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On the average of inner and outer measures
by

D. H. Fremlin (Colchester)

Abstract. Let (X, ¥, y) be a measure space, and write 0(4) = 3(u*A+p,d) for any A< X.
C. Carathéodory showed that 0 is an outer measure; let v be the corresponding measure. I give
a complete description (Theorem 2) of the circumstances in which v can fail to be equal to y, and
show that these cannot arise from “ordinary” measure spaces,

1. Introduction. Let (X, £, u) be a measure space. Write u*, jt, for the associated
outer and inner measures on X, given by

p*(A) = min{uE: A EeZX}, p,(4)=max{pE: A2 EeX};

set
0(4) = $(u* A+, 4)

for every A = X. Then 0 is an outer measure on X ([1], § 600—603). Let v be the measure
on X defined from @ by Carathéodory’s method; write T for the domain of v. Then v is
an extension of z. The question arises; when is v a proper extension of u? Carathéodory
seems to have left this open even when u is Lebesgue measure. For this case,
J. C. Oxtoby (private communication to A. H. Stone) showed that v = p if the
continuum hypothesis is true. Here I describe the ways in which v can be different from
1 (§52~4) and show (in ZFC) that this never occurs if 4 is a Radon measure (§11).

2. THEOREM. Let X, Z, u, p*, w0, T and v be as in § 1. Then the Sollowing are
équivalent: .

{a) v+ u;

(b) either (i) (X, X, 1) is not complete (that is to say, there is a set A = X such that
p*4 =0 but A¢Z),
or (ii) there is a set A = X such that A~ Ee X whenever EeX and puE < oo, but
A¢Z,
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or (iii) there are sets D, D' = X such that

DnD'=@, DuD =EeZ, uD=puD' =0<puE<o0,

PD)={DnF: Fex}, PD)={D'nF: FeZX}.

Proof (a)=>(b). Assume that (a) is true, but that (b-i) and (b-ii) are both false;
I have to show that (b-iii) is true. Because v is a proper extension of y, there must be
a set Dye T\Z; because (b-ii) is false, there must be an Eye X such that uE, < oo and
DynEy¢Z. Let Ey, E,eX be such that E; € DynE, = E, and

HEy = p, (Do NEo),  pE, = p*(Dy N Ey).

Because (b-i) is false, u*((Do N EQ\E,) > 0 and uE, > uE,. Set

E=EN\E;, D=(DynE)E;, D' =E\D.

Then DND'=@, DuD' =E and p,D=p, D' =0<puE <. Also D,D'eT.
Let A be any subset of D. Consider B = A u D'. Then

6(B) = (B~ D)+ 6(B\D)
because De T. But let us seek to calculate the relevant values of w*, 1. We have

WB=pD'=pE=05 say, p*(BnD)=p*4,

(BN D) =0, H*(B\D) =34, p,(B\D)=0.

So we get
30+, B) = 3(u* A+0)+4(5+0),

and p*4=p,B. Let F,F,eX be such that F, =B, F,24 and uF, =p.B
= U*A4 = yF,. Then F\F, = D', so u(F\F,) = 0; consequently H(F\F,) = 0; be-
cause (b-i) is false, it follows that A\F, and F = F, U A belong to Z, and we see that
A=DnF. As A is arbitrary, (D) = {D " F: FeX}. Of course the same argument
applies to D', so all the clauses of (b-iii) are satisfied by D, D',

(b-i)=>(a). If u*4 =0 then 64 =0 and AeT; so if also A¢ZX then v # p.

(b-i)) = (a). If A~ Ec X whenever uE < oo, then for any B € X with 6B < oo we
have an EeX such that B€ E and pE = W*B < 00; in which case

0B = (BN (4N E))+0(B\(A N E) = 6(B ~ A)+0(B\A),

and AeT. So if 4¢X then v # p.

(b-iii) = (a). If D, D' and E are as specified in (b-iii); then of course u*D = uk
>y, D, so D¢X. On the other hand, D does belong to T. To see this, take any B < X.
Let HeX be such that BAES H and uH = W*(BNE). Let F,F'eX be such
that

DNnB=DnF, DnB=DnF;
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we may suppose that FUF' € EnH, so that F~ F' < B. Now
8(BnD)+6(B D) =$(u*(B D) +U*(B D) < $(uF +pF)

= 3(u(F N F)+u(F U F) < $(u, (B~ B)+ uH)
= (BN E).
So

6(BND)+0(B\D) < (BN D)+0(Bn D)+ 0(B\E) < 0(B n E)+0(B\E) = 6(B)
(because EeZ = T). As B is arbitrary, DeT and v # U

3. Remark. The conditions (b-i) and (b-ii) of Theorem 2 are straightforward; they
are the two ways in which x can fail to be the measure defined from the outer measure
w*. If (following Carathéodory) we restrict attention to the case in which uis derived
from a regular outer masure, or if (for instance) we are interested only in complete
o-finite measure spaces, then neither of these will occur. The rest of this paper will
accordingly be devoted to the phenomenon of (b-iii). This can be elaborated upon in the
following manner. Let (X, Z, p) be any measure space. For any subset 4 of X, write X,
for {AnF: FeX}, and p, for u* | 5; then (4, 2 4» 44} Is @ measure space; write W(u,)
for the measure algebra X ,/(Z, A A,), where A, = {B: y*B = 0}. If D, D' are subsets
of X such that E=DuD'e¥ and UD = p, D' =0, then we have an isomorphism
¢: W(up) —» U(up) given by the formula

¢(DNF)*=(DNF)® VFeZ,

where B®e U (up) is the equivalence class of Be X, Moreover, if (X, Z, p) is complete
and uE < co, then X is precisely

{A: ACE,AnDeZp, 4 ND'eZy, p(ANnD)* =(AnD)}.
Accordingly, the following construction is a canonical method of constructing examples

in which (b-iii) of Theorem 2 is true.

4. PROPOSITION. Let (X, (X), v) be a measure space with 0 < vX < co. Suppose
that D < X is such that A(vy) is isomorphic, as measure algebra, to W(vy), where
D'=X\D; let ¢: W(vy) - W(vy) be a measure-preserving isomorphism. Set

I={F: FSX, $(FAD)*=(FnD)}

cand p=v}X Then (X, 2, ) is a complete totally finite measure space. Set 6 =v,

T = #(X); then X, Z, uy U, phy, 0, T and v are as in §1, with v # p,

5. Remarks. To put flesh on these ideas we need examples satisfying the
conditions of Proposition 4. The simplest case is when X = {x, 9}, v{x}
=v{y}=4and D = {x}. The corresponding phenomenon in the language of Theorem
2 is when there is a doubleton set E = {x, y}€Z such that uE >0 but {x}¢X; then
{x}eT with v{x} = uE. It is relatively consistent with ZFC to suppose that this
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is the only way in which (b-iii) of Theorem 2 can arise. For it is consistent to suppose
that whenever (¥, #(Y), ) is a measure space with 0 < AY < oo, then there is a yeY
such that A{y} > 0 ([7], §28). In this case, if D, D' and E are as in (b-iii) of Theorem 2,
there is an xe D with v{x} > 0; there is an Fe X with D~ F = {x}; now v(D'n F) > 0,
so there is a yeD'n F with v{y} > 0; there is an F'eX with D' nF' = {y}; but ag
v(D~FF) must now be greater than 0, FnF'nE must be exactly {x, y}, and
u{x, y} >0, while {x}¢2 because u, D = 0.

It seems likely that it is also consistent to suppose that there are measure spaces
(Y, 2(Y), ) with 0<AY <0 but A{y} =0 for every yeY. However, these are
necessarily extraordinary in various ways. For instance, if A has an atom, then there is
a two-valued-measurable cardinal » < # (Y) ({71, §27); if A does not have an atom, then
there is an atomlessly-measurable cardinal strictly less than the Maharam type of
(Y, #(Y), 2) ([6]; Theorem 2.6). These ideas suffice to prove the following.

6. COROLLARY. In Theorem 2, if (b-iii) is true, then

either there is a doubleton set E = {x, y}eX such that uE >0 and {x}¢ZX;

or u has an atom EeX such that # (E) = x for some two-valued-measurable cardi-
nal x;

or there is an E€X such that pE < oo .and the Maharam type of (E, Z;, ug) is
greater than x for some atomlessly-measurable cardinal x.

7. Remarks. This is already more than enough to ensure that v = p if X = R and
u is Lebesgue measure. But we can extend this to all Radon measures and many perfect
measures, using some “well-known” facts about atomlessly-measurable cardinals. In [8],
Kunen showed that if there is any atomlessly-measurable cardinal x then there is a set
A =R such that # (4) <x and g*A4 >0, where [ is Lebesgue measure on R. Later,
Solovay showed that if there is a probability space (Y, #(Y), A) with Maharam type
greater than o, then there is a set A < R such that # (4) = w, and g*A4 > 0. The results
of [6] show that the existence of any atomlessly-measurable cardinal is enough for
Solovay’s argument to work. Because neither Kunen’s nor Solovay’s ideas are readily
accessible in print (so far as I am aware), I give a proof of a lemma which essentially
covers Solovay’s argument, in a form due to K. Prikry, and may be of independent
interest. I repeat that this is not original.

8. LemMaA. If % is an atomlessly-measurable cardinal, then for every cardinal %' < x
there is a set 4 < [0, 1] such that # (A) = «' and fi*B > 0 for every uncountable B < A.

Proof. Let A be an atomless x-additive probability defined on #(x). Theorem 2.6
of [6] shows that the Maharam type of (C, #(C), A) is at least x™ [or every C  » with
A(C) > 0; so from 3.13 (a) and 2.21 of [5] we see that there is a function f: % — [0, 17*'
which is inverse-measure-preserving for 4 and the usual measure of [0, 17*". For ¢ < x,
set :

Ag={fO)m: n <} <[0,1].

Suppose, if possible, that for every & < # there is a set J, < »' such that # (J o= w
but E; = f (£)[J,] is Lebesgue negligible. Fix an enumeration (U, D>men Of a countable
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base for the topology of [0, 17, and for each ¢ < % neN choose a relatively open set
Gy € [0, 17 such that E; < G,; and H(Gu) < 27" For m, neN set

Dnm = {5 Um & Gné}~ -

For each a < x™, set f,(&) = f(&)(o) for & <x; then the real variables f, are all
stochastically independent. Consequently, there is for each & <% an a(feJ :uch that
Juy 1s stochastically independent from the countable family {D,,: n melsI} = P(x)
Because »' < % and A is x-additive, there is a y < »’ such that B = {:f; a(&) =~y} has.
A(B) > 0. Take neN such that A(B)> 27" and examine i

C= ) Dwn £, 11U,

meN

- Because f, is independent from all the D,,, and is inverse-measure-preserving for A and

A AC = (A% @)(C") where .
= DwmxU,) sxx[0, 1].
meN

But, for each & < x, the vertical section C'[{£17 is just G, sO
AxA)(C) = [ (G Mde) <27

There must therefore be a £ € B\C. But in this case S () eE,, because y = (&) eJ,, while
J(&) ¢ Gy, because there is no m such that HeU, = Gy; contrary to the choice of
Ge.

A So take some ¢ < such that 2*(f(&)[J]) >0 for every uncountable J < .
Evidently f(§) I %' is countable-to-one, so 4, must have cardinal »' (passing over the
trivial case of countable s'), and will serve for A.

Remark. I do not know whether, under the hypothesis of this lemma, there is
always a set 4 < R with # (4) = x and no uncountable subset of A Lebesgue negligible.

9. PROPOSITION.” If there is an atomlessly-measurable cardinal, and (X, %, W) is an
atomless, perfect, o-finite measure space with WX) >0, then p is not w,-additive.

Proof. (Recall that a o-finite measure space (X, 2, p) is called perfect if for every
measurable function f: X - R there is a Borel subset H of R such that H < f[X] and
,.u(X \S"[H]) = 0; see [10], Lemma 2.) Because (X, Z, u) is atomless and o-finite, there
Is a function f: X — [0, uX[ which is inverse-measure-preserving for p and fio.ux;- By
Lerpma 8, with % = w, there is a set 4 € [0, X[ with # (A) = w, and f*4 > 0;in
which case & = {f1[{a}]: ag A} is a disjoint family in  with # () = w, but with
SreehE =0 < %4 = #*(J4) (3], Lemma 1E), so that u cannot be w,-additive.

10. THEOREM. Suppose, in §1, that (X, X, W) is an atomless complete perfect o-finite
measure space. Then v = y,

. Proof. Suppose, if possible, otherwise, Because (X, Z, ) is complete and o-finite,
(b-i) and (b-ii) of Theorem 2 are false; take D, D' and E from (b-iii). Then y, and y,,. are
atomless, totally finite, non-zero measures with domains 2(D), 2(D') respectively, so
their additivities x, »’ are atomlessly-measurable cardinals; suppose that » < »'. In this
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case uy must be x-additive, because it is complete and
{4: pgA) =0} ={4: ASE, pp(AnD)=pp(dnD)= 0}.

But (E, 2z, pg) is a perfect measure space, and % > w, ([7], §27), so this contradicts
Proposition 9 above.

11. THEOREM. Suppose, in§ 1, that there is a topology T on X such that (X, T, Z, )
is a Radon measure space. Then v = p. ‘

Proof. (For the general theory of Radon measure spaces, see [2].) The argument
follows that of Theorem 10. Because I take Radon measure spaces to be complete and
locally determined, (b-i) and (b-ii) are both disallowed. If we take D, D' and E from
(b-ii), we can be sure that jg is atomless (because in a Radon measure space every atom
is concentrated at a point), while also (E, Zg, yp) is perfect ([10], Theorém 10); so we
reach the same contradiction as before.

12. It is perhaps worth remarking here that a plausible route to Theorem 11 is
blocked. .

PRrOPOSITION. If it is relatively consistent with ZFC to suppose that there is

a two-valued-measurable cardinal, then it is relatively consistent to suppose that there is
a Radon measure space (X, T, X, @) with a set D S X such that *D > 0, p{x} = 0 for
every xeD and X, = 2(D).

Proof. (a) The first step is to show that we can have an atomlessly-measurable
cardinal x, with a x-additive probability A defined on #(x), such that the Maharam type
of (x, ?(x), 1) is 2*. For Solovay's theorem ([12], or [7], §34) shows that if x is
two-valued-measurable and we add »' = 2% random reals, then % becomes atomlessly-
measurable, with a x-additive probability A on £ (x) for which there is a family (F¢e<w
of stochastically independent subsets of x, all of A-measure $. Also, of course, 2 is now c.

(b) This shows in fact that the Maharam type of (4, 2(4), A,) is at least 2* = ¢ for
every non-negligible set 4 < »; but since the Maharam type of (x, 2(x), 4} is surely no
greater than 2%, (1) must be homogeneous and isomorphic to the measure algebra of
the usual Radon measure g on X = {0, 1}*, Consequently there is a stochastically
independent family {E.>:<, of sets of A-measure 1 which generates the whole algebra
A(%). Let (Byye<. enumerate ;. Define f: x— X by setting '

if «eB,uE,,
otherwise.

ree={;

Then f is inverse-measure-preserving for A and u ([5], Prop. 1.18). Set D = f [%]. Then
12 p*D > Ax =1, and u{x} =0 for every xeD. If 4 is any subset of D, there is an
FeZX =dom(y) such that f~*[A]* = f~'[F]* in A(L), ie. B=f"*[4]Af'[F]
€4;. Take any infinite subset I of ¢ such that B < B, for every {el. Then

N={x: xeX, x(§) =1 Véel}

©
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is p-negligible and

N2f[Bl=f[f ' [AAF]]=DAAAF) = AAD AP,
So AA(DNF)eX and AeZ), as required.

. Remark. (D, I,, Q"(D), tp) is now an atomless quasi-Radon probability space, if
X is the topology on D induced by that of X this clears up a question left open in [4].
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