

On a theorem of Baumgartner and Weese

b

R. Frankiewicz and P. Zbierski (Warszawa)

Abstract. A model of ZFC+MA(σ -linked) is constructed in which the continuum c is large and each Boolean algebra of cardinality $\leq c$ is representable as the algebra of partitioners of some maximal antichain in $P(\omega)$ /fin.

0. Let us consider the notion of partitioner-representability of Boolean algebras introduced by Baumgartner and Weese in [B-W]: if A is a m.a.d. (a maximal family of almost disjoint subsets of ω), then a set $x \subseteq \omega$ is called a partitioner of A if for each $a \in A$ either $a \subseteq_* x$ or $a \cap x =_* \emptyset$ (i.e. either $a \setminus x$ or $a \cap x$ is finite, respectively). Finite unions $a_1 \cup \ldots \cup a_n$ of elements of A as well as finite subsets of ω are called trivial partitioners. The family F(A) of all the partitioners is a Boolean subfield of $P(\omega)$. We say that a given Boolean algebra B is representable on A if B is isomorphic to the factor algebra F(A)/T, where T denotes the ideal generated by trivial partitioners.

The fundamental theorem in [B-W] (see also [F- Z_1]) says that, assuming CH (the continuum hypothesis), each Boolean algebra of cardinality $\leq c$ is representable on some m.a.d. A in the sense described above.

In [F- \mathbb{Z}_2] it is proved that—consistently with MA (Martin's Axiom)—the power set algebra $P(\omega_1)$ may not be representable. Hence, the assumption of CH in the theorem of Baumgartner and Weese cannot be replaced by MA.

On the other hand, a question arises (see Problem 7 in [B-W]) if the conclusion of the theorem is equivalent to CH. Here we answer this question negatively. Thus, we prove the following

THEOREM. It is consistent with $ZFC+MA(\sigma-linked)$ that the cardinality c is arbitrarily large and each Boolean algebra of cardinality $\leqslant c$ is representable on some m.a.d.

In the proof we apply the technique of Laver [L] in a similar way to [B-F-Z].

1. Assume that the ground model V satisfies the generalized continuum hypothesis and choose a regular cardinal $\kappa > \omega_1$. Hence, κ satisfies $\kappa^{<\kappa} = \kappa$.

We define below a finite support iteration $\mathbf{P}_{\kappa} = \sum_{\alpha < \kappa} \mathbf{P}_{\alpha}$ having c.c.c. (countable chain condition) so that, in the corresponding generic extension V[G], the conclusion of the Theorem will hold true. At some stages $\alpha < \kappa$ of the iteration we add generic subsets

 $X_{\alpha} \subseteq \omega$ filling gaps in subalgebras of $P(\omega)$ /fin generated by some previously added X_{β} , $\beta < \alpha$. Consequently, in V[G] each algebra B, with card $B \leq c$, will be embeddable in $P(\omega)$ /fin (comp. [B-F-Z]).

More exactly, for Φ : $\kappa \to \{0, 1\}$, let $B(\Phi)$ be the subalgebra of $P(\omega)$ /fin generated by $\{X_{\alpha}\colon \Phi(\alpha)=1\}$. For each B with card $B\leqslant c$, we find a Φ such that B is isomorphic to $B(\Phi)$. Simultaneously, at some other stages β , we add generic subsets $a_{\beta}\subseteq \omega$ so that, for each Φ as above, there is a m.a.d. $A(\Phi)$ consisting of some of the a's on which B is representable. In other words, for each B we choose some branch Φ of the binary tree $\bigcup_{\alpha<\kappa}\{0,1\}^{\alpha}$ and force along Φ so that $B=B(\Phi)$ and B is representable on $A(\Phi)$. Since $\kappa^{<\kappa}=\kappa$ all this can be done in κ steps with the help of an ordinary (i.e. linear) iteration of length κ .

The definition of the iteration is inductive and uses a well known "booking" technique. At each step $\alpha < \kappa$ we fix an enumeration $e_{\alpha} = \{d(\alpha, \xi): \xi < \kappa\}$ of some objects in V, so that each object $d(\alpha, \xi)$ occurs κ times in e_{α} .

Let $J: \kappa \times \kappa \to \kappa$ be a pairing function satisfying

$$\xi, \eta < J(\xi, \eta)$$
 for all $\xi, \eta < \kappa$

and define $Nr(d(\alpha, \zeta)) = J(\alpha, \zeta)$. Thus, each object d (enumerated at any stage) has arbitrarily large number $Nr(d) < \kappa$ and each ordinal $\alpha < \kappa$ is the number $\alpha = Nr(d)$ of some object d enumerated at some stage $< \alpha$.

Assume the following notation. For $\varphi: \alpha \to \{0, 1\}$ let $B(\varphi)$ be the subalgebra generated by $\{X_{\beta}: \varphi(\beta) = 1\}$. Thus, if s is a finite zero-one sequence with $dm(s) \subseteq \{\beta: \varphi(\beta) = 1\}$ and

$$X(s) = \bigcap_{s(\xi)=0} X_{\xi} \cap \bigcap_{s(\eta)=1} (\omega \setminus X_{\eta}),$$

then $B(\varphi)$ consists of finite unions of sets of the form X(s). A gap in $B(\varphi)$ is a system of the form

$$L = \langle \{X(s) \colon s \in S\}; \{X(t) \colon t \in T\} \rangle$$

where $X(s) \cap X(t) = \emptyset$ for each $s \in S$ and $t \in T$. Moreover, we assume that the conditions $s_1, \ldots, s_n \in S$ and $X(s) \subseteq_* X(s_1) \cup \ldots \cup X(s_n)$ imply $s \in S$, and similarly for T.

Now, we can describe the inductive step. Assume that \mathbf{P}_{α} is already defined. We enumerate all the pairs $\langle X, \varphi \rangle$, $\langle Y, \varphi \rangle$, $\langle L, \varphi \rangle$ of \mathbf{P}_{α} -names such that \mathbf{P}_{α} forces the following properties:

- (1) $X, Y \subseteq \omega, X, Y \notin \text{fin and } \omega \setminus Y \notin \text{fin.}$
- (2) $X \in B(\varphi)$, $Y \notin B(\varphi)$ and L is a gap in $B(\varphi)$.
- (3) $\varphi \in D_{\alpha}$, where D_{α} consists of all $\psi \in V^{(\mathbf{P}_{\alpha})}$ with $\dim(\psi) \leqslant \alpha$ and such that if $\{\gamma_{\xi}: \, \xi < \delta\}$ is an increasing enumeration of $\{\gamma: \, \psi(\gamma) = 1\}$, then for each $\xi < \delta$ there is a gap L_{ξ} in $B(\psi|\gamma_{\xi}+1)$ satisfying $\gamma_{\xi+1} = \operatorname{Nr}(L_{\xi}, \psi|\gamma_{\xi}+1)$.

We extend the function Nr to the just enumerated objects as described above. We also assume inductively that there are a.d. families $A_{\alpha}(\varphi) \subseteq V^{(\mathbf{P}_{\alpha})}$ having the property

$$A_{\alpha}(\varphi) = \bigcup_{\xi < \delta} A_{\gamma_{\xi}+1}(\varphi | \gamma_{\xi}+1)$$

where, as in (3) above, γ_{ξ} enumerates the set $\{\gamma: \varphi(\gamma) = 1\}$ and such that each infinite $X \in B(\varphi)$ is a partitioner of $A_{\pi}(\varphi)$ and $X \notin [A_{\pi}(\varphi)]$ (the ideal generated by $A_{\pi}(\varphi)$).

Now, the ordinal α determines a pair $\langle X, \varphi \rangle$, $\langle Y, \varphi \rangle$ or $\langle L, \varphi \rangle$ enumerated at some stage $\beta < \alpha$. Accordingly, we distinguish three cases

Case 1: $\alpha=\operatorname{Nr}(X,\varphi)$. We add a new element $a=a_{\alpha}(X,\varphi)$ under X and almost disjoint from $A_{\alpha}(\varphi)$. We may assume that we have a fixed ultrafilter $F\subseteq B(\varphi)$ containing X in $V^{(\mathbf{P}_{\alpha})}$ (i.e. \mathbf{P}_{α} forces all this). Let \mathbf{R} be the almost disjoint forcing over the family

$$H = \{\omega \backslash Z \colon Z \in F\} \cup A_{\alpha}(\varphi).$$

Thus, the conditions p of $\mathbf R$ have the form $p = \langle x_p, w_p \rangle$, where x_p is a zero-one sequence of some length l(p) and w_p is a finite subset of H. The relation $p \leqslant q$ holds if and only if $x_q \subseteq x_p$, $w_q \subseteq w_p$ and for each i with $l(q) \leqslant i < l(p)$, the condition $i \in \bigcup w_q$ implies $x_p(i) = 0$.

It is well known that we have

$$\mathbf{P}_{\alpha} \parallel$$
 "R is σ -linked".

By the inductive assumption the set $\omega\setminus\bigcup w_p$ is infinite for each p. Hence, if $G\subseteq \mathbf{R}$ is a generic filter, then the set

$$a_{\alpha} = \{ i \in \omega \colon \exists p \in G [x_p(i) = 1] \}$$

is infinite, almost disjoint from $A_{\alpha}(\varphi)$ and $a_{\alpha} \subseteq_{*} Z$ for each $Z \in F$. Define

$$\mathbf{P}_{\alpha+1} = \mathbf{P}_{\alpha} * \mathbf{R}, \quad A_{\alpha+1}(\varphi) = A_{\alpha}(\varphi) \cup \{a_{\alpha}\}.$$

It follows easily that the inductive assumption is still valid for $B(\varphi)$ and $A_{n+1}(\varphi)$.

Case 2: $\alpha = Nr(Y, \varphi)$. Suppose that

$$\mathbf{P}_{\alpha} \Vdash \text{``} \forall x \in B(\varphi) \big[(Y \setminus x) \cup (x \setminus Y) \notin [A_{\alpha}(\varphi)] \big] \text{''},$$

i.e. Y is congruent mod $[A_{\alpha}(\varphi)]$ to no element of $B(\varphi)$. Then the complement $\omega \setminus Y$ has the same property and it follows that the set

$$J = \{x \in B(\varphi): \text{ either } x \cap Y \in [A_{\alpha}(\varphi)] \text{ or } x \setminus Y \in [A_{\alpha}(\varphi)]\}$$

is a proper ideal in $B(\varphi)$. Let F be any ultrafilter in $B(\varphi)$ extending the set $-J = \{\omega \setminus x : x \in J\}$. Thus, for each $x \in F$ we have $x \cap Y \notin [A_{\sigma}(\varphi)]$ and $x \setminus Y \notin [A_{\sigma}(\varphi)]$.

Hence, we may apply the almost disjoint forcing $\mathbf{R}(Y)$ which adds a set a under each $x \cap Y$ for $x \in F$, and $\mathbf{R}(\omega \setminus Y)$ adding a set b under the family $\{x \setminus Y : x \in F\}$ so that both a and b are almost disjoint from $A_{-a}(\omega)$. Define

$$\mathbf{P}_{\alpha+1} = \mathbf{P}_{\alpha} * \mathbf{R}(Y) * \mathbf{R}(\omega \setminus Y), \quad A_{\alpha+1}(\varphi) = A_{\alpha}(\varphi) \cup \{a_{\alpha}\}, \text{ where } a_{\alpha} = a \cup b.$$

It follows that the inductive assumption holds for $B(\varphi)$ and $A_{\alpha+1}(\varphi)$. Since Y intersects nontrivially the element $a \cup b \in A_{\alpha+1}(\varphi)$ we infer that Y is now not a partitioner of $A_{\alpha+1}(\varphi)$.

Case 3: $\alpha = Nr(L, \omega)$. Suppose that

$$L = \langle \{X(s): s \in S\}; \{X(t): t \in T\} \rangle.$$

We enlarge L by adjoining all the elements of $A_{\sigma}(\varphi)$. Thus, let

$$S_A = \{ \xi < \alpha \colon \forall t \in T [a_t \cap X(t) = \emptyset] \}, \quad T_A = \{ \eta < \alpha \colon \exists t \in T [a_t \subseteq X(t)] \}.$$

Define

$$L^* = \langle \{X(s)\}_{s \in S} \cup \{a_s\}_{t \in S_A}; \{X(t)\}_{t \in T} \cup \{a_n\}_{n \in T_A} \rangle.$$

Now, we apply Kunen's forcing filling the gap L^* :

$$\mathbf{P}_{\alpha+1} = \mathbf{P}_{\alpha} * \mathbf{E}(L^*).$$

The conditions $p \in E(L^*)$ have the form $p = \langle u_p, x_p, w_p \rangle$, where u_p and w_p are finite subsets of $S \cup S_A$ and $T \cup T_A$, respectively, and x_p is a finite zero-one sequence of some length l(p), so that $U \cap W \subseteq l(p)$ for each $U \in \overline{u}_p$ and $W \in \overline{w}_p$, where

$$\bar{u}_p = \{X(s): s \in S\} \cup \{a_s: \xi \in S_A\}, \quad \bar{w}_p = \{X(t): t \in T\} \cup \{a_n: \eta \in T_A\}.$$

The ordering on E is defined thus:

$$p \leq q$$
 iff $u_q \subseteq u_p$, $w_q \subseteq w_p$, $x_q \subseteq x_p$

and for each i with $l(q) \le i < l(p)$ the following implications hold:

if
$$i \in \bigcup \bar{u}_a$$
, then $x_n(i) = 1$, if $i \in \bigcup \bar{w}_a$, then $x_n(i) = 0$.

If $G \subseteq \mathbf{E}(L^*)$ is a generic filter, then it follows immediately that the set

$$X_{\alpha} = \{ i \in \omega \colon \exists p \in G [x_n(i) = 1] \}$$

is a partitioner of $A_{\sigma}(\varphi)$ and fills the gap L:

$$X(s) \subseteq_{\star} X_{\alpha}$$
 for each $s \in S$, $X_{\alpha} \cap X(t) =_{\star} \emptyset$ for each $t \in T$.

Let φ^{α} be an extension of φ such that $\varphi^{\alpha}(\xi) = 0$ for $\dim(\varphi) \leq \xi < \alpha$ and $\varphi^{\alpha}(\alpha) = 1$. Hence $\varphi^{\alpha} \in D_{\alpha+1}$ and each element of $B(\varphi^{\alpha})$ is a partitioner of $A_{\alpha+1}(\varphi^{\alpha}) = A_{\alpha}(\varphi)$ (we add no elements to $A_{\alpha}(\varphi)$ in this case).

We have to show yet that no infinite element $Z \in B(\varphi^a)$ is covered by a finite union of elements of $A_{\alpha+1}(\varphi^a)$. By the inductive assumption this is true for $Z \in B(\varphi)$. Suppose that $Z \in B(\varphi^a)$ has the form

$$Z = X(\sigma) \cap X_{\alpha}$$
, where $X(\sigma) \in B(\varphi)$,

and that $Z\subseteq_{\mathbf{x}}a_{\xi_1}\cup\ldots\cup a_{\xi_n}$ for some $a_{\xi_1},\ldots,a_{\xi_n}\in A_{\alpha+1}(\varphi^\alpha)$. Since $A_{\alpha+1}(\varphi^\alpha)=A_{\alpha}(\varphi)$ and Z is a partitioner we have $Z=_{\mathbf{x}}a_{\xi_1}\cup\ldots\cup a_{\xi_n}$ and hence Z is in the ground model $V^{(\mathbf{P}_\alpha)}$. Note that $\mathbf{E}(L^*)$ is equivalent to $\mathbf{E}_0\times\mathbf{E}_1$ where \mathbf{E}_0 , \mathbf{E}_1 are gap-filling forcings for L^* restricted to $X(\sigma)$ and $\omega\backslash X(\sigma)$, respectively, in the obvious sense. Since \mathbf{E}_0 produces $X_\alpha\cap X(\sigma)=Z$ we see that \mathbf{E}_0 must have an atomic element $\langle u,x,w\rangle$ and hence (in this case of Z)

$$X_{\alpha} \cap X(\sigma) =_* X(\sigma) \cap \bigcup \bar{u} =_* \bigcup X(\sigma) \cap X(s).$$

It follows that $Z=X_{\alpha}\cap X(\sigma)$ is in $B(\varphi)$ and hence (by the inductive assumption) must be finite. The case of $Z=X(\tau)\cap(\omega\backslash X_{\alpha})$ is similar.

For limit ordinals $\alpha \leq \kappa$ we define P_{α} as the direct limit of $\{P_{\beta}: \beta < \alpha\}$. We also assume $P_{\alpha+1} = P_{\alpha}$ in all cases not mentioned above. This completes the definition of the iteration.

In the next section we prove that $P = P_{\kappa}$ has c.c.c. (in general, gap-filling forcings E do not have c.c.c.). Assuming this for the moment let us look how P works.

Let $G \subseteq \mathbf{P}_{\kappa}$ be a generic filter. It is clear that $V[G] \models "c = \kappa"$ and $V[G|\alpha] \models "c < \kappa"$ for each $\alpha < \kappa$. Let B be a Boolean algebra in V[G], with card $B = \kappa$. There are elements $b_{\alpha} \in B$ for $\alpha < \kappa$ such that $B = \bigcup_{\alpha \le \kappa} B_{\alpha}$, where

$$B_0 = \{0, 1\},$$

 $B_{\alpha+1} = [B_{\alpha}, b_{\alpha}]$ (the subalgebra generated by B_{α} and b_{α}).

$$B_{\alpha} = \bigcup_{\beta < \alpha} B_{\beta}$$
 for limit $\alpha < \kappa$.

Assume inductively that we have an embedding $f\colon B_\alpha\to P(\omega)/\mathrm{fin}$ such that $f(b_\xi)=X_{\gamma\xi}/\mathrm{fin}$ for each $\xi<\alpha$. Hence, $f\left[B_\alpha\right]=B\left(\varphi_\alpha\right)/\mathrm{fin}$, where φ_α is defined on $\sup\left\{\gamma_\xi\colon \xi<\alpha\right\},\ \varphi_\alpha(\gamma_\xi)=1$ for each $\xi<\alpha$ and φ_α is zero otherwise. Define

$$b(s) = \left(\prod_{s(\xi)=0} b_{\xi}\right) \cdot \left(\prod_{s(\eta)=1} -b_{\eta}\right)$$

where s is a finite zero-one function on α .

The next generator b_n determines a gap

$$K = \langle \{b(s): b(s) \leqslant b_{\alpha}\}; \{b(t): b(t) \cdot b_{\alpha} = 0\} \rangle$$

in the algebra B_{α} . Let L be the image of K under f. Thus L is a gap in $B(\varphi_{\alpha})$ and

$$L = \langle \{X(s_f)\}_S; \{X(t_f)\}_T \rangle,$$

where s_f is defined on $\{\gamma_\xi \colon \xi \in \text{dm}(s)\}$ by the equality $s_f(\gamma_\xi) = s(\xi)$ and t_f is defined similarly.

Let $\beta < \kappa$ be so large that φ_{α} and L are in $V^{(\mathbf{P}_{\beta})}$. Since the continuum at stage β is smaller than κ , we can find a number $\gamma_{\alpha} > \beta$ such that $\gamma_{\alpha} = \operatorname{Nr}(L, \varphi_{\alpha})$ and

$$Nr(X, \varphi_a), Nr(Y, \varphi_a) < \gamma_a$$
, for all infinite $X \in B(\varphi_a)$ and $Y \in V^{(\mathbf{P}_\beta)} \setminus B(\varphi_a)$.

We define $f(b_{\alpha}) = X_{\gamma_{\alpha}}$ and $\varphi_{\alpha+1} = \varphi_{\alpha}^{\alpha}$. This extends f to an embedding from $B_{\alpha+1}$ onto $B(\varphi_{\alpha+1})$ /fin. Indeed, by the well known theorem on extension of homomorphisms, we have to show that the following equivalences hold:

$$b(s) \leqslant b_{\alpha} \equiv X(s_f) \subseteq_{\star} X_{\gamma_{\alpha}}, \quad b(t) \cdot b_{\alpha} = 0 \equiv X(t_f) \cap X_{\gamma_{\alpha}} =_{\star} \emptyset.$$

The implications from left to right are obvious, since X_{γ_n} fills the gap L. The converse implications follow immediately from the following

LEMMA 1. Let $p = \langle u, x, w \rangle \in \mathbb{E}(L)$ and let X_{γ} stand for a generic subset added by $\mathbb{E}(L)$. Then we have

if
$$p \Vdash "X(\sigma) \subseteq_* X_{\gamma}"$$
, then $X(\sigma) \subseteq_* \bigcup_{s \in S} X(s)$,

if
$$p \Vdash ``X(\tau) \cap X_{\gamma} =_* \varnothing "$$
, then $X(\tau) \subseteq_* \bigcup_{t \in w} X(t)$.

Similarly, $p \Vdash "a_{\xi} \subseteq_* X_{\gamma}"$ implies $a_{\xi} \subseteq_* X(s)$ for some $s \in u$ or $\xi \in u$, and also $p \Vdash "a_{\eta} \cap X_{\gamma} =_* \mathcal{O}"$ implies $a_{\eta} \subseteq_* X(t)$ for some $t \in w$ or $\eta \in w$.

Proof. We may assume $p \Vdash "X(\sigma) \setminus k \subseteq X$," for some k. It follows that

$$X(\sigma)\backslash\max\{k, l(p)\}\subseteq \bigcup \bar{u}.$$

If $u = \{s_1, \ldots, s_n, \xi_1, \ldots, \xi_m\}$, then we obtain

$$X(\sigma) \subseteq_* X(s_1) \cup \ldots \cup X(s_n) = \bigcup_{s \in \mathcal{U}} X(s).$$

Indeed, $Z = X(\sigma) \setminus (X(s_1) \cup \ldots \cup X(s_n))$ is in $B(\varphi_a)$ and hence $X(s) \subseteq_* Z$ for some s. Since $X(s) \subseteq_* a_{\xi_1} \cup \ldots \cup a_{\xi_n}$, X(s) must be finite and consequently Z is finite. The remaining cases are proved in a similar way.

It is now clear that the algebra B is isomorphic to $B(\Phi)/\text{fin} = \bigcup_{\alpha \le \nu} B(\varphi_{\alpha})/\text{fin}$. Let

$$A(\Phi) = \bigcup_{\alpha < \kappa} A_{\gamma_{\alpha}}(\varphi_{\alpha}).$$

By construction, each non-zero element b of $B(\Phi)$ is a nontrivial partitioner of $A(\Phi)$ (in fact there are κ many elements of $A(\Phi)$ under b), and each $Y \notin B(\Phi)$ is either a nonpartitioner or it is congruent to an element x of $B(\Phi) \mod A(\Phi)$, i.e.

$$(Y \setminus x) \cup (x \setminus Y) =_* (a_{\xi_1} \cup \ldots \cup a_{\xi_n}) \setminus (a_{n_1} \cup \ldots \cup a_{n_m})$$

for some $a_{\xi_1}, \ldots, a_{\xi_n}, a_{\eta_1}, \ldots, a_{\eta_m} \in A(\Phi)$. Note that such an x is uniquely determined. It follows that $A(\Phi)$ is an m.a.d. and the mapping $Y \to x$ is a homomorphism from the field of all the partitioners onto $B(\Phi)$, with kernel consisting of all trivial partitioners. Thus, $B(\Phi)$ and hence also B is representable on $A(\Phi)$.

For the representability of algebras B with card $B < \kappa$ see the end of the next section.

2. The almost disjoint forcing \mathbf{R} is a particular case of \mathbf{E} (in which $u(p) = \emptyset$ for all p). Hence, all stages of the iteration can be treated uniformly, with an obvious modification in the case of $\alpha = \text{Nr}(Y, \varphi)$.

Let $Q_{\alpha} \subseteq \mathbf{P}_{\alpha}$ consist of all $p \in \mathbf{P}_{\alpha}$ for which we have the following:

(1) For each $y \in \text{supp}(p)$ there are $u_y(p)$, $x_y(p)$, $w_y(p)$ such that

$$p|\gamma \Vdash "p(\gamma) = \langle u_{\gamma}(p), x_{\gamma}(p), w_{\gamma(p)} \rangle"$$

and dm(s) \subseteq supp(p), $\xi \in$ supp(p) for each ξ , $s \in u_{\gamma}(p) \cup w_{\gamma}(p)$

(2) For each $\gamma \in \text{supp}(p)$, the number $l(x_{\gamma}(p))$ is constant. We write l(p) for this value.

LEMMA 2. For each $p \in \mathbf{P}_{\alpha}$ and $m \in \omega$, there is a $q \in Q_{\alpha}$ such that $q \leq p$ and $l(q) \geq m$. Proof. By induction on α . The only essential case is $\alpha = \beta + 1$ and $\beta \in \text{supp}(p)$. We find an $r \in \mathbf{P}_{\alpha}$, $r \leq p \mid \beta$, such that

$$r \Vdash \text{``} p(\beta) = \langle u_{\beta}(p), x_{\beta}(p), w_{\beta}(p) \rangle$$
"

for some $u_{\beta}(p)$, $x_{\beta}(p)$, $w_{\beta}(p)$. Extending r if necessary, we may assume that $\operatorname{supp}(r)$ contains each ξ , where $\xi \in u_{\beta}(p) \cup w_{\beta}(p)$ or $\xi \in \operatorname{dm}(s)$ for some $s \in u_{\beta}(p) \cup w_{\beta}(p)$. Now, by the inductive hypothesis, we may assume that $r \in Q_{\beta}$ and $l(r) \ge m$. If s, $\xi \in u_{\beta}(p) \cup w_{\beta}(p)$, then r determines X(s) and a_{β} up to l(r). Hence, if l(r) > l(p), then there is an extension $\bar{x}_{\beta} \supseteq x_{\beta}(p)$ such that $l(\bar{x}_{\beta}) = l(r)$ and

$$r \Vdash \text{``}\langle u_{\beta}(p), \bar{x}_{\beta}, w_{\beta}(p) \rangle \leq p(\beta)\text{''}.$$

Thus, if $q \mid \beta = r$ and $q(\beta) = \langle u_{\beta}(p), \bar{x}_{\beta}, w_{\beta}(p) \rangle$, then $q \leq p$, $q \in Q_{\alpha}$ and $l(q) = l(r) \geq m$, which finishes the proof.

The next lemma shows that Q_{α} has c.c.c.

LEMMA 3. If $p, q \in Q_{\alpha}$ are such that

$$x_n(p) = x_n(q) = x$$
 for each $y \in \text{supp}(p) \cap \text{supp}(q)$,

then p, q are compatible. In fact, there is an $r \leq p$, q such that $r \in Q_{\alpha}$ and l(r) = l(p) = l(q).

Proof. By induction on α . The only essential case is $\alpha = \beta + 1$ and $\beta \in \text{supp}(p) \cap \text{supp}(q)$. We know that

$$p \mid \beta \Vdash p(\beta) = \langle u_{\beta}(p), \, x_{\beta}(p), \, w_{\beta}(p) \rangle, \quad q \mid \beta \Vdash q(\beta) = \langle u_{\beta}(q), \, x_{\beta}(q), \, w_{\beta}(q) \rangle$$

and $x_{\beta}(p) = x_{\beta}(q) = x$. By the inductive hypothesis there is an $r_{\beta} \leq p | \beta$, $q | \beta$ such that $r_{\beta} \in Q_{\beta}$ and $l(r_{\beta}) = l(p) = l(q) = l$. It follows that

$$r_{\beta} \Vdash "U \cap W =_* \emptyset"$$

for each $U \in \bar{u}_{\beta}(p) \cup \bar{u}_{\beta}(q)$, $W \in \bar{w}_{\beta}(p) \cup \bar{w}_{\beta}(q)$. We have to prove that, for some $\bar{r} \leq r_{\beta}$, $\bar{r} \in Q_{\beta}$ and $l(\bar{r}) = l$, $\bar{r} \parallel ^{-u}U \cap W \subseteq l^{n}$, for then $r \mid \beta = \bar{r}$ and

$$r(\beta) = \langle u_{\beta}(p) \cup u_{\beta}(q), x, w_{\beta}(p) \cup w_{\beta}(q) \rangle$$

define r, as required.

We prove this by induction on β . Let e.g. U=X(s) and $W=a_{\eta}$. If $\max \dim (s)<\eta$, then

$$r_{\beta}|\eta+1| \vdash "X(s) \cap a_{\eta} =_* \emptyset$$
",

and hence $r_{\beta}|\eta| \vdash X(s) \subseteq_* \{X(\tau): \tau \in w_{\eta}(r_{\beta})\}$. Define $\bar{r}_{\beta}|\eta = r_{\beta}|\eta$, $\bar{r}_{\beta}(\eta) = \langle x_{\eta}(r_{\beta}), w_{\eta}(r_{\beta}) \cup \{s\} \rangle$ and $\bar{r}_{\beta}(\xi) = r_{\beta}(\xi)$ for $\eta < \xi < \beta$. Thus, $\bar{r}_{\beta} \in Q_{\beta}$, $\bar{r}_{\beta} \leqslant r_{\beta}$, $l(\bar{r}_{\beta}) = l$ and $\bar{r}_{\beta}|-X(s) \cap a_{\eta} \subseteq l^n$. If max dm(s) > η , then for some $\gamma \in dm(s)$

$$r_n|\gamma+1|-a_n\cap X_{\gamma}=\mathscr{Q}$$
" (or $a_n\subseteq_* X_{\gamma}$)

and hence

$$r_{\beta}|\gamma| \vdash "a_{\eta} \cap u =_{*} \emptyset"$$
 for each $u \in u_{\gamma}(r_{\beta})$.

By the inductive hypothesis (applied for each $u \in u_{\gamma}(r_{\beta})$), there is an $r_{\gamma} \leqslant r_{\beta} | \gamma$, $r_{\gamma} \in Q_{\gamma}$ and $l(r_{\gamma}) = l$, such that

$$r_{\nu} \Vdash "a_{\nu} \cap u \subseteq l"$$
 for each $u \in u_{\nu}(r_{\ell})$.

Hence, we may define $\bar{r}_{\beta}|\gamma=r_{\gamma}$, $\bar{r}_{\beta}(\xi)=r_{\beta}(\xi)$ for $\gamma<\xi<\beta$ and $\bar{r}_{\beta}(\gamma)=\langle u_{\gamma}(r_{\beta}),\, u_{\gamma}(r_{\beta}),\, w_{\gamma}(r_{\beta})\cup\{\eta\}\rangle$.

Consider yet the case U=X(s) and W=X(t). If $\sigma=s \cup t$ is not a function, then obviously $r_{\beta} \parallel^{-} "X(s) \cap X(t) = \varnothing"$. Otherwise, let $\gamma = \max \dim(\sigma)$. We have $X(s) \cap X(t) = X(\sigma) = X(\sigma) \cap X(\sigma) \cap X(t)$ and hence

$$r_{\beta}|\gamma+1|-"X(\sigma|\gamma)\cap X_{\gamma}=_{\star}\mathcal{O}"$$
 (or $X(\sigma|\gamma)\subseteq_{\star}X_{\gamma}$).

Thus, $r_{\beta}|\gamma| \vdash "X(\sigma|\gamma) \cap u =_* \emptyset$ " for each $u \in u_{\gamma}(r_{\beta})$ and, by the inductive hypothesis, there is an $r_{\gamma} \leqslant r_{\beta}|q$, $r_{\gamma} \in Q_{\gamma}$ and $l(r_{\gamma}) = l$, such that

$$r_{\gamma} \Vdash "X(\sigma|\gamma) \cap u \subseteq l"$$
 for each $u \in u_{\gamma}(r_{\theta})$

and hence $\bar{r}_{\beta}|\gamma = r_{\gamma}$, $\bar{r}_{\beta}(\gamma) = \langle u_{\gamma}(r_{\beta}), x_{\gamma}, w_{\gamma}(r_{\beta}) \cup \{\sigma|\gamma\}\rangle$ and $\bar{r}_{\beta}(\xi) = r_{\beta}(\xi)$ for $\gamma < \xi < \beta$ is as required. All the remaining cases are proved in a similar way.

Now, beginning with r_{β} , we apply the above to each pair U, W to obtain a decreasing sequence of corresponding \bar{r}_{β} 's. The last term \bar{r} has the required properties, which finishes the proof.

Now, it is easy to see that \mathbf{P}_{κ} has c.c.c. Indeed, suppose that $\{q_{\alpha}\colon \alpha<\omega_1\}$ is an uncountable antichain. By Lemma 2 we may assume that $\{q_{\alpha}\colon \alpha<\omega_1\}\subseteq Q_{\kappa}$. We apply the Δ -system lemma to $\{\operatorname{supp}(q_{\alpha})\colon \alpha<\omega_1\}$ and find a pair q_{α},q_{β} satisfying the assumptions of Lemma 3.

To obtain MA(σ -linked) we force as described above at—say—all even stages, while at odd stages α we force with σ -linked forcings of cardinality $< \kappa$. The proof that this combined iteration has c.c.c. is very similar to that above. For details see [B-F-Z]. In particular, P(c) holds in our model and hence each algebra of cardinality < c is representable (see [B-W], Theorem 2.5).

References

[B-W] J. E. Baumgartner and M. Weese, Partition algebras for almost-disjoint families, Trans. Amer. Math. Soc. 274 (1982). 619-630.

[B-F-Z] J. E. Baumgartner, R. Frankiewicz and P. Zbierski, Embedding of Boolean algebras in P(ω)/fin, Fund. Math. 136 (1990), 187-192.

[F-Z₁] R. Frankiewicz and P. Zbierski, Partitioner-representable algebras, Proc. Amer. Math. Soc. 103 (1988), 926-928. [F-Z₂] -, -, On partitioner-representability of Boolean algebras, Fund. Math. 135 (1990), 25-35.
 [L] R. Laver, Linear orders in (ω)^ω under eventual dominance, in: Logic Colloquium 1978, Stud. Logic Foundations Math. 97, North-Holland. Amsterdam 1979, 299-302.

Ryszard Frankiewicz INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES 00-950 Warszawa, Poland

Paweł Zbierski
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WARSAW
00-913 Warszawa, Poland

Received 10 April 1990; in revised form 1 March 1991