its redundant formulas one by one. The
normalization theorems for derivations are best considered in Gentzen systems of
natural deduction involving trees of formulas. In such systems of natural deduction the
inferences are broken down into atomic steps in such a way that each step involves at
most one logical constant. Furthermore, the atomic inferences for the logical constants
either introduce or eliminate the logical constant. The forms of the introduction rule(s)
represent, according to Gentzen [Prawitz, 1971, p. 247], the “definitions” of the logical
constants; at least they give sufficient conditions for introducing a formula with this
logical constant as its principal symbol. On the other hand, the eliminations are
motivated by the meaning given to the logical constant by the introduction rules.

All the familiar logical systems formalized in a natural deduction style and whose
rules of inference for the logical constants follow the above guidelines have been shown
to be strongly normalizable, so it is not unreasonable to conjecture that any logical
system, formalized in a natural deduction (orm so that to each “logical” constant there
correspond introduction and elimination rules involving only the given constant and
whose elimination rules are determined by the corresponding introduction rules, satisfies
the strong normalization property. )

The obvious problem with the above conjecture is the meaning of “determined”. In
any case, before attempting to prove (or disprove) the conjecture it is advisable to
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increase the supply of logical systems. Adding more sentential connectives —specially in
the classical case—gives little additional insight. On the other hand, as Henkin has
shown, there are many “unused” quantifiers, in particular 02,245

The interpretation of Q, ; 4, gives us the form of its introduction rule which in turn
leads to a plausible elimination rule. Let #°2 be the system so obtained. We will show
that #°2 satisfies the strong normalization property. In view of Ehrenfeucht’s result,
#4 cannot be a sound and complete axiomatization of Q3,2,0,- Nevertheless, it is
a sound axiomatization and it is complete with respect to an enlarged class of models
(analogous to the situation with second order logic).

The strong normalization theorem will be proved by assigning ordinals to the
derivations. in such a way that “removing” redundant formulas from the derivation
lowers the ordinal. The assignment depends on the end rule of the derivation and the
burden of the assignment is borne by the introduction rules. Since each logical constant
has its own interpretation, each introduction rule determines a particular form of the
assignment. On the other hand, all the elimination rules are considered at once. To
further illustrate the method we briefly consider a variant of #2.

IIL. THE LANGUAGE

1. The primitive symbols of 2.

L for absurdity,

> for the conditional,

A for a (very restricted) function abstractor,
2

for equality of individuals and
(V53%) for the Henkin quantifier (Qz,2,4, X, y; v, W)

14 is defined as (4 > L). Through the use of variables not occurring in the
formula, the existential quantifier, 3, and the universal quantifier, V, can be considered
as special cases of the Henkin quantifier (V5 3}).

Since we are going to use a Natural Deduction System in the style of [Prawitz,
19657, we shall use

dy, a,, ... for the individual parameters,
Xy, Xy, ... for the individual variables,
0y, 0y, ... for the (unary) function parameters.

We shall use a, b, ... to represent individual parameters. Individual variables and
function parameters will be represented by x, y,... and «, f, ... respectively.

2. The non-primitive symbols of 5#.2. In order to reduce the number of subscripts we
shall restrict ourselves to a language with the following non-primitive symbols:

P a binary relational constant,
F  a binary function constant,
k  an individual constant.

2 — Fundamenta Math, 1382
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3. Formulas of #'2. The terms and operators are defined as follows:

(1) every individual constant is a term,

(2) every individual parameter is a term,

) if ¢, t, are terms, then Ftt, is a term,

4) if fis an operator and ¢ a term, then [t is a term,

5) every function parameter is an operator,

6) if t is a term in which the individual variable x does not occur, then (Zx.14), where
1% is the expression obtained by replacing all the occurrences of the individual parameter
a in t by x, is an operator.

We will use the letters f, g, ... for operators.
The formulas are inductively defined by:

(1) L is an (atomic) formula,

(2) if t;, t, are terms, then the expressions ¢, t, and Pt, t, are (atomic) formulas,

(3) if A4, B are formulas and o a sentential connective, then (4o B) is a formula,

(4) if A is a formula in which there are no bound occurrences of the variables
X, y, v, w, then

(V33 Adhss,
is a formula in which all occurrences of x, ¥y, v, w are bound occurrences.
HI. AN AXIOMATIZATION FOR #'9

As already mentioned, the axiomatization () is in the style of [Prawitz, 1965]. That
is, the derivations are going to be certain annotated trees of formulas and they will be
constructed using certain “rules of inferences”. By and large, we shall take the rules of
inferenceés from [Prawitz, 1961].

In order to simplify some of the reduction rules we introduce the following
generalizations of the rule of repetition:

1. The structural rules of inference. For each n and each 1 <i< n we have the
structural rule

®,... 0,

ﬁ A,

i

(81)

where @, ..., @, are derivations of A,, ..., 4, respectively.

The premise 4, will be called the “selected” premise (or formula) and @, the “selected
subderivation” of the application of the rule: thé other formulas and their sub-
derivations will be called the “auxiliary” ones.

The intuitive content ‘of the rule (S}) is that the auxiliary subderivations are
discarded. However, any undischarged assumption formulas in the auxiliary sub-
derivations remain as undischarged formulas of the derivation.

(*) A more apt name would be a “codification™ since we are going to give a set of “rules”
rather than “axioms”. '
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2. Rules of inference for the sentential connectives. The following rules are from
[Prawitz, 1965].

“
A AoB
S5 Y= D
(74)
L 1
TW =

Restrictions. On the L, rule: A is to be an atomic formula different from L. On the
L¢ rule: 4 is not to have the form T B.

3. Rules of inference for the Henkin quantifier.
INTRODUCTION RULE.
Aﬁiﬁiﬁl gb
e (V232
wrzm)azsz, 7730

Restrictions. (1) The parameters a, b, the eigenparameters of the application of the
inference, must not occur in any assumption formula on which Ag5d .y depends.
(2) The individual parameters a, b must not occur in the operators f, g.

ELIMINATION RULE.

(Astes)
I
(Iazyss, B

B

(VZ3Z E)

Restriction. The function parameters ¢, B, the eigenparameters of the application,
must not occur in B, t, 5, (Vj3)A%%44, nor in any undischarged assumption in
IT other than A%P5%,.

The premise (V53,)A%554, is the “major” premise of the application, B is the
“minor”,

4. Rules for equality. In the rules that follow the a’s are individual parameters and
the s and s are terms.

=t =t L, 2t
téf ln 2 1 ZD 2 3
by= 1ty ty =1y
tyZt,  AY
A%

(Ax.f)s =t
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5, Notation for derivations. Observe that we are using “I1, @” for derivations and “2”

for finite sequences of derivations.
If we wish to emphasize that the end formula of IT is 4, we will write

I
A

On the other hand, the notation
z
A

is to represent a derivation with A4 as the end formula and the premises of the end rule
are the end formulas to the derivations in Z.

Ifa=a,b,... and a=a,f,... are finite sequences of individual and function
parameters respectively and if I is a derivation, then we may write “II(a, o)” to
emphasize that the parameters in a and & occur in either the undischarged assumption
formulas or in the end formula of II.

A derivation IT is said to be a proper derivation iff

(1) No parameter is the eigenparameter of more than one application of a rule of
inference.

(2) If a parameter occurs as an eigenparameter, then all of its .ocurrences are above
the application of the rule for which it is the eigenparameter.

By appropriate renaming.of the eigenparameters one may ensure that the deriva-
tions are indeed proper.

Lemma. If II(a, o) is a proper derivation, then for all substitutions (t, f) of (a, o), it is
possible to-rename the eigenparameters of II so that II(t, f) is a proper derivation.

6. Selection rules. The structural rules and VZ 3 eliminations have the property
that the conclusion of an application of the rule is the same formula as one of the
premises. It is as if one of the premises is selected as the conclusion. Consequently, we
shall call them selection rules of #3.

IV. GROUNDED AND IRREDUCIBLE DERIVATIONS

Loosely speaking, a reducible derivation is one in which there is an occurrence of
a formula, called a redundant formula, which is both the conclusion of an introduction
rule and the major premise of an elimination rule. However, since the selection rules
allow the conclusion to be the same as onme of the premises, the introduc-
tion—elimination pair of rules might be separated by a finite sequence of occurrences of
the same formula (called a redundant segment). Thus a more accurate rendition of
a reducible derivation is a derivation in which there are redundant segments. An
“irreducible” derivation is one which is not reducible and a “grounded” one is
a derivation which is either irreducible or no matter in which way the redundant
segments are eliminated, it eventually leads to an irreducible derivation.

icm

Non-linear Henkin quantifier 89

1. Threads and segments in a derivation. A thread(*) in a derivation is a sequence of
formula occurrences 4, ..., 4, such that

(1) 4, is a top formula,
(2) A, is the end formula,
(3) for each i <n, Ai+, is immediately below A,.

A segment in a derivation II is a sequence B, ..., B, of consecutive (ie. B4 is
immediately below B) formula occurrences in a thread of J7 such that

(1) B, is not the conclusion of a selection rule,

(2) B, is not the selected premise of a selection rule,

(3) for each i < n, B, and B, are the selected premise and the conclusion of an
application of a selection rule. ’

In a segment By, ..., B,, all the formulas B, are different occurrences of a unique
formula, called the “formula™ of the segment.
A segment o = A4,, 4,, ..., 4, is the conclusion for an application of a rule of

inference iff 4, is the conclusion of the application. The segment ¢ is a major premise of
an application of a rule iff 4, is a major premise of the application.

DEFINITION. A redundant occurrence of a formula in a derivation IT is an occurrence
which is both the conclusion of an introduction rule and the major premise of an
elimination rule.

DEFINITION. A redundant segment in a derivation II is a segment which is the
conclusion of an introduction rule and the major premise of an elimination rule.

2. Contractions. Suppose that 4 is an occurrence of a redundant formula in the
derivation II. We now proceed to define the derivation Contr (II) obtained by
“contracting”(®) the occurrence of the redundant formula A4 in II.

The definition of Contr,(/I) depends on the rules of inference that made the
particular occurrence of A into a redundant formula.

21. > contraction. In this case A= (B> C) and II is of the form

®
2,
C [
=g &
© =8
qj:’l

(%) This definition, and some of the others that follow were taken from [Troelstra, 1973,
p. 281].
(%) “By-passing” would be a more appropriate name.
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Then Contr,(I1) is the derivation

QZ
(B)
P,
o o]
< g
SZ
© (87)
P,
2.2. V23T contraction. In this case 4 = (V53%)B4bed and IT is of the form
&, (a, b
e (B2t
— (23T ])  By(a, B
W pg 0 %D
(V=37 E)
(€
®,
Then Contr, (1) is the derivation
®,(a, b) &, 1)
Babsid o - (Betfin)
b Sa Vo E I CRNENT)
waBs D e
C
SZ
© (53)
Dy

3. Permutative reductions. Consider now the situation in which the redundant
segment ¢ = Cj, ..., C,4; ends in the major premise of an elimination rule. The
permutative reductions will have the effect of shortening the length of the segment o by
one.

3.1 V232 permutative reduction. Suppose that IT is the following derivation in
which the lowermost displayed occurrence of C is a major premise to an elimination
rule:

@, &,
D C g
D) (+E)
P,
Then Perm,(II) is the derivation
2,
(v;qziltz)B ”C"D“z B v-3-B)
D T
@3
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The conditions on proper derivations guarantee that if II is a proper derivation then
Perm, (1) is indeed a derivation (which can then be transformed into a proper
derivation).

3.2. Structural permutative reduction. Suppose that I is the following derivation in
which the lowermost displayed occurrence of C is a major premise to an elimination
rule:

?, &, Oy
A, A, C
53

c z

Then Perm,(I7) is the derivation

4. Reductions. & is an immediate reduction of II, and we write @< 11, iff @ is
obtained from I7 by either a single contraction or a single permutative reduction. < is
the transitive closure of <, and < the transitive and reflexive closure.

A derivation IT is irreducible (also called normal) iff there is no derivation @ such that
¢ <II.

) Iy, II,, ... is a reduction sequence (starting from I1,) iff for all i, 17;, , < I;. If the
reduction sequence is finite, it is said to terminate (in the last derivation of the sequence)
iff the last derivation in the sequence is irreducible.

The reduction tree of a derivation I is defined so that at the root of the tree we have
the derivation JT and the tree relation is precisely <. Obviously IT is an irreducible
derivation iff its reduction tree consists of exactly one node. We define I7 to be
a grounded derivation iff its reduction tree is finite; equivalently, if every reduction
sequence starting with 1 terminates.

Y. ORDINAL ASSIGNMENTS TO DERIVATIONS

We now propose to assign ordinals to the derivations in such a way that if ¢ <, II
then the ordinal assigned to @ will be strictly smaller than the one assigned to II. The
burden of the assignment will be borne by the introduction rules since the introduction
rules are supposed to “reflect” the “meaning” of the connective (or quantifier) —at least if
the system satisfies Gentzen's inversion principle [Prawitz, 1971, p. 247].

We shall denote the ordinal assigned to the derivation IT by “u(II)".

The method will be to first define  as a partial function and then show that in fact it
is defined for all derivations. We shall express that I7 is in the domain of it by “u(I1)]".
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1. Informal definition.

Atomic derivations. If IT is a derivation consisting of exactly one formula, then pu(I7)|
and p(ll) = 1.

Derivations whose end rule is an introduction rule.

END RULE > INTRODUCTION. Assume that IT is the derivation

4
P
B

A>B

Then if for all derivations @, of A which are in the domain of , the composed derivation
&, (A)- @, is also in the domain of p, then u(IT)] with value the successor of the ordinal
supremum of all ordinals of the form u(®,-(4)" ®,).
END RULE V2 3Z INTRODUCTION. In this case I is of the form
®(a; b)
ﬁ:gﬁg.gb vzasD)
wmazas,
Then u(I1)| provided that u(&(t, s))| for all terms ¢, s, in which case u(IT) is defined as
the successor of the supremum of all ordinals of the form w(o(, S)).

Derivations whose end rule is an elimination rule. Assume that IT is of the form

o, &, o,
A

In order for u(II)] it is required that (a) IT be a grounded derivation and (b) u(®,)},
(@)}, p(@s)|. Futhermore, letting x = u(®,) # u(®,) # u(®,):

Case 1. If I1 is an irreducible derivation, then u(IT) is defined to be «.

Case 2. If IT is a reducible derivation, then it is required that for all derivations
¥ <, I, u(P)]; and u(Il) is defined to be the successor of the supremum of the ordinals
u(¥) # x where ¥ <, II.

Default derivations. The only derivations not accounted for are those whose end
rules are either the structural rules, intuitionistic absurdity or classical absurdity. In this
case, in order for u(II) to be defined it is required that the subderivations of all the
premises of the end rule of IT be in the domain of y. The value of u(IT) is to be the
natural ordinal sum of the values of u on the subderivations of the premises.

2. A more formal definition. It might not be obvious that the above conditions could
be used for a definition of the function (albeit a partial function) u. We now give an
outline on how to prove that there is a (partial) function 4 having the above properties.

DerNrTION. For derivations & and ¥, & < ¥ iff either

(1) @ is a (term substitution instance of a) proper subderivation of ¥, or
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(2) the end rule of ¥ is o Introduction and the end formula of @ is either the
antecedent or the consequent of the end formula of ¥, or

(3) the end rule of ¥ is an elimination rule, ¥ is a grounded derivation and & <, ¥.

By considering what would happen if there were an infinite decreasing < path we
obtain

LEMMA. < is a well-founded relation.

4 can then be defined by induction on the well-founded relation <.

VI, STRONG NORMALIZATION THEOREM FOR 9

The first 4 lemmas are proven by straightforward inductions on the length of the
derivation.

Lemva 1. If w(IT)| and @ is a subderivation of IT then WP and () < pd).

LEmMa 2. If (I (a))l where a is a finite sequence of individual parameters then for all
sequences t (of the same length) of terms u(IT () and p(II(a)) = p(I1 ).

LemmA 3. If u(I1(er) ) where o is a finite sequence of function parameters then for all
sequences f (of the same length) of operators WIE) and p(I (@) = p(I1 ®).

LemMa 4. If u(IT)| and & < IT then (&)} and u(®) < uUI). Thus I is a grounded '
derivation® whenever it is in the domain of p.

DEFINITION. u* is the restriction of u to those derivations IT in the domain of 4 which
have the property that for all finite sequences of derivations X in the domain of U,
w(&-1)].

One of the guiding principles in the definition of u(IT)] is to ensure that the
following is an immediate consequence of the above lemmas:

LEMMA 5. If the end rule of IT is an introduction rule and the derivations of the premises
of the end rule are in the domain of u* then so is II.

The following lemma is even simpler:

LeMMA 6. If the end rule of IT is neither an introduction rule nor an elimination rule and
all the derivations of the premises of the end rule are in the domain of y*, then so is I1.

Eventually we will show that all the derivations are in the domain of y*. But first we
need the following:

LemmA 7. If the end rule of I1 is an elimination rule and the derivations of the premises
of the end rule are in the domain of u* then so is II.

Proof. Assume that IT is a derivation of the form

o, - % .5

where &, is the derivation of the major premise of the end rule of II.
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Let 2 be a finite sequence of derivations in the domain of y. Then the lemma is
proven by showing that u(X- IT)]. Since @, ..., ®; are derivations in the domain of y*,
we see that X<, ..., 2 &, are grounded derivations. Let k be the sum of their
reduction trees. We now proceed by induction on k.

BASIS STEP: k = i. In this case each of 2+ @, ..., 2 &, is an irreducible derivation.
We complete this case by an induction on the length, /, of the derivation Z- &, of the
major premise.

Basis step: ! = 1. In this situation X -IT is an irreducible derivation and hence, in
view of the other assumptions, u(Z-I1)}.

Inductive step: !> 1. If £+ IT is an irreducible derivation, then we once again find
that it is in the domain of u. Thus assume that X-II is a reducible derivation. Let
¥ <, Z-1I. We will show that u(¥)|. It will then follow that X-I7 is a grounded
derivation and hence that u(Z-1)|.

Case 1: ¥ is obtained by a contraction. Since the derivations of the premises of the
end rule are irreducible derivations, this entails that the contraction must have involved
the end rule of II.

Subcase 1.1: (VY 3Z)-contraction. For this to be possible, Z - IT must be a derivation
of the form

@ a’ b a.b.c.d
Mﬁ(ﬁ”f‘l ‘3 21 (M.vtbasb!)
R 0, f)
(V5 3) Mabss, B
B
And hence ¥ is the derivation
©,(a, b) O,(s, t)
Mﬁ:g:%‘.gb z, (Mgfkfélfgt)
(V3 I]IMEEs, 6,(f, 9)
B
B

where now the end rule of ¥ is the structural rule (S3). Since both derivations of the
premises are in the domain of y (recall that ® was in the domain of u*), we sec that
n(?)l.

Subcase 1.2: (=)-contraction. Analogous to the previous subcase.

Case 2: ¥ is obtained by a permutative reduction.

Subcase 2.1: (VI 3Z)-permutative reduction. Assume that - IT is the derivation

@1 (M:.lb.;\.d[ll)
i a.b.c. @2 o,
(vmmegey O P
A 4

B
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Consequently, ¥ is the derivation

(M%)
0;(, )
o, A 4
(V5 B ME55, B
B

In this case we make use of the fact that all the displayed elimination rules in ¥ have
a shorter derivation of the major premise. Thus u(¥)|.

Subcase 2.2. Structural-permutative reduction. Even simpler than the previous
subcase.

INDUCTION STEP: k > i. Very similar to the basis step. The only extra possibility
is that the derivation ¥ -<,ZII be obtained by a reduction strictly within the
derivation of one of the premises of the end rule of 5-I7 ; but then the value of k is
reduced and so the inductive hypothesis on k may be applied.

Tueorem. Every derivation is in the domain of u*.

Proof By induction on the length of the derivation. It is immediate for derivations
consisting of exactly one formula. Lemmas 5 to 7 complete the induction.

COROLLARY. All derivations of #2 are grounded.

VII. SOUNDNESS AND COMPLETENESS

1. Structures, assignments and the soundness theorem. By a Tarskian structure for #2
we understand a system % = (DY, P¥, F¥, k%), where D¥ is a non-empty set—the
domain of o, P" is a subset of the cartesian product of the domain of 9, F¥is a binary
function on the domain of A and k¥eD™

A Henkian structure is 2 system B = (D%, P®, F®, k3, #°®) where (D%, P®, F®, k%) is
a Tarskian structure and #® is a set of functions from (cartesian powgrs of) D® to D¥
which includes F¥, the identity function, the constant functions, all the projection
functions and is closed under composition.

A Henkian structure B = (D%, P¥, F®, k% #%) where #® consists of all the
functions from (cartesian powers of) D® to D® will be called a standard structure.

An assignment in a Henkian structure % is a mapping ¢ of the individual
parameters into D¥ and of the function parameters into the set of unary functions of
HO,

Let @ be an assignment in a Henkian structure 8. Then g can be extended to
a function whose domain is the set of ‘all terms and operators such that *):

(*) We will use the same name for g and its extension.
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1) plk) =k

2) p(F)=F®,

(3) if ¢t is a term, then p()eD®,

@ p(Ft ) = F(p(ty), p(t)) .

(5) if f is an operator, then @(f) is an unary function in #7,

(6) if f is the operator (Ax.t%), then g (f) is the function such that te D% p2(z),
where p2(t) is the assignment which is like g except that a is mapped to 7,

(7) if f is an operator and ¢ a term, then @(f1)= p(/)(pQ).

Then we may define in the usual way j=y A[@] to mean that the formula A is satisfied
in the Henkian structure 8 by the assignment . The only case that may need special
consideration is when the formula A4 is of the form (Vi3,)M24<4,. In that case the
requirement is that the following two clauses be equivalent:

) =g (V3 IIMES55 0],

(IT) there are unary functions 6 and ¢ in s#® and function parameters o, § not

occurring in (VF3%)MZ254, such that for all elements t and ¢ of D¥

b=s M3t [ 050 55]-
The following routine properties can be verified.

LemMas. (1) If t, s are terms and the individual parameter a does not occur in s, then
# () = Po ().

(2) If t is a term and f is an operator and the function parameter o does not occur in f|
then p(f) = pp(2).

(3) If A is a formula and the function parameter o does not occur in the operator f then
Fedile] i Esdlpbpl

(4) If the individual parameter a does not occur in the formula A and |=g A[p], then
Jor all elements d of D%, =y A[p4].

(5) If the function parameter o does not occur in the formula A and |=g A[ ], then for
all unary functions & of H#, |=yuA[p?]

The formula 4 is valid in the structure B, |=g A, ff |= A[p] for all B-assignments p.

The formula A4 is valid, |= 4, iff |=4 A for all Henkian structures 8.

If I' is a set of formulas, then the formula A is a semantical consequence of I', I' |= A,
iff for all Henkian structures B and all B-assignments g, |= aA[p] whenever the
assignment g satisfies all the formulas in I

I\~ A iff there is a derivation IT of #2 whose end formula is A and whose
undischarged assumption formulas belong to I

We now have all the required preliminaries for

SounNDNESS THEOREM. If I'|— A then I'|= A.
Proof We prove by induction on the length of the derivation II that

Jor all B-assignments g, if p satisfies all the undischarged assumption formulas of 11,
then g satisfies the end formula of II.
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The only cases out of the ordinary correspond to the introduction and elimination rules
for the Henkin quantifier. Let us thus consider them in some detail.
Introduction rule. We may thus assume that the derivation I7 is of the following
form:
®(a, b)
Mglgi?igb
(R MELE,

Let ¢ be an assignment that satisfies all the undischarged assumption formulas of JI.
The proof of this case is completed by showing that p satisfies the formula
(VL) MDA, Since @ is a derivation of smaller length than IT and g satisfies all the
undischarged assumption formulas of &, the induction hypothesis gives us that
fo satisfies the formula Mab5¢ .. Since the individual parameters a, b do not occur in
the undischarged assumption formulas we find that for all elements of the universe,
7 and 0, 7 satisfies the formula M24%¢ .. Let 6 = p(f) and ¢ = p(g). Then, choosing
the function parameters o and f to be “new” function parameters we conclude that for
all © and ¢ in D%

Pesh  satisfies the formula Mapsdy,,

and hence g satisfies the formula (V5 3) Mehed,
Elimination rule. In this situation we may assume that the form of I7 is

(MEhss)

2 (o, f)
B

(VS HIMELES,
B

Once again assume that g is an assignment that satisfies all the undischarged
assumption formulas of II. Since ¢ and ¥ are shorter derivations, the induction
hypothesis may be applied to them. Since ¢ has no extra undischarged assumption
formulas we find that the assignment p satisfies the formula (Vs )Mabed  Hence
there are unary functions 6 and ¢ in #% such that for all elements m, n of the universe,
the assignment gy,%%% satisfies the formula M24eds,.

Let = (1), 0 = p(s) and p* = pih. Recall that the conditions on the eigen-
parameters . and £ give us that they do not occur in the individual terms s and . Hence
= p*@1) and o= p*(s).

The proof of this case is completed in two cases. .

Case 1. p* satisfies M{D&4.. Since the individual parameters a, b, ¢ and d are just
place holders, they can always be chosen so that they not occur anywhere else in the
derivation IT and since the function parameters o and f are “new” parameters (not
occurring in the terms ¢, ), the assumption that g satisfies all the undischarged
assumption formulas of I7 leads us to g* satisfying all the undischarged assumption
formulas of W. Thus p* satisfies B, and hence g satisfies B as required.

Case 2: p* does not satisfy M{Lg4,. This case is impossible since p* = pb&4.
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Since the standard structures are indeed Henkian structures, the above soundness
theorem gives us that the calculus 22 is also sound with respect to the original
interpretation of (V5 3;,) of Henkin. More specifically, if S is a provable sentence of #°.2
then § is valid with respect to Henkin's original interpretation.

2. Completeness with respect to the Henkian structures. A set I' of formulas is
syntactically consistent iff '+ L.

I' is semantically consistent iff there is a Henkian structure B and an assignment
¢ which satisfies all the formulas in TI.

TreoreM (Completeness with respect to Henkian structures). If ' is a syntactically
consistent set of formulas then it is semantically consistent.

Proof In order to simplify the exposition and reduce the number of “new”
individual parameters to be introduced, we will assume that the universal quantifier V is
part of the primitive symbols of the language.

Assume that I' is a syntactically consistent set of formulas of #2. We shall
determine a Henkian structure B and an assignment g which satisfies all the formulas
of I'. Since the method of proof is a variation of the one introduced by Henkin for the
completeness of the first (and second) order predicate calculus, we shall content
ourselves with presenting an outline in a series of steps.

Step 1. Introduce denumerably many new individual and function parameters. Let
2" be the new calculus,

Step 2. Let A;, A,, ... be an enumeration of all the formulas of #2" which start
with the universal quantifier V.

Step 3. Let Hy, H,, ... be an enumeration of all the formulas of #2" which start
with the Henkin quantifier vZ3Z.

Step 4. Let ¢y, ¢, ... be an infinite sequence of distinct individual parameters of
#2* such that ¢, does not occur in the set of formulas IJ{dy, ..., 4

Letay, a,, ... and B, B,, ... be infinite sequences of distinct function parameters of
#2" such that «, B, do not occur in the set of formulas ru{H,... H}.

Step 5. Let I'™* be the union of I" and all the formulas of the form

M, > VXan (V; aua)Nx.y.u.w o Vx Vny.y.mx.[h_v

where we are assuming that A4; = VxM, and H,= (v} E AT,
Step 6. I'* is a syntactically consistent set of formulas of 44",
This step follows because of the way in which the “new” parameters are chosen.
Step 7. Let I'* be a maximally consistent extension of [™*.
Step 8. Let T be the set of terms of #.2* and let ~ be the relation on T defined by

t~s iff (t=s)el™",

= is a congruence relation on T: Let £/~ be the congruence class of t and let D be the
set of congruence classes.

Step 9. For each operator f of #.2% we let S /= be the set of pairs of the form
(t/=,ft/~) where t is a term in T It can be shown that S/~ is a function.

icm

Non-linear Henkin quantifier 99

Step 10. The Henkian structure B is obtained as follows: The domain of 8B is the set
D of =~ congruence classes,

(/2. s/=)eP" I P ST, PPy, 5)a] = Fl1, sl/x,  K® = k/m,

A is the smallest set of functions which includes F¥ the identity, the projection
functions, all functions of the form J/~ — where J is an operator of #42* — and is
closed under composition.

Step 11. The assignment ¢ is delined by ple)=c/=~, () =0/~ for each
individual parameter ¢ and function parameter ¢ of #2* respectively.

Step 12, For all formulas G of #2", =g Glw] i Ger.

VII. A VARIANT OF #'9

The method that Ehrenfeucht used to show that first-order logic extended with the
Henkin quantifier V232 is not recursively axiomatizaple was to show that the
quantifier “there exists infinitely many elements such that”, can be defined in terms of
VZ>3T. The latter was done by showing that V237 could be used to define the
quantifier “there exists a (1-1) unary function such that” [Henkin, 1961, p. 182].
Consequently, it is possible to define in 9 the counting quantifier <. where the
interpretation of the sentence

(4, <, B,)

is that there are at least as many elements that satisfy B as there are those satisfying 4.

Let 42 be the extension of first-order logic obtained by adding the above counting
quantifier <,,. Since the quantifier “there exist infinitely many such that” is definable in
terms of <,, it follows that, in its standard interpretation, ¥2 is not recursively
axiomatizable. On the other hand, if instead of using an arbritrary function to do the
counting, we require that it be one already in the structure, then the methods of the
previous section can be used.

Our interest is focused on the %2 strong normalization theorem.

We propose the following rules of inference for the counting quantifier <,:
INTRODUCTION RULE [OR <

X gt

(fa==fh) (A)
B/,
B (S

Restrictions, The individual parameters a, b, ¢, called the eigenparameters of the
application, are to be distinet and not to occur in undischarged assumption for-
mulas—except for the displayed ones. f is to be a unary operator in which there are no
occurrences of the eigenparameters.

ELIMINATION RULE #OR <.
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Restrictions. The function parameter o, the eigenparameter of the application, is not
to occur in any undischarged assumption —except the displayed one—nor in any of the
premises. The formula C is to be distinct from the formula B,,.

<, CoNTRACTION. The derivation

(fa=fb) (4)

P, P, (c) (Ba)
=b B, Dy D)
A, <.B, A, C
c (<4 B)
“contracts” to
P,
(4,)
(fa=fb) (4) ®,(1)
L X0 (B,
=b Bf ¢ ‘pa ¢4(f )
A\: =x B x At
- (53

ORDINAL ASSIGNMENTS, In order for the derivation

(fa=fb) (4)
D, D,(c)
a = b ch (s*l)
(4,<,B)
to be in the domain of y it is required that both &, and ®,(c) be in the domain and that
for all terms ¢ and all derivations ¥ of 4, which are in the domain of p, the composite
derivation ¥ @(t) of By, be also in the domain. The actual ordinal assigned is not too
important as long as the analogues of Lemmas 1-4 of Section VI hold.
The case when the end rule corresponds to the elimination rule for <, is taken
under the uniform condition for elimination rules (see Section VI).
It should be clear that the method used to show that all derivations of #2 are
grounded can be applied to #2 to obtain the analogous result.
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