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On Sierpinski’s nonmeasurable set
by

Marc Frantz (Indianapolis, Ind.)

Abstract. We obtain some sufficient conditions under which the Lebesgue measurability of

a plane set E can be guaranteed by the nature of its “slices” (intersections with lines L). In

" particular, we show in Theorem 2 that if E L is the union of at most two disjoint open intervals

for each line L, except for lines whose inclinations @ form a subset of [0, n) with linear measure
zero, then E is measurable.

This note is motivated by a famous example due to Sierpinski [2, 4] of
a nonmeasurable (with respect to Lebesgue measure) subset E of R* whose intersection
with any line consists of at most two points. The complement E° of E is of course
ponmeasurable, too, and it is clear that the intersection of E* with any line is the union
of at most three disjoint open intervals. Thus, despite the nonmeasurability of E¢, each
slice is a linearly measurable, very simple open subset of R. One is therefore led to
wonder just how “simple” the slices of a set E in R? must be in order to guarantee its
measurability. Some answers to this question will be provided in this note.

We will examine sets E in R? for which there is at least one direction in which every
slice of E is an open set, when viewed as a subset of R. In order to classify and compare
these sets, it will be helpful to introduce some notation. Let 4 and 4, denote the
Lebesgue measures in R and R? respectively, let A denote the collection of all
J-measurable subsets of R, and let ¢, be the collection of all open subsets of R which are
the unions of at most n disjoint open intervals (we assume for convenience that the
empty set belongs to ¢,). For each (& D:= [0, 7) we denote by £ (0) the collection of all
lines L in R? with inclination €. Finally, for any lixed 6 and n, 'let

M(0)={E s R*EnLeA for each Le Z(0)},
9,(0) = {E = R?|EnLe0, for each Le Z(0)}.

Clearly for fixed 0, %,(0) = %,(0)<...< #(0), and the sets from %,(0) are
intuitively simpler than those from .#(f). Further improvements can be obtained by
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reducing n or by taking intersections, such as %,(6,) " %,,(0,). In our notation, the
Sierpinski example asserts basically that [ )s.p %, (6) contains a nonmeasurable set. The
results obtained in this note are stated in the following theorems. We do not give a proof
of Theorem 5, since the referee has pointed out that it is a special case of a result due to
Grande [3].

TueoreM 1. If D = D satisfies card D < ¢, then (oep %5(0) N (Moed %,(0) contains
a nonmeasurable set.

THEOREM 2. If A(D\D) = 0, then every set Ee Noes%,(8) is measurable.
THEOREM 3. If D\D is finite, then every set E € (Yoep%3(6) 0 Yaus %,(0) is open in R%.
THEOREM 4. ¥, (6) contains a nonmeasurable set.

THEOREM 5. Every set Ec%,(0) n.#(0) is measurable, provided 0 # @.

Proof of Theorem 1. The proofis just a minor modification of that given in [2,
pp. 142-144], and hence we give here only a sketch of the necessary changes in that
proof. The reader is referred to [2] for the missing details. Our notation is that of [2]
except for the symbols & and D (already defined), and L (defined below).

The idea is to prove the existence of a nonmeasurable subset E of R? having at
most two points in common with any line and having at most one point in common
with any line in the directions §eD, where cardD <¢; then E° is the desired
nonmeasurable set. Assume D has been chosen. The first modification of the proof is to
add a ‘third condition (c) on the functions p(x)eF defined in [2], namely:

(c) no two points in the range of p(a) are collinear in the directions §eD.

The second modification is that the direction 8 in which L intersects F » should be
chosen from the set D\ (which has cardinality ¢). Third, before choosing the points p,
from the subset L' = LN F, whose points are not collinear with pairs of points in
E = Range g(), we must exclude those points which are collinear with other points in
E in the directions @eD. This can be done without exhausting L, because card I/ = ¢
and, for E at this stage of the proof, the set of excluded points has cardinali-
ty < (card E)(card D) < c. Finally, we can choose pp from the remaining points in I’ and
finish the proof.in a fashion analogous to [2].

Remarks. Under the assumption of the continuum hypoihesis it is not difficult to
use 2 similar method to prove that if (D) = 0, then Noep %5(0) N (Noep %, (8) contains
a nonmeasurable set.

In a recently published note [lj van Douwen proved the existence of a non-
measurable subset 4 of R? such that each vertical line in R? contains at most one point
of A. The proof of Theorem 1 shows that, in fact, nonmeasurable sets exist in R? which
have this intersection property for any arbitrary number of directions.

Proof of Theorem 2. From now on we shall use the brackets ¢ , > to denote
ordered pairs, in order to distinguish them from open intervals. Let Ee(\z.p %,(0);
without loss of generality we may assume that 0, n/2eD, ie. that vertical and hori-
zontal slices belong to 0. (In fact, there must exist directions §,, §,e B such that
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8, +n/2 = §,. If not, then the set {6~+1r/2]6765£\ [0, n/2)} L {g—F/ZlgeI?n [n/2, m)}
would belong to D\D and have measure = A(D) = 1) Our goal is to write E as the
countable union

E= U Apg
P.aeQ
p<4q

where each set A,, is i,-measurable. For each reR, let E" denote the set’
Er = {xeR|{x, rYeE},
and for each p, geQ, such that p <g, let E?? denote the set
. EP9 = {xeR|{x}x[p, q] < E}.

That is, E™ is the set of all x for which E contains the vertical line’ segment wit-h
endpoints {x, p) and {x, ). Note that E»* = E? » E? and that E” E" (if nonempty) is
the disjoint union of a finite number of open intervals, since the same is true o.f E? .a?d
E? by the assumption that Oe D.Let usfix p, e Q withp < g and assum(.: for simplicity
that E? n E4 is a single, bounded, open interval (otherwise our construction of 4,,, can
be done in pieces, taking one interval of EP nE? at a time).

If EP9 is J-measurable, then simply let 4,, be the 1,-measurable set

Apq = E™x[p, ql.

If EP4 is not A-measurable, let us set a,, = inf E™4, by, = sup EP4, and let R,,q be

the rectangle
RIJ,E = :[ap,qa bp.q] X [P: 11]

In this case we define A4,, to be the set
Apg=RpNE.

We will show that 4,, is a 1,-measurable subset of E by showing that A, = R,

. A,-almost everywhere.

Since EP4 is nonmeasurable, its relative complement FP4:= (a4, bp J\E™? is also
nonmeasurable, and hence F7¢ must contain a point x, such that [x,, Xo+& N E"’“. and
(xo—&, Xo] M EP? are nonempty for amy &> 0; otherwise FP4 coyld be 'wrlttc;lz
FPA = U,EFp.q I, where each I, is a closed-open or open-c_losed mte_rval in F?
containing x. But R is Lindeldf in the topologies generated by either type interval, and
hence the cover stm-v]x could be reduced to a countable cover of measurable sets,
thereby contradicting the nonmeasurability of FP2 - ;

Now since x,€E? n EN\EP4, it follows from the deﬁm.tlon ‘of EP4 that. th.e line
segment {x,} % (p, g) must contain a point {X, Yoy ¢E. Thls.pomt clearly }1&5 in the
interior of R, ; let us use it as a polar origin to measure 4,, in polar coordinates and
show that, as claimed, 4,(4,.4) = A2(Rpq)- .

Of course we must also show that A, is in fact 1,-measurable. Re.calhng t]?at
AMD\D) = 0, we can accomplish both tasks by showing that for any line L with
inclination § D which passes through {x,, o>, we have A(Lg N4, = ALz N Ry,). In
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fact, except for the point {x,, ¥,>, the two sets just mentioned coincide in the interior
R, of R, ,. To prove this, suppose by way of contradiction that for some §e 5 there
exists a point {x,, y,> # <’ﬁ0’ Yo such that {x,, y>eLzn (Ii,,,,,\A,,_q), or equivalently,
such that {x,, y,yeLyn(R,,\E) (see Fig. 1).
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There are two cases to consider. First, suppose that the ray from <x,, y,> through
<x,» ¥, intersects the bottom (as drawn) or top of the rectangle R, ;. For the purposes
of measure we will ignore the special case in which Ly intersects a corner point of the
rectangle, although this can be handled as well. Let us call this intersection point
%3, p) and recall that since x3€(ay.g, b,,) = EP, it follows that {x3, pY€E (points
which belong to E are indicated in solid black in the figure). Moreover, since x, is both
a left- and right-hand limit point of E*, we can find points Xy, x, € EP sufficiently close
to x4 such that x; < x, < x; < x, < x, and such that the segments {x,} x [p, q] and
{x,} x [p, 4] intersect Ly at the points <1, y17 and {x, y, >, respectively; by definition
of E™ these points also belong to E. But now five points lie on Ly in the following
order:

<x3’ p>> <x:x= ya): <x11 yl)s <x0= y0>v <X2, y2>:
where the first, third, and fifth points belong to E and the second and fourth points do
not. This clearly contradicts the fact that E ~ L;e 0,; e, that E A Ly is the union of at
most two disjoint open intervals.

The second case to consider is the case in which the ray from {x,, y,> through
{%a» ¥, intersects a side (say the right side, as drawn) of the rectangle R pg- By a familiar
argument, we can find points <x;, y, >, <x,, y,>€En Ly such that x; < x;, < x, < x,.

Moreover, since b, ; = sup E™, we can find x4€ EP4 with x, < x, < b,,, and a corres-

ponding point {x,, y,>€E ~L;. Again we have five points

<x1= yl>: <x0= y0>s <st y2>1 <xua ya>a <x41 ,V4>=
whose memberships alternate between E and its complement. By the same reasoning as
before, this gives us the desired contradiction for the second case, and the claim that
Apq =R, A;-almost everywhere is therefore proved.
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Finally, it is clear that

U 4,.,=E.

P.qeQ
p<q

To show the reverse inclusion, let {x, y) € E, and observe that, since n/2 € D, there must
exist rationals p and g with p < y < g such that the segment {x} x [p, 4] belongs to E.
But then (x, y>e4d,,, by either definition of 4,,.

Proof of Theorem 3. Let E€(pep %1 (6) N ﬂyebgz(g) and assume by way of
contradiction that E is not open. By assumption, E contains a limit point of E°; without
loss of generality, we can assume this point to be the origin. Then by the line-
intersection properties of E, the set E must contain a countable number of line segments
s,, each containing the origin and having a point (in polar coordinates) <r,, 8,> € E° as
one (deleted) endpoint, where r, | 0, 6,€[0, 2r), and 6, # 6,, if n # m. Moreovet, since
6,€[0, 2m), the sequence {0,} must have a limit point 6; let us assume for convenience
that 6 =0 and 6, 0.

For each n, let us convert {r,, §,) to rectangular coordinates <a,, b,>, and work
with rectangular coordinates hereafter. Again by the nature of E, there must be a point
e, 0> with ¢.> 0 and [0, ¢) x {0} < E (see Fig. 2). For the same reason, we can choose
ae(0, c) and a point {a, b) with b > 0 such that {a} x [0, b) < E. Since r, | 0 and 6, | 0,
it follows that every triangle with vertices <0, 0>, {a’, 0), and {d', b'>, where a', b’ > 0,
contains a tail of the sequence {<a,, b,>}. Thus we can choose {a;, b;> such that
0 < g, <aand 0 < b;/a; < b/a, and choose {a;, b;> such that 0 < a; < a;and 0 < b; < b;.

{a, by ?

—0 {c,

/ E;
7 Fig. 2

Finally, we can choose {a, by} such that 0 < a, < a;, 0< b, < b;, and such that
the line L; through {a, b;> and {a;, b,> intersects the following three subsets of E:

E :=[0, c)x {0}, i
E,:= the segment from <0, 0> to <a;, by,
Ey:= {a} x[0, b).
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But now five points of L,; are arranged in the following order:
E,nLy, <&, b, E; 0Ly, <a;, b, E3n L.

Since {ay, b, <a;, b;> € E*, this means that E n L,; cannot be the union of at most two
disjoint open intervals (ie., E N Ly; ¢ 0,). Furthermore, it should be clear that the choice
of {a,b,> can be made from an infinite number of points {a,, b,> such that
EnL,¢0,, where L,; and L, have different inclinations if m % n. This contradicts the
fact that D\D is finite.

Remarks. It is not difficult to apply a similar method and induction to prove the
following generalization: If E is a subset of R* for any k&N such that E n L is open in
L for every line L in R¥, and E n Le @, for every line L in R¥ except for lines in a finite
number of directions, then E is open in R¥.

Note that the theorem does not hold if the number of directions in which
EnL¢0, is infinite. For example, let B denote the open unit ball in R?, let S be the
sequence of points {1/n, 1/n*> for n > 2, and let E = B\S. Then E n Le @, except for

 the lines L,,, determined by pairs of points in § (observe that card{L,,} = ¥, and that
EnL,,e0; for each L,,). In this case, E is neither open nor, closed.

Examples of sets satisfying the hypothesis of the theorem suggest an affirmative
answer to the following open question suggested by the referee: Can any set satisfying
the hypothesis of Theorem 3 be written as a finite union of convex sets?

Proof of Theorem 4. Let F be a (linearly) nonmeasurable subset of I:= (0, 1).
Then E = Fx I belongs to %,(n/2), and by Fubini’s theorem, E is clearly nonmea-
surable.

The author is indebted to Professor C. D. Aliprantis for a careful reading of an early
draft, and especially to Professor Yuri Abramovich for his advice and encouragement.
Thanks are also due to the referee for several corrections and improvements.
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Les fonctions continues et les fonctions intégrables
au sens de Riemann comme sous-espaces de %!

par

Robert Cauty (Paris)

Abstract. Let & (resp. %) be the subspace of % ([0, 1]) consisting of those elements having
a representative which is Riemann-integrable (resp. continuous). We prove that # and % are
homeomorphic to the countable product X, where I = {(x,)eI*: 3 o2, (nx,)* < c0}. We give
topological characterizations of the pair (#, %) and of the difference %#\%.

1. Introduction. Soit %! Iespace des classes de fonctions réelles intégrables sur
[0, 17 avec la norme usuelle | f| = [§|f (®)|dt. Soit € (resp. %) le sous-espace de £*
formé des éléments ayant un représentant continu (resp. intégrable au sens de Riemann).
Nous nous proposons ici de caractériser topologiquement les espaces # et 4, leur
difference Z\¥ et le couple (%, €).

Soit T le sous-espace de l'espace de Hilbert 2 formé des suites (x,) telles que
> i (nx,)* < oo, et soit £* le produit d’'une infinité dénombrable de copies de X.

1.1. THEOREME. & et ¥ sont homéomorphes a Z™.

Pour formuler nos caractérisations de #\% et de (#, ¥), nous avons besoin de
quelques définitions. Si f et g sont deux fonctions de Y dans X, et si 4 est un
recouvrement ouvert de X, nous dirons que f"est %-proche de g si, pour tout y dans ¥, il
y un élément de % contenant a la fois f () et g(y). Un sous-ensemble F d’un rétracte
absolu de voisinage X est appelé un Z-ensemble dans X s’il est fermé et si, pour tout
recouvrement ouvert % de X, il existe une fonction continue f de X dans X, #-proche
de Pidentité, et telle que f(X) < X\F; si, de plus, il est toujours possible de choisir la
fonction f de fagon que ﬁ)?)nF =(J, alors F est appelé un Z-ensemble au sens fort
dans X. Une fonction f: Y— X est appelée un Z-plongement si ¢’est un plongement et si
f(Y) est un Z-ensemble dans X.

Par un couple (X, X'), nous entendons un espace X et un sous-espace X’ de X.
Soient o] et A, deux classes d’espaces métrisables et séparables. Un couple (X, X') ol
X est un rétracte absolu de voisinage est dit (Jf;, o3)-universel si, pour tout couple
(C;, Cy) ol C, appartient & ] et C, & £, toute fonction continue f de C, dans X et
tout recouvrement ouvert % de X, il existe un Z-plongement g de C, dans X qui est
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