

On Sierpiński's nonmeasurable set

by

Marc Frantz (Indianapolis, Ind.)

Abstract. We obtain some sufficient conditions under which the Lebesgue measurability of a plane set E can be guaranteed by the nature of its "slices" (intersections with lines L). In particular, we show in Theorem 2 that if $E \cap L$ is the union of at most two disjoint open intervals for each line L, except for lines whose inclinations θ form a subset of $[0, \pi)$ with linear measure zero, then E is measurable.

This note is motivated by a famous example due to Sierpiński [2, 4] of a nonmeasurable (with respect to Lebesgue measure) subset E of \mathbb{R}^2 whose intersection with any line consists of at most two points. The complement E^c of E is of course nonmeasurable, too, and it is clear that the intersection of E^c with any line is the union of at most three disjoint open intervals. Thus, despite the nonmeasurability of E^c , each slice is a linearly measurable, very simple open subset of \mathbb{R} . One is therefore led to wonder just how "simple" the slices of a set E in \mathbb{R}^2 must be in order to guarantee its measurability. Some answers to this question will be provided in this note.

We will examine sets E in \mathbf{R}^2 for which there is at least one direction in which every slice of E is an open set, when viewed as a subset of \mathbf{R} . In order to classify and compare these sets, it will be helpful to introduce some notation. Let λ and λ_2 denote the Lebesgue measures in \mathbf{R} and \mathbf{R}^2 respectively, let Λ denote the collection of all λ -measurable subsets of \mathbf{R} , and let \mathcal{O}_n be the collection of all open subsets of \mathbf{R} which are the unions of at most n disjoint open intervals (we assume for convenience that the empty set belongs to \mathcal{O}_n). For each $\theta \in D := [0, \pi)$ we denote by $\mathcal{L}(\theta)$ the collection of all lines L in \mathbf{R}^2 with inclination θ . Finally, for any fixed θ and n, let

$$\begin{split} \mathscr{M}(\theta) &= \{ E \subseteq \mathbf{R}^2 | E \cap L \in \Lambda \text{ for each } L \in \mathscr{L}(\theta) \}, \\ \mathscr{G}_n(\theta) &= \{ E \subseteq \mathbf{R}^2 | E \cap L \in \mathcal{O}_n \text{ for each } L \in \mathscr{L}(\theta) \}. \end{split}$$

Clearly for fixed θ , $\mathscr{G}_1(\theta) \subseteq \mathscr{G}_2(\theta) \subseteq \ldots \subseteq \mathscr{M}(\theta)$, and the sets from $\mathscr{G}_n(\theta)$ are intuitively simpler than those from $\mathscr{M}(\theta)$. Further improvements can be obtained by

¹⁹⁸⁰ Mathematics Subject Classification (1985-Revision): Primary 28A05.

^{2 -} Fundamenta Mathematicae 139.1

reducing n or by taking intersections, such as $\mathscr{G}_n(\theta_1) \cap \mathscr{G}_m(\theta_2)$. In our notation, the Sierpiński example asserts basically that $\bigcap_{\theta \in D} \mathscr{G}_3(\theta)$ contains a nonmeasurable set. The results obtained in this note are stated in the following theorems. We do not give a proof of Theorem 5, since the referee has pointed out that it is a special case of a result due to Grande [3].

Theorem 1. If $\tilde{D} \subset D$ satisfies $\operatorname{card} \tilde{D} < \mathfrak{c}$, then $\bigcap_{\theta \in D} \mathscr{G}_3(\theta) \cap \bigcap_{\theta \in D} \mathscr{G}_2(\tilde{\theta})$ contains a nonmeasurable set.

Theorem 2. If $\lambda(D\backslash \widetilde{D}) = 0$, then every set $E \in \bigcap_{\widetilde{\theta} \in \widetilde{D}} \mathscr{G}_2(\widetilde{\theta})$ is measurable.

THEOREM 3. If $D\setminus \widetilde{D}$ is finite, then every set $E\in \bigcap_{\theta\in D}\mathscr{G}_3(\theta)\cap \bigcap_{\widetilde{\theta}\in \widetilde{D}}\mathscr{G}_2(\widetilde{\theta})$ is open in \mathbb{R}^2 .

THEOREM 4. $\mathcal{G}_1(\theta)$ contains a nonmeasurable set.

THEOREM 5. Every set $E \in \mathcal{G}_1(\theta) \cap \mathcal{M}(\tilde{\theta})$ is measurable, provided $\theta \neq \tilde{\theta}$.

Proof of Theorem 1. The proof is just a minor modification of that given in [2, pp. 142–144], and hence we give here only a sketch of the necessary changes in that proof. The reader is referred to [2] for the missing details. Our notation is that of [2] except for the symbols $\tilde{\theta}$ and \tilde{D} (already defined), and L' (defined below).

The idea is to prove the existence of a nonmeasurable subset E of \mathbb{R}^2 having at most two points in common with any line and having at most one point in common with any line in the directions $\tilde{\theta} \in \tilde{D}$, where card $\tilde{D} < c$; then E^c is the desired nonmeasurable set. Assume \tilde{D} has been chosen. The first modification of the proof is to add a third condition (c) on the functions $p(\alpha) \in F$ defined in [2], namely:

(c) no two points in the range of $p(\alpha)$ are collinear in the directions $\tilde{\theta} \in \tilde{D}$.

The second modification is that the direction θ in which L intersects F_{β} should be chosen from the set $D\backslash \widetilde{D}$ (which has cardinality c). Third, before choosing the points p_{β} from the subset $L' \subset L \cap F_{\beta}$ whose points are not collinear with pairs of points in $E = \operatorname{Range} q(\alpha)$, we must exclude those points which are collinear with other points in E in the directions $\widetilde{\theta} \in \widetilde{D}$. This can be done without exhausting L, because $\operatorname{card} L' = c$ and, for E at this stage of the proof, the set of excluded points has cardinality $\leq (\operatorname{card} E)(\operatorname{card} \widetilde{D}) < c$. Finally, we can choose p_{β} from the remaining points in L and finish the proof in a fashion analogous to [2].

Remarks. Under the assumption of the continuum hypothesis it is not difficult to use a similar method to prove that if $\lambda(\tilde{D}) = 0$, then $\bigcap_{\theta \in D} \mathscr{G}_3(\theta) \cap \bigcap_{\overline{\theta} \in D} \mathscr{G}_2(\overline{\theta})$ contains a nonmeasurable set.

In a recently published note [1] van Douwen proved the existence of a non-measurable subset A of \mathbb{R}^2 such that each vertical line in \mathbb{R}^2 contains at most one point of A. The proof of Theorem 1 shows that, in fact, nonmeasurable sets exist in \mathbb{R}^2 which have this intersection property for any arbitrary number of directions.

Proof of Theorem 2. From now on we shall use the brackets $\langle \ , \ \rangle$ to denote ordered pairs, in order to distinguish them from open intervals. Let $E \in \bigcap_{\tilde{\sigma} \in \tilde{D}} \mathscr{G}_2(\tilde{\theta})$; without loss of generality we may assume that $0, \pi/2 \in \tilde{D}$, i.e. that vertical and horizontal slices belong to \mathscr{O}_2 . (In fact, there must exist directions $\tilde{\theta}_1, \tilde{\theta}_2 \in \tilde{D}$ such that

 $\tilde{\theta}_1 + \pi/2 = \tilde{\theta}_2$. If not, then the set $\{\tilde{\theta} + \pi/2 | \tilde{\theta} \in \tilde{D} \cap [0, \pi/2)\} \cup \{\tilde{\theta} - \pi/2 | \tilde{\theta} \in \tilde{D} \cap [\pi/2, \pi]\}$ would belong to $D \setminus \tilde{D}$ and have measure $= \lambda(\tilde{D}) = \pi$.) Our goal is to write E as the countable union

$$E = \bigcup_{\substack{p,q \in \mathbf{Q} \\ p < q}} A_{p,q}$$

where each set $A_{p,q}$ is λ_2 -measurable. For each $r \in \mathbb{R}$, let E^r denote the set

$$E^r = \{ x \in \mathbf{R} | \langle x, r \rangle \in E \},$$

and for each $p, q \in \mathbf{Q}$, such that p < q, let $E^{p,q}$ denote the set

$$E^{p,q} = \{ x \in \mathbb{R} | \{x\} \times [p, q] \subset E \}.$$

That is, $E^{p,q}$ is the set of all x for which E contains the vertical line segment with endpoints $\langle x, p \rangle$ and $\langle x, q \rangle$. Note that $E^{p,q} \subset E^p \cap E^q$ and that $E^p \cap E^q$ (if nonempty) is the disjoint union of a finite number of open intervals, since the same is true of E^p and E^q by the assumption that $0 \in \widetilde{D}$. Let us fix $p, q \in \mathbb{Q}$ with p < q and assume for simplicity that $E^p \cap E^q$ is a single, bounded, open interval (otherwise our construction of $A_{p,q}$ can be done in pieces, taking one interval of $E^p \cap E^q$ at a time).

If $E^{p,q}$ is λ -measurable, then simply let $A_{p,q}$ be the λ_2 -measurable set

$$A_{p,q} = E^{p,q} \times [p, q].$$

If $E^{p,q}$ is not λ -measurable, let us set $a_{p,q}=\inf E^{p,q}$, $b_{p,q}=\sup E^{p,q}$, and let $R_{p,q}$ be the rectangle

$$R_{p,q} = [a_{p,q}, b_{p,q}] \times [p, q].$$

In this case we define $A_{p,q}$ to be the set

$$A_{p,q}=R_{p,q}\cap E.$$

We will show that $A_{p,q}$ is a λ_2 -measurable subset of E by showing that $A_{p,q}=R_{p,q}$. λ_2 -almost everywhere.

Since $E^{p,q}$ is nonmeasurable, its relative complement $F^{p,q} := (a_{p,q}, b_{p,q}) \setminus E^{p,q}$ is also nonmeasurable, and hence $F^{p,q}$ must contain a point x_0 such that $[x_0, x_0 + \varepsilon) \cap E^{p,q}$ and $(x_0 - \varepsilon, x_0] \cap E^{p,q}$ are nonempty for any $\varepsilon > 0$; otherwise $F^{p,q}$ could be written $F^{p,q} = \bigcup_{x \in F^{p,q}} I_x$, where each I_x is a closed-open or open-closed interval in $F^{p,q}$ containing x. But \mathbf{R} is Lindelöf in the topologies generated by either type interval, and hence the cover $\bigcup_{x \in F^{p,q}} I_x$ could be reduced to a countable cover of measurable sets, thereby contradicting the nonmeasurability of $F^{p,q}$.

Now since $x_0 \in E^p \cap E^q \setminus E^{p,q}$, it follows from the definition of $E^{p,q}$ that the line segment $\{x_0\} \times (p,q)$ must contain a point $\langle x_0, y_0 \rangle \notin E$. This point clearly lies in the interior of $R_{p,q}$; let us use it as a polar origin to measure $A_{p,q}$ in polar coordinates and show that, as claimed, $\lambda_2(A_{p,q}) = \lambda_2(R_{p,q})$.

Of course we must also show that $A_{p,q}$ is in fact λ_2 -measurable. Recalling that $\lambda(D\backslash \widetilde{D})=0$, we can accomplish both tasks by showing that for any line $L_{\overline{\theta}}$ with inclination $\widetilde{\theta}\in \widetilde{D}$ which passes through $\langle x_0,y_0\rangle$, we have $\lambda(L_{\overline{\theta}}\cap A_{p,q})=\lambda(L_{\overline{\theta}}\cap R_{p,q})$. In

fact, except for the point $\langle x_0, y_0 \rangle$, the two sets just mentioned coincide in the interior $\mathring{R}_{p,q}$ of $R_{p,q}$. To prove this, suppose by way of contradiction that for some $\widetilde{\theta} \in \widetilde{D}$ there exists a point $\langle x_\alpha, y_\alpha \rangle \neq \langle x_0, y_0 \rangle$ such that $\langle x_\alpha, y_\alpha \rangle \in L_{\overline{\theta}} \cap (\mathring{R}_{p,q} \setminus A_{p,q})$, or equivalently, such that $\langle x_\alpha, y_\alpha \rangle \in L_{\overline{\theta}} \cap (\mathring{R}_{p,q} \setminus E)$ (see Fig. 1).

There are two cases to consider. First, suppose that the ray from $\langle x_0, y_0 \rangle$ through $\langle x_\alpha, y_\alpha \rangle$ intersects the bottom (as drawn) or top of the rectangle $R_{p,q}$. For the purposes of measure we will ignore the special case in which $L_{\bar{\theta}}$ intersects a corner point of the rectangle, although this can be handled as well. Let us call this intersection point $\langle x_3, p \rangle$ and recall that since $x_3 \in (a_{p,q}, b_{p,q}) \subset E^p$, it follows that $\langle x_3, p \rangle \in E$ (points which belong to E are indicated in solid black in the figure). Moreover, since x_0 is both a left- and right-hand limit point of $E^{p,q}$, we can find points $x_1, x_2 \in E^{p,q}$ sufficiently close to x_0 such that $x_3 < x_\alpha < x_1 < x_0 < x_2$ and such that the segments $\{x_1\} \times [p, q]$ and $\{x_2\} \times [p, q]$ intersect $L_{\bar{\theta}}$ at the points $\langle x_1, y_1 \rangle$ and $\langle x_2, y_2 \rangle$, respectively; by definition of $E^{p,q}$ these points also belong to E. But now five points lie on $L_{\bar{\theta}}$ in the following order:

$$\langle x_3, p \rangle$$
, $\langle x_\alpha, y_\alpha \rangle$, $\langle x_1, y_1 \rangle$, $\langle x_0, y_0 \rangle$, $\langle x_2, y_2 \rangle$,

where the first, third, and fifth points belong to E and the second and fourth points do not. This clearly contradicts the fact that $E \cap L_{\bar{\theta}} \in \mathcal{O}_2$; i.e., that $E \cap L_{\bar{\theta}}$ is the union of at most two disjoint open intervals.

The second case to consider is the case in which the ray from $\langle x_0, y_0 \rangle$ through $\langle x_\alpha, y_\alpha \rangle$ intersects a side (say the right side, as drawn) of the rectangle $R_{p,q}$. By a familiar argument, we can find points $\langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in E \cap L_{\bar{\theta}}$ such that $x_1 < x_0 < x_2 < x_\alpha$. Moreover, since $b_{p,q} = \sup E^{p,q}$, we can find $x_4 \in E^{p,q}$ with $x_\alpha < x_4 \leqslant b_{p,q}$, and a corresponding point $\langle x_4, y_4 \rangle \in E \cap L_{\bar{\theta}}$. Again we have five points

$$\langle x_1, y_1 \rangle, \langle x_0, y_0 \rangle, \langle x_2, y_2 \rangle, \langle x_\alpha, y_\alpha \rangle, \langle x_4, y_4 \rangle,$$

whose memberships alternate between E and its complement. By the same reasoning as before, this gives us the desired contradiction for the second case, and the claim that $A_{p,q} = R_{p,q} \lambda_2$ -almost everywhere is therefore proved.

Finally, it is clear that

$$\bigcup_{\substack{p,q\in\mathbf{Q}\\p\neq 0}}A_{p,q}\subseteq E.$$

To show the reverse inclusion, let $\langle x, y \rangle \in E$, and observe that, since $\pi/2 \in \widetilde{D}$, there must exist rationals p and q with p < y < q such that the segment $\{x\} \times [p, q]$ belongs to E. But then $\langle x, y \rangle \in A_{p,q}$, by either definition of $A_{p,q}$.

Proof of Theorem 3. Let $E \in \bigcap_{\theta \in D} \mathscr{G}_3(\theta) \cap \bigcap_{\theta \in D} \mathscr{G}_2(\widetilde{\theta})$ and assume by way of contradiction that E is not open. By assumption, E contains a limit point of E^c ; without loss of generality, we can assume this point to be the origin. Then by the line-intersection properties of E, the set E must contain a countable number of line segments s_n , each containing the origin and having a point (in polar coordinates) $\langle r_n, \theta_n \rangle \in E^c$ as one (deleted) endpoint, where $r_n \downarrow 0$, $\theta_n \in [0, 2\pi)$, and $\theta_n \neq \theta_m$ if $n \neq m$. Moreover, since $\theta_n \in [0, 2\pi)$, the sequence $\{\theta_n\}$ must have a limit point θ ; let us assume for convenience that $\theta = 0$ and $\theta_n \downarrow 0$.

For each n, let us convert $\langle r_n, \theta_n \rangle$ to rectangular coordinates $\langle a_n, b_n \rangle$, and work with rectangular coordinates hereafter. Again by the nature of E, there must be a point $\langle c, 0 \rangle$ with c > 0 and $[0, c) \times \{0\} \subseteq E$ (see Fig. 2). For the same reason, we can choose $a \in (0, c)$ and a point $\langle a, b \rangle$ with b > 0 such that $\{a\} \times [0, b) \subseteq E$. Since $r_n \downarrow 0$ and $\theta_n \downarrow 0$, it follows that every triangle with vertices $\langle 0, 0 \rangle$, $\langle a', 0 \rangle$, and $\langle a', b' \rangle$, where a', b' > 0, contains a tail of the sequence $\{\langle a_n, b_n \rangle\}$. Thus we can choose $\langle a_i, b_i \rangle$ such that $0 < a_i < a$ and $0 < b_i/a_i < b/a$, and choose $\langle a_i, b_i \rangle$ such that $0 < a_i < a_i$ and $0 < b_i < b_i$.

Finally, we can choose $\langle a_k, b_k \rangle$ such that $0 < a_k < a_j$, $0 < b_k < b_j$, and such that the line L_{ki} through $\langle a_k, b_k \rangle$ and $\langle a_i, b_i \rangle$ intersects the following three subsets of E:

$$E_1 := [0, c) \times \{0\},$$

 E_2 := the segment from $\langle 0, 0 \rangle$ to $\langle a_j, b_j \rangle$,

$$E_3 := \{a\} \times [0, b).$$

M Frantz

But now five points of L_{ν} , are arranged in the following order:

$$E_1 \cap L_{ki}$$
, $\langle a_k, b_k \rangle$, $E_2 \cap L_{ki}$, $\langle a_i, b_i \rangle$, $E_3 \cap L_{ki}$.

Since $\langle a_k, b_k \rangle$, $\langle a_i, b_i \rangle \in E^c$, this means that $E \cap L_{ki}$ cannot be the union of at most two disjoint open intervals (i.e., $E \cap L_{ki} \notin \mathcal{O}_2$). Furthermore, it should be clear that the choice of $\langle a_k, b_k \rangle$ can be made from an infinite number of points $\langle a_n, b_n \rangle$ such that $E \cap L_{ni} \notin \mathcal{O}_2$, where L_{ni} and L_{mi} have different inclinations if $m \neq n$. This contradicts the fact that $D \setminus \widetilde{D}$ is finite.

Remarks. It is not difficult to apply a similar method and induction to prove the following generalization: If E is a subset of \mathbf{R}^k for any $k \in \mathbf{N}$ such that $E \cap L$ is open in L for every line L in \mathbf{R}^k , and $E \cap L \in \mathcal{O}_2$ for every line L in \mathbf{R}^k except for lines in a finite number of directions, then E is open in \mathbf{R}^k .

Note that the theorem does not hold if the number of directions in which $E \cap L \notin \mathcal{O}_2$ is infinite. For example, let B denote the open unit ball in \mathbb{R}^2 , let S be the sequence of points $\langle 1/n, 1/n^2 \rangle$ for $n \geq 2$, and let $E = B \setminus S$. Then $E \cap L \in \mathcal{O}_2$ except for the lines L_{mn} determined by pairs of points in S (observe that card $\{L_{mn}\} = \aleph_0$ and that $E \cap L_{mn} \in \mathcal{O}_3$ for each L_{mn}). In this case, E is neither open nor closed.

Examples of sets satisfying the hypothesis of the theorem suggest an affirmative answer to the following open question suggested by the referee: Can any set satisfying the hypothesis of Theorem 3 be written as a finite union of convex sets?

Proof of Theorem 4. Let F be a (linearly) nonmeasurable subset of I := (0, 1). Then $E = F \times I$ belongs to $\mathscr{G}_1(\pi/2)$, and by Fubini's theorem, E is clearly nonmeasurable.

The author is indebted to Professor C. D. Aliprantis for a careful reading of an early draft, and especially to Professor Yuri Abramovich for his advice and encouragement. Thanks are also due to the referee for several corrections and improvements.

References

- [1] E. K. van Douwen, Fubini's theorem for null sets, Amer. Math. Monthly 96 (1989), 718-721.
- [2] B. R. Gelbaum and J. M. H. Olmstead, Counterexamples in Analysis, Holden-Day, San Francisco 1964.
- [3] Z. Grande, Un théorème sur la mesurabilité des fonctions de deux variables, Acta Math. Hungar. 41 (1983), 89-91.
- [4] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112-115.

DEPARTMENT OF MATHEMATICAL SCIENCES INDIANA UNIVERSITY – PURDUE UNIVERSITY AT INDIANAPOLIS 1125 East 38th Str. Indianapolis, Indiana 46205-2810, U.S.A.

Received 10 April 1990; in revised form 22 October 1990

Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de \mathcal{L}^1

par

Robert Cauty (Paris)

Abstract. Let \mathscr{R} (resp. \mathscr{C}) be the subspace of $\mathscr{L}^1([0, 1])$ consisting of those elements having a representative which is Riemann-integrable (resp. continuous). We prove that \mathscr{R} and \mathscr{C} are homeomorphic to the countable product Σ^{∞} , where $\Sigma = \{(x_n) \in l^2: \sum_{n=1}^{\infty} (nx_n)^2 < \infty\}$. We give topological characterizations of the pair $(\mathscr{R}, \mathscr{C})$ and of the difference $\mathscr{R} \setminus \mathscr{C}$.

1. Introduction. Soit \mathscr{L}^1 l'espace des classes de fonctions réelles intégrables sur [0,1] avec la norme usuelle $\|f\|=\int_0^1|f(t)|dt$. Soit \mathscr{C} (resp. \mathscr{R}) le sous-espace de \mathscr{L}^1 formé des éléments ayant un représentant continu (resp. intégrable au sens de Riemann). Nous nous proposons ici de caractériser topologiquement les espaces \mathscr{R} et \mathscr{C} , leur différence $\mathscr{R}\setminus\mathscr{C}$ et le couple $(\mathscr{R},\mathscr{C})$.

Soit Σ le sous-espace de l'espace de Hilbert l^2 formé des suites (x_n) telles que $\sum_{n=1}^{\infty} (nx_n)^2 < \infty$, et soit Σ^{∞} le produit d'une infinité dénombrable de copies de Σ .

1.1. THÉORÈME. \mathcal{R} et \mathscr{C} sont homéomorphes à Σ^{∞} .

Pour formuler nos caractérisations de $\Re \backslash \mathscr{C}$ et de (\Re,\mathscr{C}) , nous avons besoin de quelques définitions. Si f et g sont deux fonctions de Y dans X, et si \mathscr{U} est un recouvrement ouvert de X, nous dirons que f est \mathscr{U} -proche de g si, pour tout y dans Y, il y un élément de \mathscr{U} contenant à la fois f(y) et g(y). Un sous-ensemble F d'un rétracte absolu de voisinage X est appelé un Z-ensemble dans X s'il est fermé et si, pour tout recouvrement ouvert \mathscr{U} de X, il existe une fonction continue f de X dans X, \mathscr{U} -proche de l'identité, et telle que $f(X) \subset X \backslash F$; si, de plus, il est toujours possible de choisir la fonction f de façon que $\overline{f(X)} \cap F = \varnothing$, alors F est appelé un Z-ensemble au sens fort dans X. Une fonction $f: Y \to X$ est appelée un Z-plongement si c'est un plongement et si f(Y) est un Z-ensemble dans X.

Par un couple (X, X'), nous entendons un espace X et un sous-espace X' de X. Soient \mathcal{K}_1 et \mathcal{K}_2 deux classes d'espaces métrisables et séparables. Un couple (X, X') où X est un rétracte absolu de voisinage est dit $(\mathcal{K}_1, \mathcal{K}_2)$ -universel si, pour tout couple (C_1, C_2) où C_1 appartient à \mathcal{K}_1 et C_2 à \mathcal{K}_2 , toute fonction continue f de C_1 dans X et tout recouvrement ouvert \mathcal{U} de X, il existe un Z-plongement g de C_1 dans X qui est