icm

On fp.p. and f¥p.p. of some not locally
connected continua

by

Yasushi Yonezawa (Nishinomiya)

Abstract. Let X be a continuum with the fixed point property (fpp) and f: X X
a continuous mapping. A component C of the fixed point set of f is called essential if for any & > 0
there exists 6 > 0 such that every continuous mapping f: X — X with |f'—f| < 6 has a fixed
point in the e-neighborhood U (C) of C; and X has J*p.p. if the fixed point set of every continuous
mapping f: X — X has at least one essential component. For instance, a compact absolute retract
has f*p.p. We give some examples of not locally connected continua with f.p.p,, but without *p.p.
Also, we exhibit a not locally connected continuum which has both fp.p. and f*p.p.

Let X be a continuum. If every mapping f: X —X (1) has at least one fixed point,
X is said to have the fixed point property (fp.p.). In this paper we investigate the
existence of essential components of fixed point sets and the property {*p.p., which are
defined as follows: 2 component C of the fixed point set of fis called essential if for any
&> 0 there exists & > 0 such that every mapping /": X — X with |/~ f] < & has a fixed
point in the s-neighborhood U,(C) of C; and X has f¥p.p. if it has f.p.p. and the fixed
point set of every mapping f: X —X has at least one essential component.

A retract of a continuum with f*p.p. has f*p.p., and the Hilbert cube I° has f*p.p.
Hence every absolute retract has f*p.p. (see [2]). Further, if X and Yare two continua
with f*p.p. and XY is a single point, then XUY has f*p.p. (see [1], [5]). The last
statement can be extended to the case where the number of continua is countably
infinite (see [5]).

The following question is posed in [2]: “Does there exist a space which has fp.p,
but does not have f*p.p.?" The purpose of this paper is to give an answer to this
problem. In Section I, we will construct some examples of continua with £p.p., but
without [*p.p. None of them is locally connected. Next, in Section II, we will give an
example of a not locally connected continuum which has f*p.p.

The author would like to express his sincere gratitude to Professor Shin’ichi
Kinoshita and the referee of the paper for their helpful advice.

(") All spaces considered in the paper are separable metric and every mapping is continuous,
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Notations and definitions

|f"=f1 = supd(f'(x), £(x)).
xeX
I: the interval [0,1].
dB: boundary of the 2-disk B.

IntB: the interior of B.

L Some examples of not locally connected continua with f.p.p., but without f*p.p.
First we state Borsuk’s lemma on fp.p. (see [1] or [4], p. 343).

LEmMA 1 (Borsuk). Let X and X, (n =1, 2, ...} be compact metric spaces such that
X o X, for every n. Assume that for every ¢>0 there exists f: X —X, with
|fulx)—x| < &. Then, if each X, (n=1,2,...) has fp.p., so does X.

The next lemma can be proved similarly to Lemma 1.

LemMA 2. Let X and X, (n=1, 2, ...) be compact metric spaces such that X DX

Jor every n. Assume that for every & > 0 there exists f,: X,~ X with |f,(x)— x| < &. Then,
if each X, (n=1.2,...) has fp,p., so does X.
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Fig. 1. Y, (a comb space) Fig. 2, Y,

Now we state the main theorems, which give the answer to our problem.

THEOREM 1. Let X be a continuum which satisfies the following conditions:

(i) X has fp.p., and

{ii) there exist a point pe X and a continuous mapping f: X — X such that Jp)=p
and the component C of the fixed point set of f which contains p is not essential.

Define the subset Yy = X xI as follows:
Y= ({p} x DuX x {0h)u ) (0 x {1/2"}).
n=0
Then Y, has fpp., but does not have f*p.p.

Proof. By Lemma 1, we can easily see that Y; has fp.p. Now, define F: ¥; —Y; by
F(x,y) = (f(x), 0), where xe X and yel. Then F is continuous, and the components
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of the fixed point set of F are Cx {0} and C, x {0}, where {C,} is the collection of all
components of the fixed point set of f other than C. We will show that neither C x {0}
nor C,x {0} is essential,

1) Since C is not an essential component of the fixed point set of f, there exists an
open set U o C such that for any § > 0 there exists a mapping f: X — X satisfying

@ |f—f1<8, and

(ii) f* has no fixed point in U.
Define F': Y, - ¥, by F'(x, y) = (f'(x), 0). It is easy to see that F': ¥; — ¥, is continuous
and satisfies

@) [F'—F| <6, and

(i) F’ has no fixed point in U x {0}.
Since F" has no fixed point in ¥; —(X x {0}), C x {0} is not an essential component of the
fixed point set of F. .

2) For any 6 > 0 there exists a natural number N such that 1/2¥ < 5. Define
Fy: Y- Y; as follows:

(/). 0)

(/). 1/2Y)

(p, 12V~ —2y)

It is easy to see that Fy is continuous and its unique fixed point is (p, 1/(3-2V"1)).
Let U, be an open set such that U, = C,x{0} and U,~({p} xI)=@. Then
@) [Fy—F] <6, and .
(i) Fy has no fixed point in U,.

Hence C,x {0} is not an essential component of the fixed point set of F, which
completes the proof.

for y = 1727,
for y < 1728+
for 1/2V*1 <y < 127,

Fy(x,y) =

By using a similar argument to the above, we can show the following:

TaEOREM 1. Let Y, be the quotient space Y, /I x {p} of Y1 above. Then Y, has fp.p.,
but does not have f*p.p.
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Fig. 3. 1, Fig. 4. Y,
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THEOREM 2. Let X be a continuum which satisfies the following conditions:

@) X has fpp., and

(ii) there exists a continuous mapping f: X —X such that f)=p, flg =q, and
C,nC, =@, where C, and C, are the components of the fixed point set of f which contain
p and g, respectively.

Define the subset Y, = X xI as follows:

Yy =(Xx {O})U Qo (X x {1/2"})U QO ({p} % [1/22'1, ]/22n+1])

v O ({g} x [1/2%+2, 17220 0],
n=0

Then Y3 has fp.p., but does not have f*p.p.

Proef By Lemma 1, we can easily see that Y3 has fp.p. Now, define F: 3 13 by
F(x,y) = (f(x),0), where xe X and yel. Then F is continuous, and the components of
the fixed point set of F are C,x {0}, C, x {0} and C, x {0}, where {C,} is the collection
of all components of the fixed point set of f other than C, and C,. We will show that
neither C, x {0}, C,;x {0} nor C,x {0} is essential.

1) Let U, be an open set such that U, = C,x {0} and U,n({g}xI) =@, and
U, such that U, > C,x {0} and U,n({g} x I} = @. For any > 0 there exists a natural
number N with 1/228~1 < §. Define Fy: Y3~ Y3 as follows:

(f69, 1/27%)
(f60,1/22877)
(g.3/2*" )

1/22N—1
for y < 122,
for 1/22¥ <y < 1/22V-1,

for y =
FN(xs y) =

It is easy to see that Fy is continuous and its unique fixed point is (q, 3/2*¥**). Thus
|Fy—F| < &, and Fy has no fixed point in U, and U,. Hence neither C,x {0} nor
C,x {0} is an essential component of the fixed point set of F.

2) Let U, be an open set such that U, > C,x {0} and U,n({p} xI) =
Fy: Y- Y, as follows:

@. Define

(f(x), 1/22N+ 1)
(fa, 1/22Y)
(P, 3/22N+1_y)

for y » 1/2*¥,
for y < 1/22N*4,
for 1/238*1 <y < 1/22V,

F;V(x) .V) =

It is easy to see that Fj is continuous and its unique fixed point is (p, 3/22V*2). Thus
again |[Fy—F| <, and Fy has no fixed point in U,. Hence C,x {0} is not essential
either, which completes the proof.

ExAMPLES. By letting X be the interval I in each of Theorems 1, 1’ and 2 we obtain
the examples shown in Figures 1, 2, and 3, respectively.
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Remark 1. From Lemma 2 we can also derive that ¥; and Y, have fpp. For
instance, this lemma can be applied to ¥; by taking

X, = (o} x DU x (127, 03)0 U G0 x {124),
k=0

(x,y)
(¢, 0)
(p,2y—1/2""1)

Remark 2 (f*p.p. and Borsuk’s lemma). Using Borsuk’s lemma, we have proved
that each of Y;, ¥, and Y; has fp.p., but by Theorems 1, 1’ and 2, none of them has
£*p.p. Hence, in Borsuk’s lemma, fp.p. cannot be replaced by f*p.p. A similar argument
is true for Lemma 2.
THEOREM 2'. Let :
C={(x,y)|y=>1/sin(1/x)+1/2, 0 < x < 2/r},
Ii={0,nl-1<y<1},
I = {(x, - 1|0 < x < 2/n},
Li={2/m,yl-1<y< 1}

Let ¥, = Culyul,uls. Then Y, has fp.p., but does not have F¥p.p.

Remark. It is well known that Y, has fp.p. The space ¥, is called the Polish (or
Warsaw) circle.

Proof. Define F: ¥,— Y, by F(x,y) = (0, y%. Then by a similar argument to

Theorem 2, we can see that neither of the two fixed points (0,0) and (0,1) of F is
essential.

for y > 1/2"71,
for y < 1/27,
for 1/2" < y < 1/2" 1.

Jalx,y) =

Il. A not locally connected continuum with f*p.p.

LemmMa 3. Let X and Y be compact metric spaces such that XY = {r}. Asaume that

X has f¥pp. If f: XUY—XUY satisfies f(P)eX —p, then its fixed point set has an
essential component.

Proof. Apply the same argument as in the proof of Theorem 1 in [5].
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Now we construct a not locally connected continuum which has both fp.p. and
f*pp.

THEOREM 3. Let A and B be given in polar coordinates by

A={(7‘,9)]7‘=27[/0+1,0?271;}’ B={(J‘,0)|r$1}.

Let Z = AUB. Then Z has f¥*p.p.

Proof First we note that Z has fp.p. by [3]. Now we prove that Z has [*p.p,,
ie. the fixed point set of every mapping f: Z—Z bas an essential component.

Case 1: f(4) = A.

Case 1(a): There exists a point p = (2n/0o+1, Op)e A such that f(p)edA—A4,,
where 4, = {(r, 6)|r = 2n/6+1, 6 > 6o} It then follows from Lemma 3 that the fixed
point set of f has an essential component.

Case 1(b): f(p)e A4, for every pe A. In this case, f(0B) = B and f(B) = B. Further,
it is easy to see that the degree of f|;5: dB— 0B is not 0. Then f(B) = B. Hence every
mapping f*: Z — Z with | f'—f} < 1 satisfies f*(B) = B. Therefore the fixed point set of
f has an essential component.

Case 2: f(4) = B. In this case we have f(B) < B.

Case 2(a): f(Z)nIntB#@. Let xoeZ be such that f(x,)elntB and let
dy = d(f(x,), @B). Hence, every mapping f': Z—Z with | —f| < d satisfies f'(B) = B.
Therefore the fixed point set of f has an essential component.

Case 2(b): f(Z) = @B. For convenience, we define another metric d* on A as
a half-line as follows:

d¥(x,y) = |x—y* = 180—0;] for x = (ro, Oo), y = (r1, 01),

and let V,(C) be the g-neighborhood of C in A with metric d*.

Let g = flss: 0B — 0B. First, we note that the degree of g is 0 and hence there exists
xedB with f(x) # x. Using polar coordinates, define the projection P: A-+0B by
P(r,0) = (1, 0). Let

In={(r,0)|r =2n/0+1, 2nm < 6 < 2(n+1)r}.

Choose a point a with g(a) = a and let P~*(a) = {a,}, where a,€I,. Since the degree of
g is 0, there exists g,: 4— A, the lift of g with g,(a,) = a,. Note that limy,- ¢ gulan = ¢,
where 4, is the. closure of ¥,(g,(d4)). Let C, be any component of the fixed point set of
Inlan: As— A,. Let x,€ A, and x = P(x,)€0B. Since g,(x,) # x, lor x, with g(x) # x,
P(C,) = C is a component of the fixed point set of g. Note that every gj: 4— A with
Ign—gal* < 0 (e < m)is the lift of some g': dB— 3B with |g'—g|* < p. Hence, if C, is an
essential component of the fixed point set of g,|4,, P(C,) = C is an essential component
of the fixed, set of g, and vice versa.

Let C* be an essential component of the fixed point set of f|z: B— B. Then' C* is
also an essential component of the fixed point set of g = f|p: 8B —> 8B. Therefore, the
component Cy of the fixed point set of g,,‘l 4, such that P(C¥) = C* is essential.
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We will show C* is an essential component of the fixed point set of [ Z~2Z,ie.
for any & > 0 there exists § > 0 such that every f't Z-Z with |f'— f] < 6 has a fixed
point in U,(C*).

Case2(b)(i): f'(Z2) = B. Since C* is an essential component of the fixed point set of
flg: B~B, for any &> 0 there exists ;>0 such that every f'|z: B—B with
[f'18—fl5] < 05 has a fixed point in U,(C*).

*
Ve (Cnn)

Fig. 6

Case 2(b)(ii): f'(Z) = A. There exists ng such that for every n 2= ng, C¥ is contained
in Ug,s(C*). Let go>0 be a real number such that (I/ng+1)oo < &/2. Then
Voo (C¥) = U(C*) (n = ny). Since C¥ is an essential component of the fixed point set of
Gulan: Ay~ A, and g, is the lift of g, for every n there exists ¢ > 0 such that every

Gt A~ A With g4l 4s—galanl* < ¢ has a fixed point in V,,(C¥). Let ¥ = |J&,, ¥, (C¥)

and let 6 > 0 be a real number such that U;(C*)nA4 < V. By the continuity of f, there
exists N such that |f(x)—f(P(x))| < 8/4 for every n > N and xeA,.

Now let 6, =min{d/4, %} and let f* be a mapping with |f'—f] <§5,, where
% = sup{d(x, 0B)|xe Ay}. Since f(C¥) < 8B, we have

d(f(C¥), aB) < d(f'(CH, AICH) <If — 11 < %
Furthermore, for every n > N and x€A,, we have
776 =f (PG| < 1S () ~F ()l +| f ) —f (P ()| < 6/4+6/4 = 5/2.

Hence, d(f"(x), f(C¥) = d(f"(x), C*) < §/2 for xeC¥. Then, f'(C¥ < U4(C*) (n > N)>.
Since the degree of Pf"|p is 0, there exists m > N such that F(C¥) = V,(C}) for every ‘
n2N. Hence f(CHcUyC*<V and f(CHc V,(CR). Since If(P(x));gm(x)]
<2|f'=fl < é/2 for xe A,,, we have

16 =006 <SG =F I+ |00~ (P + |1 (P () = 9]

< 5/4+6/4+5/2 = 5.
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By the continuity of f*, we have | f'|4,, —gula.l* < 0. Hence ['|4,: A4, — A, has a fixed
point in ¥,,(C¥). Thus, f* has a fixed point in ¥,,(C}) = U,(C*).

From Cases 2(b)i) and (i) it follows that every mapping f': Z—»Z with
|f'=f] <min{6,, 65} has a fixed point in U,(C¥*). This completes the proof.

Remark. While Z has f*p.p., the cone over Z does not have fp.p. (see [3]).

Addendum. We can construct an example of a locally conneeted continuum which
has fp.p. but does not have f*p.p. Define

B, = {x|(x—1/2"2+y* < 1/(3-2"%},

w =]
Y = ({(0,0)} x )u |J (@B, xDu | (B, x{0}).
n=0 n=0
By a similar argument to that of Theorem 1, we can prove that ¥; has f.p.p. but does not
have {*p.p. Another similar example corresponding to Theorem 2 can also be easily
constructed.
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Torsion free types

by

John Dauns (New Orleans, La))

Abstract. It is shown how the known classification of nonsingular, injective modules M into
Types I, II, and III as well as corresponding direct sum decompositions M = M@ My @ My are
merely special cases of a more general phenomenon. There is a functor Z from rings R to complete
Boolean lattices (equivalently Boolean rings) Z(R), where each point of Z(R) is a class of similar
nonsingular modules. Types I, II, III, continuous, discrete, and certain other classes of modules
correspond to unique elements of Z(R). Appropriate finite sets of disjoint classes of modules induce
direct sumn decompositions of £ as a direct sum of subfunctors. The latter give rise to corresponding
direct sum decompositions of nonsingular injective modules M, such as M = M, ® M;® My,.

Introduction. This article will show how the classification of certain torsion free
modules into Types I, II, and III ((MN], [K], [B], and [GB]) is a special case of
a classification scheme developed in [D]. If A is a unital right R-module and ZA4 its
singular submodule, then the second singular submodule Z4 = Z, 4 < A is defined by
Z[A/ZA] = (Z,A)/ZA. A module is torsion free if ZA =Z,A4 =0, and torsion if it
equals its torsion submodule Z, A = A. This is a continuation of [D] where the following
was shown. There exists a contravariant functor £ applicable to any associative ring
R with identity. The result is a complete Boolean lattice Z(R). The functor = classifies or
partitions the class of all torsion free right R-modules {4, B, ...} into equivalence
classes Z(R) = {[4], [B], ...} where Ae[A], and [A4] consists of a class of modules that
are similar, or are like 4. An appropriate ring homomorphism R — S induces a lattice
{equivalently Boolean ring) homomorphism Z(S)— Z(R).

Goodearl and Boyle ([GB]) extended the Murray-von Neumann-Kaplansky
((MN1, [K], and [B]) classification of operator algebras, W*-algebras, and Baer »-rings
into Types I =1,Ul,, Il = II; UIL, III, abelian, directly finite, and purely infinite to
all torsion free injective modules. Here this latter theory is extended to all torsion free
modules over any ring by defining M to belong to any of the latter classes if and only if
its injective hull EM does (e.g. M eIl iff EM Ill). In order to obtain necessary and
sufficient conditions for M (as opposed-to EM) to be of Types I, II, III, abelian etc. (4.2,
4.4, and 4.5), the usual definitions are reformulated without reference to idempotents
(3.3, 3.4). .

It is shown that there exist unique largest elements [I], [II], [III]e Z(R) which
determine Type I, 11, and III modules (Corollary 3.16). More specifically, [11I] consists
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