

On the average of inner and outer measures

by

D. H. Fremlin (Colchester)

Abstract. Let (X, Σ, μ) be a measure space, and write $\theta(A) = \frac{1}{2}(\mu^*A + \mu_*A)$ for any $A \subseteq X$. C. Carathéodory showed that θ is an outer measure; let ν be the corresponding measure. I give a complete description (Theorem 2) of the circumstances in which ν can fail to be equal to μ , and show that these cannot arise from "ordinary" measure spaces.

1. Introduction. Let (X, Σ, μ) be a measure space. Write μ^*, μ_* for the associated outer and inner measures on X, given by

$$\mu^*(A) = \min\{\mu E \colon A \subseteq E \in \Sigma\}, \quad \mu_*(A) = \max\{\mu E \colon A \supseteq E \in \Sigma\};$$

set

$$\theta(A) = \frac{1}{2}(\mu^* A + \mu_* A)$$

for every $A \subseteq X$. Then θ is an outer measure on X ([1], § 600–603). Let ν be the measure on X defined from θ by Carathéodory's method; write T for the domain of ν . Then ν is an extension of μ . The question arises: when is ν a proper extension of μ ? Carathéodory seems to have left this open even when μ is Lebesgue measure. For this case, J. C. Oxtoby (private communication to A. H. Stone) showed that $\nu = \mu$ if the continuum hypothesis is true. Here I describe the ways in which ν can be different from μ (§§ 2–4) and show (in ZFC) that this never occurs if μ is a Radon measure (§ 11).

- 2. THEOREM. Let X, Σ , μ , μ^* , μ_* , θ , T and ν be as in §1. Then the following are equivalent:
 - (a) $v \neq \mu$:
 - (b) either (i) (X, Σ, μ) is not complete (that is to say, there is a set $A \subseteq X$ such that $\mu^*A = 0$ but $A \notin \Sigma$),
 - or (ii) there is a set $A \subseteq X$ such that $A \cap E \in \Sigma$ whenever $E \in \Sigma$ and $\mu E < \infty$, but $A \notin \Sigma$.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): Primary 28A12.

or (iii) there are sets $D, D' \subseteq X$ such that

$$\begin{split} D \cap D' &= \varnothing, \quad D \cup D' = E \in \Sigma, \quad \mu_* D = \mu_* D' = 0 < \mu E < \infty, \\ \mathscr{P}(D) &= \{D \cap F \colon F \in \Sigma\}, \quad \mathscr{P}(D') = \{D' \cap F \colon F \in \Sigma\}. \end{split}$$

Proof. (a) \Rightarrow (b). Assume that (a) is true, but that (b-i) and (b-ii) are both false; I have to show that (b-iii) is true. Because ν is a proper extension of μ , there must be a set $D_0 \in T \setminus E$; because (b-ii) is false, there must be an $E_0 \in E$ such that $\mu E_0 < \infty$ and $D_0 \cap E_0 \notin E$. Let $E_1, E_2 \in E$ be such that $E_1 \subseteq D_0 \cap E_0 \subseteq E_2$ and

$$\mu E_1 = \mu_*(D_0 \cap E_0), \quad \mu E_2 = \mu^*(D_0 \cap E_0).$$

Because (b-i) is false, $\mu^*((D_0 \cap E_0) \setminus E_1) > 0$ and $\mu E_2 > \mu E_1$. Set

$$E = E_2 \backslash E_1$$
, $D = (D_0 \cap E_0) \backslash E_1$, $D' = E \backslash D$.

Then $D \cap D' = \emptyset$, $D \cup D' = E$ and $\mu_*D = \mu_*D' = 0 < \mu E < \infty$. Also $D, D' \in T$. Let A be any subset of D. Consider $B = A \cup D'$. Then

$$\theta(B) = \theta(B \cap D) + \theta(B \setminus D)$$

because $D \in T$. But let us seek to calculate the relevant values of μ^* , μ_* . We have

$$\mu^* B = \mu^* D' = \mu E = \delta$$
 say, $\mu^* (B \cap D) = \mu^* A$,
 $\mu_* (B \cap D) = 0$, $\mu^* (B \setminus D) = \delta$, $\mu_* (B \setminus D) = 0$.

So we get

$$\frac{1}{2}(\delta + \mu_* B) = \frac{1}{2}(\mu^* A + 0) + \frac{1}{2}(\delta + 0),$$

and $\mu^*A = \mu_*B$. Let $F_1, F_2 \in \Sigma$ be such that $F_1 \subseteq B$, $F_2 \supseteq A$ and $\mu F_1 = \mu_*B = \mu^*A = \mu F_2$. Then $F_1 \backslash F_2 \subseteq D'$, so $\mu(F_1 \backslash F_2) = 0$; consequently $\mu(F_2 \backslash F_1) = 0$; because (b-i) is false, it follows that $A \backslash F_1$ and $F = F_1 \cup A$ belong to Σ , and we see that $A = D \cap F$. As A is arbitrary, $\mathcal{P}(D) = \{D \cap F: F \in \Sigma\}$. Of course the same argument applies to D', so all the clauses of (b-iii) are satisfied by D, D'.

(b-i) \Rightarrow (a). If $\mu^*A = 0$ then $\theta A = 0$ and $A \in T$; so if also $A \notin \Sigma$ then $v \neq \mu$. (b-ii) \Rightarrow (a). If $A \cap E \in \Sigma$ whenever $\mu E < \infty$, then for any $B \subseteq X$ with $\theta B < \infty$ we have an $E \in \Sigma$ such that $B \subseteq E$ and $\mu E = \mu^*B < \infty$; in which case

$$\theta B = \theta (B \cap (A \cap E)) + \theta (B \setminus (A \cap E)) = \theta (B \cap A) + \theta (B \setminus A),$$

and $A \in T$. So if $A \notin \Sigma$ then $v \neq \mu$.

(b-iii) \Rightarrow (a). If D, D' and E are as specified in (b-iii), then of course $\mu^*D = \mu E$ $> \mu_*D$, so $D \notin \Sigma$. On the other hand, D does belong to T. To see this, take any $B \subseteq X$. Let $H \in \Sigma$ be such that $B \cap E \subseteq H$ and $\mu H = \mu^*(B \cap E)$. Let $F, F' \in \Sigma$ be such that

$$D \cap B = D \cap F$$
, $D' \cap B = D' \cap F'$;

we may suppose that $F \cup F' \subseteq E \cap H$, so that $F \cap F' \subseteq B$. Now

$$\begin{split} \theta(B \cap D) + \theta(B \cap D') &= \frac{1}{2} (\mu^*(B \cap D) + \mu^*(B \cap D')) \leqslant \frac{1}{2} (\mu F + \mu F') \\ &= \frac{1}{2} (\mu(F \cap F') + \mu(F \cup F')) \leqslant \frac{1}{2} (\mu_*(B \cap E) + \mu H) \\ &= \theta(B \cap E). \end{split}$$

So

$$\theta(B \cap D) + \theta(B \setminus D) \le \theta(B \cap D) + \theta(B \cap D') + \theta(B \setminus E) \le \theta(B \cap E) + \theta(B \setminus E) = \theta(B)$$
 (because $E \in \Sigma \subseteq T$). As B is arbitrary, $D \in T$ and $v \ne u$

3. Remark. The conditions (b-i) and (b-ii) of Theorem 2 are straightforward; they are the two ways in which μ can fail to be the measure defined from the outer measure μ^* . If (following Carathéodory) we restrict attention to the case in which μ is derived from a regular outer masure, or if (for instance) we are interested only in complete σ -finite measure spaces, then neither of these will occur. The rest of this paper will accordingly be devoted to the phenomenon of (b-iii). This can be elaborated upon in the following manner. Let (X, Σ, μ) be any measure space. For any subset A of X, write Σ_A for $\{A \cap F \colon F \in \Sigma\}$, and μ_A for $\mu^* \upharpoonright \Sigma_A$; then (A, Σ_A, μ_A) is a measure space; write $\mathfrak{A}(\mu_A)$ for the measure algebra $\Sigma_A/(\Sigma_A \cap \mathcal{N}_\mu)$, where $\mathcal{N}_\mu = \{B \colon \mu^* B = 0\}$. If D, D' are subsets of X such that $E = D \cup D' \in \Sigma$ and $\mu_A D = \mu_A D' = 0$, then we have an isomorphism $\phi \colon \mathfrak{A}(\mu_D) \to \mathfrak{A}(\mu_D)$ given by the formula

$$\phi(D \cap F)^{\bullet} = (D' \cap F)^{\bullet} \quad \forall F \in \Sigma,$$

where $B^{\bullet} \in \mathfrak{A}(\mu_D)$ is the equivalence class of $B \in \Sigma_D$. Moreover, if (X, Σ, μ) is complete and $\mu E < \infty$, then Σ_E is precisely

$$\{A\colon A\subseteq E,\, A\cap D\in \Sigma_D,\, A\cap D'\in \Sigma_{D'},\, \phi(A\cap D)^\bullet=(A\cap D')^\bullet\}.$$

Accordingly, the following construction is a canonical method of constructing examples in which (b-iii) of Theorem 2 is true.

4. Proposition. Let $(X, \mathcal{P}(X), \nu)$ be a measure space with $0 < \nu X < \infty$. Suppose that $D \subseteq X$ is such that $\mathfrak{U}(\nu_D)$ is isomorphic, as measure algebra, to $\mathfrak{U}(\nu_D)$, where $D' = X \setminus D$; let $\phi \colon \mathfrak{U}(\nu_D) \to \mathfrak{U}(\nu_D)$ be a measure-preserving isomorphism. Set

$$\Sigma = \{F \colon F \subseteq X, \ \phi(F \cap D)^{\bullet} = (F \cap D')^{\bullet}\}\$$

and $\mu = \nu \upharpoonright \Sigma$. Then (X, Σ, μ) is a complete totally finite measure space. Set $\theta = \nu$, $T = \mathscr{P}(X)$; then $X, \Sigma, \mu, \mu^*, \mu_*, \theta$, T and ν are as in §1, with $\nu \neq \mu$.

5. Remarks. To put flesh on these ideas we need examples satisfying the conditions of Proposition 4. The simplest case is when $X = \{x, y\}$, $v\{x\} = v\{y\} = \frac{1}{2}$ and $D = \{x\}$. The corresponding phenomenon in the language of Theorem 2 is when there is a doubleton set $E = \{x, y\} \in \Sigma$ such that $\mu E > 0$ but $\{x\} \notin \Sigma$; then $\{x\} \in T$ with $v\{x\} = \frac{1}{2}\mu E$. It is relatively consistent with ZFC to suppose that this

is the only way in which (b-iii) of Theorem 2 can arise. For it is consistent to suppose that whenever $(Y, \mathcal{P}(Y), \lambda)$ is a measure space with $0 < \lambda Y < \infty$, then there is a $y \in Y$ such that $\lambda\{y\} > 0$ ([7], §28). In this case, if D, D' and E are as in (b-iii) of Theorem 2, there is an $x \in D$ with $v\{x\} > 0$; there is an $F \in \Sigma$ with $D \cap F = \{x\}$; now $v(D' \cap F) > 0$, so there is a $y \in D' \cap F$ with $v\{y\} > 0$; there is an $F' \in \Sigma$ with $D' \cap F' = \{y\}$; but as $v(D \cap F \cap F')$ must now be greater than $0, F \cap F' \cap E$ must be exactly $\{x, y\}$, and $\mu\{x, y\} > 0$, while $\{x\} \notin \Sigma$ because $\mu_* D = 0$.

It seems likely that it is also consistent to suppose that there are measure spaces $(Y, \mathcal{P}(Y), \lambda)$ with $0 < \lambda Y < \infty$ but $\lambda \{y\} = 0$ for every $y \in Y$. However, these are necessarily extraordinary in various ways. For instance, if λ has an atom, then there is a two-valued-measurable cardinal $\varkappa \leq \#(Y)$ ([7], § 27); if λ does not have an atom, then there is an atomlessly-measurable cardinal strictly less than the Maharam type of $(Y, \mathcal{P}(Y), \lambda)$ ([6], Theorem 2.6). These ideas suffice to prove the following.

6. COROLLARY. In Theorem 2, if (b-iii) is true, then either there is a doubleton set $E = \{x, y\} \in \Sigma$ such that $\mu E > 0$ and $\{x\} \notin \Sigma$; or μ has an atom $E \in \Sigma$ such that $\#(E) \geqslant \varkappa$ for some two-valued-measurable cardinal \varkappa :

or there is an $E \in \Sigma$ such that $\mu E < \infty$ and the Maharam type of (E, Σ_E, μ_E) is greater than \varkappa for some atomlessly-measurable cardinal \varkappa .

- 7. Remarks. This is already more than enough to ensure that $\nu=\mu$ if $X=\mathbf{R}$ and μ is Lebesgue measure. But we can extend this to all Radon measures and many perfect measures, using some "well-known" facts about atomlessly-measurable cardinals. In [8], Kunen showed that if there is any atomlessly-measurable cardinal κ then there is a set $A\subseteq\mathbf{R}$ such that $\#(A)<\kappa$ and #(A)=0, where #(A)=0 is Lebesgue measure on \mathbb{R} . Later, Solovay showed that if there is a probability space $(Y,\mathscr{P}(Y),\lambda)$ with Maharam type greater than ω , then there is a set $A\subseteq\mathbf{R}$ such that $\#(A)=\omega_1$ and #(A)=0. The results of [6] show that the existence of any atomlessly-measurable cardinal is enough for Solovay's argument to work. Because neither Kunen's nor Solovay's ideas are readily accessible in print (so far as I am aware), I give a proof of a lemma which essentially covers Solovay's argument, in a form due to K. Prikry, and may be of independent interest. I repeat that this is not original.
- **8.** LEMMA. If \varkappa is an atomlessly-measurable cardinal, then for every cardinal $\varkappa' < \varkappa$ there is a set $A \subseteq [0, 1]$ such that $\#(A) = \varkappa'$ and $\tilde{\mu}^*B > 0$ for every uncountable $B \subseteq A$.

Proof. Let λ be an atomless κ -additive probability defined on $\mathscr{P}(\kappa)$. Theorem 2.6 of [6] shows that the Maharam type of $(C, \mathscr{P}(C), \lambda_C)$ is at least κ^+ for every $C \subseteq \kappa$ with $\lambda(C) > 0$; so from 3.13 (a) and 2.21 of [5] we see that there is a function $f \colon \kappa \to [0, 1]^{\kappa^+}$ which is inverse-measure-preserving for λ and the usual measure of $[0, 1]^{\kappa^+}$. For $\xi < \kappa$, set

$$A_{\xi} = \{ f(\xi)(\eta) \colon \eta < \varkappa' \} \subseteq [0, 1].$$

Suppose, if possible, that for every $\xi < \varkappa$ there is a set $J_{\xi} \subseteq \varkappa'$ such that $\#(J_{\xi}) = \omega_1$ but $E_{\xi} = f(\xi)[J_{\xi}]$ is Lebesgue negligible. Fix an enumeration $\langle U_m \rangle_{\text{meN}}$ of a countable

base for the topology of [0, 1], and for each $\xi < \kappa$, $n \in \mathbb{N}$ choose a relatively open set $G_{n\xi} \subseteq [0, 1]$ such that $E_{\xi} \subseteq G_{n\xi}$ and $\tilde{\mu}(G_{n\xi}) \leq 2^{-n}$. For $m, n \in \mathbb{N}$ set

$$D_{nm} = \{ \xi \colon U_m \subseteq G_{n\xi} \}_{\cdot, -}$$

For each $\alpha < \varkappa^+$, set $f_\alpha(\xi) = f(\xi)(\alpha)$ for $\xi < \varkappa$; then the real variables f_α are all stochastically independent. Consequently, there is for each $\xi < \varkappa$ an $\alpha(\xi) \in J_\xi$ such that $f_{\alpha(\xi)}$ is stochastically independent from the countable family $\{D_{nm}: n, m \in \mathbb{N}\} \subseteq \mathscr{P}(\varkappa)$. Because $\varkappa' < \varkappa$ and λ is \varkappa -additive, there is a $\gamma < \varkappa'$ such that $B = \{\xi: \alpha(\xi) = \gamma\}$ has $\lambda(B) > 0$. Take $n \in \mathbb{N}$ such that $\lambda(B) > 2^{-n}$, and examine

$$C = \bigcup_{m \in \mathbb{N}} (D_{nm} \cap f_{\gamma}^{-1} \llbracket U_m \rrbracket).$$

Because f_{γ} is independent from all the D_{nm} , and is inverse-measure-preserving for λ and $\tilde{\mu}$, $\lambda C = (\lambda \times \tilde{\mu})(C')$ where

$$C' = \bigcup_{m \in \mathbb{N}} (D_{nm} \times U_m) \subseteq \varkappa \times [0, 1].$$

But, for each $\xi < \kappa$, the vertical section $C'[\{\xi\}]$ is just $G_{n\xi}$, so

$$(\lambda \times \tilde{\mu})(C') = \int \tilde{\mu}(G_{n\xi}) \lambda(d\xi) \leq 2^{-n}$$

There must therefore be a $\xi \in B \setminus C$. But in this case $f_{\gamma}(\xi) \in E_{\xi}$, because $\gamma = \alpha(\xi) \in J_{\xi}$, while $f_{\gamma}(\xi) \notin G_{n\xi}$, because there is no m such that $f_{\gamma}(\xi) \in U_m \subseteq G_{n\xi}$; contrary to the choice of $G_{n\xi}$.

So take some $\xi < \varkappa$ such that $\overline{\mu}^*(f(\xi)[J]) > 0$ for every uncountable $J \subseteq \varkappa'$. Evidently $f(\xi) \upharpoonright \varkappa'$ is countable-to-one, so A_{ξ} must have cardinal \varkappa' (passing over the trivial case of countable \varkappa'), and will serve for A.

Remark. I do not know whether, under the hypothesis of this lemma, there is always a set $A \subseteq \mathbb{R}$ with $\#(A) = \kappa$ and no uncountable subset of A Lebesgue negligible.

9. PROPOSITION. If there is an atomlessly-measurable cardinal, and (X, Σ, μ) is an atomless, perfect, σ -finite measure space with $\mu(X) > 0$, then μ is not ω_2 -additive.

Proof. (Recall that a σ -finite measure space (X, Σ, μ) is called *perfect* if for every measurable function $f\colon X\to \mathbf{R}$ there is a Borel subset H of \mathbf{R} such that $H\subseteq f[X]$ and $\mu(X\setminus f^{-1}[H])=0$; see [10], Lemma 2.) Because (X,Σ,μ) is atomless and σ -finite, there is a function $f\colon X\to [0,\mu X[$ which is inverse-measure-preserving for μ and $\tilde{\mu}_{[0,\mu X[}$. By Lemma 8, with $\varkappa=\omega_1$, there is a set $A\subseteq [0,\mu X[$ with $\#(A)=\omega_1$ and $\tilde{\mu}^*A>0$; in which case $\mathscr{E}=\{f^{-1}[\{a\}]\colon a\in A\}$ is a disjoint family in Σ with $\#(\mathscr{E})=\omega_1$ but with $\sum_{E\in\mathscr{E}}\mu E=0<\tilde{\mu}^*A=\mu^*(\bigcup\mathscr{E})$ ([3], Lemma 1E), so that μ cannot be ω_2 -additive.

10. THEOREM. Suppose, in § 1, that (X, Σ, μ) is an atomless complete perfect σ -finite measure space. Then $\nu = \mu$.

Proof. Suppose, if possible, otherwise. Because (X, Σ, μ) is complete and σ -finite, (b-i) and (b-ii) of Theorem 2 are false; take D, D' and E from (b-iii). Then μ_D and $\mu_{D'}$ are atomless, totally finite, non-zero measures with domains $\mathcal{P}(D)$, $\mathcal{P}(D')$ respectively, so their additivities \varkappa, \varkappa' are atomlessly-measurable cardinals; suppose that $\varkappa \leqslant \varkappa'$. In this

case $\mu_{\rm F}$ must be \varkappa -additive, because it is complete and

$$\{A: \ \mu_{r}(A) = 0\} = \{A: \ A \subseteq E, \ \mu_{D}(A \cap D) = \mu_{D'}(A \cap D') = 0\}.$$

But (E, Σ_F, μ_F) is a perfect measure space, and $\kappa \gg \omega_2$ ([7], §27), so this contradicts Proposition 9 above.

11. THEOREM. Suppose, in § 1, that there is a topology $\mathfrak T$ on X such that $(X, \mathfrak T, \Sigma, \mu)$ is a Radon measure space. Then $v = \mu$.

Proof. (For the general theory of Radon measure spaces, see [2].) The argument follows that of Theorem 10. Because I take Radon measure spaces to be complete and locally determined, (b-i) and (b-ii) are both disallowed. If we take D. D' and E from (b-iii), we can be sure that μ_r is atomless (because in a Radon measure space every atom is concentrated at a point), while also (E, Σ_F, μ_F) is perfect ([10], Theorem 10); so we reach the same contradiction as before.

12. It is perhaps worth remarking here that a plausible route to Theorem 11 is blocked.

Proposition. If it is relatively consistent with ZFC to suppose that there is a two-valued-measurable cardinal, then it is relatively consistent to suppose that there is a Radon measure space $(X, \mathfrak{T}, \Sigma, \mu)$ with a set $D \subseteq X$ such that $\mu^*D > 0$, $\mu\{x\} = 0$ for every $x \in D$ and $\Sigma_D = \mathcal{P}(D)$.

- Proof. (a) The first step is to show that we can have an atomlessly-measurable cardinal κ , with a κ -additive probability λ defined on $\mathscr{P}(\kappa)$, such that the Maharam type of $(\varkappa, \mathcal{P}(\varkappa), \lambda)$ is 2^{\varkappa} . For Solovav's theorem ([12], or [7], §34) shows that if \varkappa is two-valued-measurable and we add $\varkappa'=2^{\varkappa}$ random reals, then \varkappa becomes atomlesslymeasurable, with a \varkappa -additive probability λ on $\mathscr{P}(\varkappa)$ for which there is a family $\langle F_x \rangle_{\xi < \varkappa'}$ of stochastically independent subsets of κ , all of λ -measure $\frac{1}{2}$. Also, of course, 2^{κ} is now c.
- (b) This shows in fact that the Maharam type of $(A, \mathcal{P}(A), \lambda_A)$ is at least $2^{\times} = c$ for every non-negligible set $A \subseteq \kappa$; but since the Maharam type of $(\kappa, \mathcal{P}(\kappa), \lambda)$ is surely no greater than 2*, $\mathfrak{A}(\lambda)$ must be homogeneous and isomorphic to the measure algebra of the usual Radon measure μ on $X = \{0, 1\}^c$. Consequently there is a stochastically independent family $\langle E_{r} \rangle_{\xi < \epsilon}$ of sets of λ -measure $\frac{1}{2}$ which generates the whole algebra $\mathfrak{A}(\lambda)$. Let $\langle B_{\varepsilon} \rangle_{\varepsilon < \epsilon}$ enumerate \mathcal{N}_{λ} . Define $f: \varkappa \to X$ by setting

$$f(\alpha)(\xi) = \begin{cases} 1 & \text{if } \alpha \in B_{\xi} \cup E_{\xi}, \\ 0 & \text{otherwise.} \end{cases}$$

Then f is inverse-measure-preserving for λ and μ ([5], Prop. 1.18). Set $D = f[\kappa]$. Then $1 \ge \mu^* D \ge \lambda \kappa = 1$, and $\mu(x) = 0$ for every $\kappa \in D$. If A is any subset of D, there is an $F \in \Sigma = \operatorname{dom}(\mu)$ such that $f^{-1}[A]^{\bullet} = f^{-1}[F]^{\bullet}$ in $\mathfrak{A}(\lambda)$, i.e. $B = f^{-1}[A] \triangle f^{-1}[F]$ $\in \mathcal{N}_1$. Take any infinite subset I of c such that $B \subseteq B_r$ for every $\xi \in I$. Then

$$N = \{x: x \in X, x(\xi) = 1 \ \forall \xi \in I\}$$

is u-negligible and

$$N \supseteq f[B] = f[f^{-1}[A \triangle F]] = D \cap (A \triangle F) = A \triangle (D \cap F).$$

So $A \triangle (D \cap F) \in \Sigma$ and $A \in \Sigma_p$, as required

Remark. $(D, \mathfrak{T}_n, \mathscr{G}(D), \mu_n)$ is now an atomless quasi-Radon probability space, if \mathfrak{T}_n is the topology on D induced by that of X; this clears up a question left open in [4]

Acknowledgements. I should like to thank M. Burke, for bringing this topic to my attention, and A. H. Stone, for very helpful explanations of Carathéodory's work; also M. Gitik, for sending a copy of [6]. Most of this paper was written while I was visiting the University of Wisconsin at Madison, and I am very grateful for being able to use their facilities. While in Madison I was supported partially by grant no. GR/F/31656 from the U.K. Science and Engineering Research Council.

References

- [1] C. Carathéodory, Vorlesungen über Reelle Funktionen, Teubner, 1927; Chelsea, 1968.
- [2] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1974.
- [3] -, Pointwise compact sets and measurable functions, Manuscripta Math. 15 (1975), 219-242,
- [4] -, Measurable functions and almost continuous functions, ibid. 33 (1981), 387-405.
- [5] -, Measure algebras, pp. 878-980 in [9].
- [6] M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel J. Math. 68 (1989), 129-160.
- [7] T. Jech, Set Theory, Academic Press, 1978.
- [8] K. Kunen, Inaccessibility properties of cardinals, PhD thesis, Stanford Univ., 1968.
- [9] J. D. Monk (ed.), Handbook of Boolean Algebra, North-Holland, 1989.
- [10] V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
- [11] D. S. Scott (ed.), Axiomatic Set Theory, Proc. Sympos. Pure Math. 13, part 1, Amer. Math. Soc., 1971.
- [12] R. M. Solovay, Real-valued measurable cardinals, pp. 397-428 in [11].

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ESSEX Colchester CO4 3SO England

> Received 20 February 1990: in revised form 4 October 1990