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On a theorem of Baumgartner and Weese
by

R. Frankiewicz and P. Zbierski (Warszawa)

Abstract. A model of ZFC + MA (o-linked) is constructed in which the continuum ¢ is large

. and each Boolean algebra of cardinality < c is representable as the algebra of partitioners of some

maximal antichain in P (w)/fin.

0. Let us consider the notion of partitioner-representability of Boolean algebras
introduced by Baumgartner and Weese in [B-W]: if 4 is a m.a.d. (2 maximal family of
almost disjoint subsets of ), then a set x < w is called a partitioner of A if for each ac A
either a S, x or an x =, @ (ie. either a\ x or a N x is finite, respectively). Finite unions
a;U...Va, of elements of 4 as well as finite subsets of w are called trivial partitioners.
The family F (A) of all the partitioners is a Boolean subfield of P (). We say that a given
Boolean algebra B is representable on A if B is isomorphic to the factor algebra F (4)/T;
where T denotes the ideal generated by trivial partitioners.

The fundamental theorem in [B-W] (see also [F-Z,]) says that, assuming CH (the
continuum hypothesis), each Boolean algebra of cardinality < c is representable on
some m.a.d. A in the sense described above.

In [F-Z,] it is proved that—consistently with MA (Martin’s Axiom)—the power
set algebra P(w,) may not be representable. Hence, the assumption of CH in the
theorem of Baumgartner and Weese cannot be replaced by MA.

On the other hand, a question arises (see Problem 7 in [B-WJ) if the conclusion of
the theorem is equivalent to CH. Here we answer this question negatively. Thus, we
prove the following

THEOREM. It is consistent with ZFC+MA(o-linked) that the cardinality c is
arbitrarily large and each Boolean algebra of cardinality <c is represen-
table on some m.ad.

In the proof we apply the technique of Laver [L] in a similar way tq [B-F-Z].

1. Assume that the ground model V satisfies the generalized continuum hypothesis
and choose a regular cardinal x > w,. Hence, k satisfies x=* = .

We define below a finite support iteration P, = Y, . P, having c.c.c. (countable
chain condition) so that, in the corresponding generic extension ¥ [G], the conclusion of
the Theorem will hold true. At some stages o < « of the iteration we add generic subsets
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X, € o filling gaps in subalgebras of P (w)/fin generated by some previously added X,
B < 0. Consequently, in V[G] each algebra B, with card B < ¢, will be embeddable in
P (w)/fin (comp. [B-F-Z]).

More exactly, for &: 1 — {0, 1}, let B(®) be the subalgebra of P(w)/fin generated
by {X,: ® (o) = 1}. For each B with card B < ¢, we find a @ such that B is isomorphic
to B(®). Simultaneously, at some other stages f, we add generic subsets a; S o so that,
for each @ as above, there is a m.a.d. 4 (@) consisting of some of the &’s on which B is
representable. In other words, for each B we choosc some branch ¢ of the binary tree
{Ue<x {0, 1}* and force along & so that B = B(®) and B is representable on A (). Since
x<* = x all this can be done in x steps with the help of an ordinary (i.e. linear) iteration
of length .

The definition of the iteration is inductive and uses a well known “booking”
technique. At each step o < x we fix an enumeration e, = {d(«, &): & <} of some
objects in ¥, so that each object d(a, £) occurs x times in e,.

Let J: kxkx —x be a pairing function satisfying

&n<J(E

and define Nr(d (e, &j)) = J (&, &). Thus, each object d (enumerated at any stage) has
arbitrarily large number Nr(d) < x and each ordinal « < x is the number a = Nr(d) of
some object d enumerated at some stage < a.

Assume the following notation. For ¢: a— {0, 1} let B(p) be the subalgebra
generated by {X,;: @(f) = 1}. Thus, if s is a finite zero-one sequence with dm(s)

< {p: p(B)=1} and

for all ¢, <x

X@= ) X0 N (0\X,),
s(&)=0 s(py=1
then B(¢) consists of finite unions of sets of the form X (s). A gap in B(¢) is a system of
the form
L={{X(): seS}; {X(@): teT)H

where X (s)nX(t) =, for each seS and teT Moreover, we assume that the
conditions s,, ..., s,€S and X (5) £, X (5;) U...u X (5,) imply s€ S, and similarly for T.

Now, we can describe the inductive step. Assume that P, is already defined. We
enumerate all the pairs (X, ¢>, <Y, 9>, (L, ¢) of P,-names such that P, forces the
following properties:

1) X, Y=o X, Yé¢fin and o\Y ¢fin.

(2) XeB(p), Y¢B(p) and L is a gap in B(p).

(3) @eD,, where D, consists of all e V® with dm () < o« and such that if
{ye & < &} is an increasing enumeration of {y: ¥ (y) = 1}, then for each & < § there is
a gap L, in B(|y,+1) satisfying yg4 1 = Nr(Lg, ¥|ps+1).

We extend the function Nr to the just enumerated objects as described above.

We also assume inductively that there are a.d. families 4,(p) & V® having the
property

Aa((P) = {:L;)aA'yé'%l ((Pl’yé"_ 1)
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where, as in (3) above, y, enumerates the set {y: ¢(y) = 1} and such that each infinite
XeB(p) is a partitioner of 4,(p) and X¢[4,(¢)] (the ideal generated by A_(¢)).

Now, the ordinal & determines a pair (X, @), (Y, 0> or (L, p> enumerated at
some stage f < o Accordingly, we distinguish three cases.

Case 1: o = Nr(X, ¢). We add a new element a = a,(X, @) under X and almost
disjoint from 4,(p). We may assume that we have a fixed ultrafilter F = B(p)
containing X in ¥® (i.e. P, forces all this). Let R be the almost disjoint forcing over the
family

H={w\Z: ZeF}u A4,(p).

Thus, the conditions p of R have the form p = {x,, W,, where x, is a zero-one sequence
of some length /(p) and w,, is a finite subset of H. The relation p < g holds if and only if
X, S X,, W, S w, and for each i with I(g) <i<I(p), the condition iel w, implies
x,(H)=0.

It is well known that we have

P,|-“R is o-linked”.

By the inductive assumption the set w\| J w, is infinite for each p. Hence, if G = R is

a generic filter, then the set
a, = {iew: IpeGx,(i) = 1]}
is infinite, almost disjoint from A4,(p) and a, =, Z for each ZeF. Define
Por1 =P, xR, Aui(0) = 4,(0)u{a.

It follows easily that the inductive assumption is still valid for B(p) and A,+1(p).

Case 2: a = Nr(Y, ¢). Suppose that

P, |-“VxeB(g)[(Y\x) U (\Y)¢ [A. (@)]]",

ie. Y is congruent mod [4, ()] to no element of B(p). Then the complement w\Y has
the same property and it follows that the set

J ={xeB(p): either xn Ye[4,(p)] or x\Ye[4, ()]}

is a proper ideal in B(gp). Let F be any ultrafilter in B(p) extending the set
—J = {w\x: xeJ}. Thus, for each xeF we have x n Y¢[4,(p)] and x\Y ¢[A4,(¢)].

Hence, we may apply the almost disjoint forcing R (Y) which adds a set a under
each x N Y for xeF, and R(w\Y) adding a set b under the family {x\Y: x€ F} so that
both a and b are almost disjoint from A4,(¢). Define

Py =P sR(*R(@\Y), 4ui1(p) = 4,(¢)0 {a,}, where a, = aUb.

It follows that the inductive assumption holds for B(p) and A, (¢). Since
Y intersects nontrivially the element aube A, (p) we infer that Y is now not
a partitioner of A, (e).


Artur


170 R. Frankiewicz and P. Zbierski

Case 3: a = Nr(L, o). Suppose that
L={{X(s): seS}; {X(@®): teT}>.
We enlarge L by adjoining all the elements of A4,(¢). Thus, let
S,={&<a: VieT[a.nX (1) =, 0]}, * Ty={n<a: teT[a, 5, X ()]}

Defi .
e L¥= <{X (S)}SES o {azj}‘_feSA; {X (t)}reT U {aﬂ}llF.TA>'

Now, we apply Kunen’s forcing filling the gap L*:
P,l~|_1 = PN*E(L*).

The conditions pe E(L*) have the form p = {u,, X, w,», where u, and w, are finite
subsets of S U S, and T U T}, respectively, and x,, is a finite zero-one sequence of some
length I(p), so that Un W < I(p) for each Ueil, and WeW,, where

4, ={X(s): seS}u{a: £eS,},  w,={X(): teT}u{a; neT,}.

The ordering on E is defined thus:

p<qg iff w cu,w,Sw,x Sx,

and for each i with I{g) <i < I(p) the following implications hold:
if ielJd,, then x,()=1, if ie{JW,, then x, (i) = 0.
If G < E(I*) is a generic filter, then it follows immediately that the set
X, = {iew: JpeCG[x,() =11}
is a partitioner of A4,(p) and fills the gap L:

X(s) s, X, for each seS, X NnX()=,0 for each teT

Let ¢ be an extension of ¢ such that ¢*(&) =0 for dm(p) < ¢ <« and ¢*(0) = 1.
Hence ¢* €D, and each element of B(¢%) is a partitioner of 4,1 (9%) = A, (¢p) (we add
no elements to 4,(¢) in this case).

We have to show yet that no infinite element Z e B(¢®) is covered by a finite union
of elements of 4,+1(¢%). By the inductive assumption this is true for Z e B (¢). Suppose
that Ze B(¢% has the form

Z=X(@)nX,, where X(o)eB(p),

and that Z <, a5, U ... Ua, for some ay,, ..., g, € Agr1 (9%, Since Ay (0% = A4,(0)
and Z is a partitioner we have Z =, ay, U... U ag, and hence Z is in the ground model
V). Note that E(L*) is equivalent to E, x E; where E,, E, are gap-filling forcings for
L* restricted to X (¢) and w\X (o), respectively, in the obvious sense. Since E, produces
X, N X (6) = Z we see that E, must have an atomic element u, x, w) and hence (in this

f
case of Z) X,nX@) =X nUi=, X () nX(s)

sey
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It follows that Z = X, ~ X () is in B(p) and hence (by the inductive assumption)
must be finite. The case of Z =X (1) N (w\X,) is similar.

For limit ordinals & < 1 we define P, as the direct limit of {Py: B <o} We also
assume P, = P, in all cases not mentioned above. This completes the definition of the
iteration.

In the next section we prove that P = P, has c.c.c. (in general, gap-filling forcings
E do not have cc.c). Assuming this for the moment let us look how P works.

Let G = P, be a generic filter. It is clear that V' [G]}= “c = x” and V [Gla]|=“c < k”
for each « < «. Let B be a Boolean algebra in ¥ [G], with card B = k. There are elements
b,eB for a < such that B = | J,<,B,, where

Bo = {07 1}»
B,+1=[B,, b,] (the subalgebra generated by B, and b,
B,= ) B, for limit o <x.

B<a

Assume inductively that we have an embedding f: B, P(w)/fin such that
Sbg)=X,ffin for each ¢ <a Hence, f[B,]=B(p,)/fin, where ¢, is defined on
sup{ys: & < a}, @,(y) =1 for each ¢ <« and ¢, is zero otherwise. Define

be)=(II bg-( [T ~b,)
s(8)=0 sin=1
where s is a finite zero-one function on a.
The next generator b, determines a gap

K = {{b(s): b(s) < b,}; {b(®): b(H)-b, = 0}>
in the algebra B,. Let L be the image of K under £ Thus L is a gap in B(p,) and

L= <{X (Sf)}s; {X(tf)}T>=

where s, is defined on {y,: £éedm(s)} by the equality S;(y2) = s(¢) and ¢, is defined
similarly.

Let B < x be so large that ¢, and L are in ¥®#. Since the continuum at stage f is
smaller than x, we can find a number y, > B such that y, = Nr(L, ¢,) and

Nr(X, ¢,), Nr(Y, ¢,) <7y,, for all infinite XeB(p,) and YeVENB(gp,).

We define f (b,) = X,, and ¢,+; = ¢&. This extends f to an embedding from B, onto
B(@q+,)/fin. Indeed, by the well known theorem on extension of homomorphisms, we

have to show that the following equivalences hold:
b(s)<b,=X(s) 5 Xy, bO)b,=0=X(t)nX, =0.

The implications from left to right are obvious, since X, fills the gap L. The converse
implications follow immediately from the following
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LemMA 1. Let p = {u, x, wy e E(L) and let X, stand for a generic subset added by E.
Then we have
f plF“X(0) g, X,”, then X(0)<, UXx),

seu

if pIFX@)nX, =0, then X(@) <, |)X0).
tew
Similarly, pl-“a; <, X,” implies a;, 5, X (s) for some seu or Eeu, and also
pl-fa,n X, =, & implies a, S, X(t) for some tew or new.
Proof. We may assume p |-“X (o)\k € X,” for some k. It follows that

X (o)\max {k, I(p)} = | 4.
Ifu={s,...,s, &,..., £,}, then we obtain

XS, X)u...uX(s)=UX).

Indeed, Z = X (o)\(X (s,)U... U X (s,) is in B(p,) and hence X(s) =, Z for some s.
Since X (5) S, a;, U...Uag, X(s) must be finite and consequently Z is finite. The
remaining cases are proved in a similar way.

It is now clear that the algebra B is isomorphic to B(@)/fin = | J,<, B (¢,)/fin. Let

A(@) = U A'Yu ((pa)'
a<g
By construction, each non-zero element b of B(®) is a nontrivial partitioner of 4 (9)

(in fact there are x many elements of 4 (&) under b), and each Y¢B(d) is either
a nonpartitioner or it is congruent to an element x of B(®)mod A (), ie.

(N\X) U EAY) =, (g, U U Nay, V... va,)

for some ag,, ..., ag,, ay,, ..., 4y, € A(P). Note that such an x is uniquely determined. It
follows that A (®) is an m.a.d. and the mapping ¥ » xis a homomorphism from the field
of all the partitioners onto B(®), with kernel consisting of all trivial partitioners. Thus,
B(9) and hence also B is representable on A(®).

For the representability of algebras B with card B < « see the end of the next
section.

2. The almost disjoint forcing R is a particular case of E (in which u(p) = @ for
all p). Hence, all stages of the iteration can be treated uniformly, with an obvious
modification in the case of « = Nr(¥, ¢).

Let Q, < P, consist of all peP, for which we have the following:
(1) For each yesupp(p) there are u,(p), x,(p), w,(p) such that
ply =P () = <u, (), x, (1), wy>”

and dm (s) < supp(p), £esupp(p) for each &, seu,(p) uw,(p).
(2) For each y e supp (p), the number I(x, (p)) is constant, We write 1(p) for this value,
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LeMMA 2. For each peP, and mew, there is a ge Q, such that ¢ < p and 1(q) >m.
Proof. By induction on a. The only essential case is & = f+1 and fesupp (p). We
find an rePy, r < p|p, such that

=P (B) = Suy(p), x,(p), wy ()"

for some u,(p), x;(p), wy(p). Extending r if necessary, we may assume that supp (r)
contains each &, where & eu,(p) U w,(p) or éedm(s) for some seug(p) U wy (p). Now, by
the inductive hypothesis, we may assume that re Qgand I(r) 2 m. If s, Leug (p) U wy (p),
then r determines X (s) and a, up to I(r). Hence, if [(r) > I(p), then there is an extension
%, 2 x4 (p) such that [(xp) = I(r) and

7 =Sy (0), %, wp(@)> < p(B)”.

Thus, if g = r and ¢(B) = <u;(p), %, ws(p)), then g < p, qeQ, and Ig) = I(r) = m,
which finishes the proof.
The next 'lemma shows that Q, has c.cc.

LemMma 3. If p, qeQ, are such that

x,(p) = x,(@) =x  for each yesupp(p) " supp(g),

then p, q are compatible. In fact, there is anr < p, q such that re Q, and 1(r) = 1(p) = I(g)-

Proof. By induction on o. The only essgntial case is o= f+1 and fesupp(p)
nsupp(g). We know that

PIB D (B) = <up (0, Xz (0)s wp(@)>s  alB-a(B) = <uy(a), x5(a) ws (0)>

and x,(p) = x,(g) = x. By the inductive hypothesis there is an r; < p|B, g} f such that
r,€Q, and I(ry) = I(p) = I{g) = I. It follows that

A N

for each U el (p) U iiy(g), Wew,(p) U Wy(g). We have to prove that, for some 7 < 1y,
FeQ, and I(F) =1, F|-“Un W <", for then r|f =7 and

r(B) = <up(p) L 1y (@), X, Wy (p) W W, (g))
define r, as required.
We prove this by induction on . Lete.g. U = X (s) and W = a,. If maxdm (s) <z,
then
rln+1 X (s) na, =, 07,
and hence rylnl-“X (s) S, {X (x): tew,(ry)}”. Define Fpln=ryln, Fp(n) =<x,(rp),

w,(r)w {s}> and 7y(&) =ry() for n <& < p. Thus, 7eQy, Fy<Ty, 107 = I and
X (s) na, < I". If maxdm(s) > #, then for some yedm(s)

raly+1-“a,n X, =,0" (or 4,5, X,)
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and hence
alv g, nu=, 0" for cach ueu,(ry),

By the inductive hypothesis (applied for each ueu,(ry)), there is an r, < rgly, r,€Q, and
I(r,) =1, such that

fy-“a,nuc”  for each ueu,(ry).

Hence, we may define fly=r,, F)=r(§ for y<&é<p and 5 (y)
= Gt %, (rg)y W, () ).

Consider yet the case U = X (s)and W =X (1). If o = s Ut is not a function, then
obviously ry [|-“X (s) n X () = ©”. Otherwise, let y = max dm (). We have X ENnX(@)=
=X(0)=X(c]y)n +X, and hence

sy +1FX @) n X, =9  (or X(oly) 5, X).

Thus, r4ly F“X (e]y) nu =, & for each ueu, (r;) and, by the inductive hypothesis, there
is an r, <1rylg, r,€Q, and I(r,} =1, such that

nIEX (el nus”  for each ueu,(ry)

and hence 7|y =r,, 7 (y) = <, (ry), x,, w, () U {o|y}> and Fpll) =rp(& fory<é<p
is as required. All the remaining cases are proved in a similar way.

Now, beginning with r,, we apply the above to each pair U, W to obtain
a decreasing sequence of corresponding Fg's. The last term 7 has the required properties,
which finishes the proof.

Now, it is easy to see that P, has c.c.c. Indeed, suppose that {g,: o < @} is an
uncountable antichain. By Lemma 2 we may assume that {4, v <o} = Q.. We apply
the A-system lemma to {supp(g,): % < w,} and find a pair g,, g, satisfying the
assumptions of Lemma 3.

To obtain MA (c-linked) we force as described above at—say—all even stages,
while at odd stages o we force with o-linked forcings of cardinality < x. The proof that
this combined iteration has c.c.c. is very similar to that above, For details see [B-F-Z].
In particular, P(c) holds in our model and hence each algebra of cardinality < ¢ is
representable (see [B-W], Theorem 2.5).
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